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ABSTRACT

A non-parametric method is introduced to estimate the measurement
model of dynamical systems. The method uses a neural network
trained in an unsupervised manner integrated into a particle filter
framework. The network learns the measurement likelihood directly
from the distribution of particles. The performance of the result-
ing neural network particle filter is first evaluated on synthetic data
with a known measurement model showing a very interesting perfor-
mance. The particle filter is then applied to sensor calibration with a
specific focus on camera distortion estimation. Experimental results
show that the method provides a reliable alternative to traditional
parametric calibration techniques.

Index Terms— Tracking, particle filter, neural networks, cam-
era distortion estimation, pinhole model.

1. INTRODUCTION

Sequential Monte Carlo methods and particle filters (PFs) are widely
used for state estimation in complex systems. Non-linear and non-
Gaussian dynamics are handled by propagating a set of weighted
particles that approximate the posterior state distribution over time
[1]. Many state-estimation problems with non-linear state or/and
measurement dynamics and non-Gaussian noises can be solved us-
ing PFs [2]. However, the performance of PFs strongly depends on
the accuracy of the measurement model, which defines how the sys-
tem’s state relates to the observations. In many real-world scenarios,
this model is partially known or completely unknown, which com-
plicates the filtering process. These scenarios include inertial sensor
calibration [3], air-quality sensor calibration [4], and indoor locali-
sation [5].

The measurement model used for cameras can be difficult to de-
fine. Indeed, real lenses bend light unevenly across the field of view
and small sensor misalignments introduce additional non-linearities,
causing three-dimensional points to deviate from the ideal pinhole
projection onto the image plane, making the observation model diffi-
cult to express analytically [6]. Traditional calibration methods take
into account these distortions by using fixed parametric models such
as radial–tangential or Brown–Conrady formulations [7]. However,
they require large sets of labelled calibration images captured from
multiple viewpoints and the estimated parameters may become in-

valid after lens refocusing, temperature changes, or camera replace-
ment, which raises problems for real-world deployments [8].

When the state or/and measurement models are only partially
known, typical approaches rely on parametric approximations
and update the unknown parameters during inference. Two no-
table strategies in this context are online expectation-maximisation
(EM) [9] and score-based gradient methods [10, 11]. The EM algo-
rithm alternates between estimating latent states and updating model
parameters. Gradient methods compute the gradient of the marginal
log-likelihood with respect to parameters using PF approximations
of the score.

More recent research includes differentiable PFs, which treat the
entire pipeline as a differentiable computation graph: NNs are used
to define a proposal distribution, the measurement likelihood, or the
resampling weights, and parameters are learned directly from data
through back-propagation [12–14]. However, many differentiable
PF frameworks are first trained offline using supervised learning.
This stage relies on ground-truth hidden states and the learned pa-
rameters are then fixed while the model performs online inference
on new data streams [15].

This work concerns unsupervised and non-parametric learning
of the measurement equation of a dynamical system by modeling
the equation with an NN, with a particular interest in the problem of
camera-lens distortion estimation. Recently, PF-based techniques
[10] that exploit Fisher’s identity have been introduced to obtain
estimates for the score function, which is the gradient of the log-
likelihood in a state-space model with respect to the model param-
eters [16]. This, in turn, can be used to build a gradient-based al-
gorithm to estimate the parameters of the NN. This work pursues a
similar line to develop an unsupervised framework for camera-lens
distortion estimation by integrating a PF and an NN. Since the NN
is “trained” directly using the particles within the PF, this approach
removes the need for building ground-truth state vectors. Specif-
ically, NN is employed to learn the residual between the nominal
(distortion-free) and true (distorted) measurement models directly
from the particle set. Its parameters are updated via a score-based
estimate of the log-likelihood gradient [10]. This strategy removes
the need for an explicit analytical distortion model, which can be
interesting for practical applications.

The paper is structured as follows: The proposed method is stud-
ied in Section 2. Simulation results are presented in Section 3 and
conclusions are provided in Section 4.



2. METHODOLOGY

2.1. The model: A state-space model with an NN

A discrete-time nonlinear state-space model is defined by a hidden
state process {xt ∈ Rdx}t≥0 and an observation process {zt ∈
Rdz}t≥1 for some dx, dz ≥ 1. At time t ≥ 1, the system evolves
according to the following state and measurement equations:

xt = f(xt−1) + ut, (1)
zt = h(xt) + et, (2)

where ut ∈ Rdx and et ∈ Rdz are random processes and measure-
ment noises with zero mean and known covariance matrices. The
functions f : Rdx 7→ Rdx and h : Rdx 7→ Rdz represent the (pos-
sibly) nonlinear transition dynamics and the unknown measurement
model. For t ≥ 1, the joint probability distribution of the states
x0:t = (x0, ..., xt)

⊤ and the observations z1:t = (z1, ..., zt)
⊤ is:

p (x0:t, z1:t) = p(x0)

t∏
k=1

p (xk | xk−1)

t∏
k=1

p (zk | xk) , (3)

where p (xt | xt−1) and p (zt | xt) are the transition and observation
densities resulting from (1) and (2) and p(x0) is the initial distribu-
tion for x0.

In many real-world applications, while the state transition func-
tion f can be defined with a reasonable accuracy, the measurement
function h may be partially known or entirely unknown, rendering
the use of a fixed likelihood model inadequate. In such cases, we
propose to replace h in (2) with a neural network hθ , leading to the
following measurement model:

zt = hθ(xt) + et, (4)

where the vector θ ∈ Θ, for some suitable Θ, contains the param-
eters of the NN that approximates the measurement function. This
choice is motivated by the fact that NNs such as multi-layer per-
ceptrons can serve as universal functional approximations modelling
complex non-linear relationships in data. Once modelled as such,
“learning” hθ from a given set of observations z1:T until time T ≥ 1
can be formulated as a maximum likelihood problem for θ, in which
one maximizes the marginal (log-)likelihood of the observations:

θ∗ = argmax
θ∈Θ

log pθ (z1:T ) .

The parameter θ∗ is found with gradient ascent, which updates the
estimate of θ at the jth iteration as:

θj+1 = θj + η∇ log pθj (z1:T ) , (5)

where η is the learning rate and the superscript j = 0, . . . , n indi-
cates the training iteration.

2.2. Particle filtering (PF)

The learning problem addressed in this work involves the calcula-
tion of the posterior distribution p(x0:t | z1:t) sequentially. How-
ever, in many practical problems, where the state-space dynamics
are nonlinear and/or non-Gaussian, the joint distribution (3) cannot
be marginalized in closed form,making p(x0:t | z1:t) intractable. To
address this difficulty, PFs are widely used to approximate the pos-
terior using a set of N > 1 weighted particles as:

p(x0:t|z1:t) ≈
N∑
i=1

w
(i)
t δ(x0:t − x

(i)
t ), (6)

where δ(·) is the Dirac delta function, x(i)
t := [x

(i)
t,0, x

(i)
t,1, . . . , x

(i)
t,t ]

is the i-th path particle at time t, and w
(i)
t is its normalized weight

computed using the observation density.

2.3. Neural Network Particle Filter Approximation

For a given θ ∈ Θ, the gradient of the log-likelihood∇ log pθj (z1:T ),
which is also known as the score vector, cannot be calculated exactly,
for the same reasons that make the posterior distribution intractable.
To approximate the score vector with PF, the methodology in [10] is
used, which is based on the Fisher’s identity:

∇ log pθ (z1:T ) =

∫
∇ log pθ (x0:T , z1:T ) pθ (x0:T | z1:T ) dx0:T .

(7)
Since only the measurement function (4) depends on θ, one has:

∇θ log pθ(x0:T , z1:T ) =

T∑
t=1

∇θ log pθ(zt | xt). (8)

Substituting (8) into (7), and using the PF approximation (6) for
pθ (x0:T | z1:T ) leads to:

∇ log pθ (z1:T ) ≈
N∑
i=1

w
(i)
T

T∑
t=1

∇ log pθ
(
zt | x(i)

T,t

)
, (9)

where it is recalled that x(i)
T,t is the “time t” component of the ith

path particle at time T . The methodology in [10] is also used in [16]
to approximate the score function for a state-space model involving
NN, however, with modifications toward fixed-lag smoothing. Un-
like [16], a direct application of the “O(N)” particle path approxi-
mation of the Fisher identity is considered in this work.

The approximation of ∇ log pθ (z1:T ) in (9) can be calculated
for each T ≥ 1 recursively, in an algorithm that integrates PF with
gradient calculations for NN. The algorithm operates through three
main stages at each iteration: the prediction step uses the motion
model, the update step incorporates the measurement model, and
the resampling step maintains particle diversity. For recursive com-
putation of the score function, each particle path x

(i)
t is assigned a

gradient vector α(i)
t defined as the particle’s local gradient:

α
(i)
t :=

t∑
k=1

∇θj log pθj (zk | x
(i)
t,k).

In the prediction step, particles are propagated according to the sys-
tem dynamics (1):

x
(i)
t ∼ p(xt | x(i)

t,t−1), x
(i)
t = [x

(i)
t−1, x

(i)
t ], (10)

so that x(i)
t,t := x

(i)
t for i = 1, . . . , N . After receiving the observa-

tion zt, the particle weights are calculated according to (2) as:

w
(i)
t ∝ pθj (zt|x

(i)
t ). (11)

This likelihood depends on hθj (x
(i)
t ), i.e., the NN output obtained

from the forward pass of particle x
(i)
t [17]. Each vector α(i)

t accu-
mulates local gradient contributions and is recursively updated as:

α
(i)
t = α

(i)
t−1 +∇ log pθj (zt|x

(i)
t ). (12)



Assuming et is zero-mean Gaussian noise with covariance matrix
Σe, the gradient is given by

∇ log pθj (zt | x
(i)
t ) = Σ−1

e

(
zt − hθj (x

(i)
t )

)
⊙∇hθj (x

(i)
t ),

where ∇hθj (x
(i)
t ) is obtained by backpropagation through the NN

[17]. During resampling, both the particles and the associated α-
vectors, {(x(i)

t , α
(i)
t )}Ni=1, are resampled according to the respective

particle weights {w(i)
t }Ni=1. This ensures that the particle population

remains diverse and representative of the posterior distribution.
After processing the entire observation sequence, the score vec-

tor is computed as a weighted sum of the accumulated gradients:

∇ log pθj (z1:T ) ≈
N∑
i=1

w
(i)
T α

(i)
T . (13)

Finally, the vector θ is updated using the gradient descent step (5).
The proposed method for learning hθ , referred to as neural network
particle filter (NNPF), is provided in Algorithm 1.

Algorithm 1 NNPF: Neural Network Particle Filter

Input: Initial particle set {x(i)
0 ∼ p(x0)}Ni=1, NN model and ini-

tial parameter vector θ0, measurements z1:T , number of training
iterations n, number of particles N
Output: neural network parameter vector θn
for j = 0 to n do

for t = 1 to T do
for i = 1 to N do

Sample from the motion model: x(i)
t ∼ p(xt | x(i)

t−1)

Compute particle weights: w(i)
t = pθj (zt | x

(i)
t )

Normalize weights: w(i)
t ←

w
(i)
t∑N

j=1 w
(j)
t

, i = 1, . . . , N .

Estimate the state: x̂t =
∑N

i=1 w
(i)
t x

(i)
t

Update the particle-specific score vectors:

α
(i)
t = α

(i)
t−1 +∇ log pθj (zt|x

(i)
t )

Resample {x(i)
t , α

(i)
t }Ni=1 based on weights {w(i)

t }Ni=1.
Compute the score: ∇ log pθj (z1:T ) ≈

∑N
i=1 w

(i)
T α

(i)
T .

Update: θj+1 = θj + η
∑N

i=1 w
(i)
T α

(i)
T .

3. SIMULATION RESULTS

This section first studies the performance of NNPF for a synthetic
1D scenario with a known measurement model. NNPF is used to es-
timate the measurement function, which is compared to the ground
truth. A camera calibration problem is then investigated: the mea-
surement model is initialised with a pinhole model, and NNPF is
used to estimate the camera distortion.

3.1. One-dimensional non linear filtering problem

The following nonlinear state space model is considered [18]:

xt = 0.5xt−1 + 25
xt−1

1 + x2
t−1

+ 8 cos(1.2(t− 1)) + ut, (14)

zt = x2
t/20 + et, (15)

where ut ∼ N (0, σ2
u) and et ∼ N (0, σ2

e) are zero-mean Gaussian
white noises with variances σ2

u and σ2
e . The measurements z1:T are

generated using the state and observation equations with σ2
u = 0.1

and σ2
e = 0.1 and a trajectory length T = 200. The NN architecture

was chosen to obtain a reasonable problem complexity related to the
ground truth measurement function h(xt) = x2

t/20, i.e., 3 hidden
layers with 3 neurons. The Adam optimizer was initialized for the
NN parameters with a learning rate η = 0.01 and an L2 regulariza-
tion term equal to 0.01 [19]. The number of iterations is n = 1000
and the number of particles is N = 100. All these parameters were
tuned by cross validation to obtain the best results.
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(a) Loss vs iteration number. (b) Ground truth and estimated
measurement function.

Fig. 1: Performance measures for the synthetic data.

Figures 1a and 1b illustrate the performance of NNPF. The evo-
lution of the loss versus the number of iterations is displayed in Fig.
1a (left), showing that 400 iterations are sufficient to obtain a reason-
able performance. The estimated measurement function displayed in
Fig. 1b (right) is in good agreement with the actual quadratic mea-
surement function, with a mean square error (MSE) equal to 0.20 for
state values evaluated on a regular grid in the interval [−20, 20].

3.2. Camera Calibration

In this experiment, the state vector xt = [ pxt , p
y
t , v

x
t , v

y
t ]⊤ contains

the planar position and velocity at time t of a simulated camera. The
camera is rigidly mounted 1 m above the ground, with its optical
axis orthogonal to a 5 × 5 chessboard, with a square side length of
50 mm (Fig. 2). During a 60 s sequence sampled at 1 Hz, the camera
undergoes a planar translation with a constant-velocity state model:

xt =

[
I2 (∆t)I2
02 I2

]
xt−1 + ut, ut ∼ N

(
0,

[
σ2
pI2 02
02 σ2

vI2

])
.

(16)
The camera translates along the x-axis at a constant speed of 1 cm/s,
with process-noise standard deviations σp = σv = 10−3. The ob-
servation at time t contains measurements on nc = 36 chessboard
corners, where zt,i, i = 1, . . . , nc, where zt,i ∈ R2 is the image
coordinate vector of the i-th chessboard corner, defined as:

zt,i = h
(
K,x

(c)
t,i

)
+ et,i, et,i

i.i.d.∼ N (0, σ2
eI2), i = 1, . . . , nc,

where h(·) denotes the camera projection function that integrates
both the intrinsic parameters and the lens distortion model, using
radial and tangential distortion coefficients [0.1, −0.2, 5×10−4, 5×
10−4]. The 3×3 matrix K encodes the camera’s intrinsic calibration
parameters and x

(c)
t,i is the position of the ith corner in the camera

frame at time t, computed from xt. The measurement dataset for
this example has T = 60 time steps, generated with σe = 1.
To estimate the camera distortion, the available motion information
of the camera is exploited within the NNPF algorithm to learn the



Fig. 2: Initial 3D scene showing the camera pose. Blue crosses indi-
cate the corners of the chessboard, and the blue arrow represents the
direction of camera motion.

relationship between 3D points and their corresponding 2D pixel po-
sitions, thereby avoiding the need for a traditional calibration proce-
dure that requires paired 3D–2D labeled data. Every corner position
x
(c)
t,i is tracked using the constant-velocity state model (16). Due to

the limited size of the dataset, prior knowledge is incorporated by
modeling the measurement function as the sum of an ideal pinhole
projection hm [20] and a neural-network correction hθ:

zt,i = hm

(
K,x

(c)
t,i

)
+ hθ

(
x
(c)
t,i

)
+ et,i, (17)

where [·]3 refers to the third component of a vector and

hm

(
K,x

(c)
t,i

)
= Kx

(c)
t,i /[x

(c)
t,i ]3. (18)

Note that the 3rd component of hm(·) is always 1.
The network architecture consists of five hidden layers, each

comprising five neurons. The number of iterations is n = 105, and
the number of particles is N = 50. Again all these parameters were
chosen empirically to provide the best results. Figure 3 compares
the undistorted pinhole image, the ground-truth distorted image, and
the corrected image produced by the network. All observations were
generated using the same camera motion described by (16), com-
bined with three measurement functions: hm for the pinhole model,
h for the ground truth, and ĥ = hm + ĥθ for the learned function.
Under the pinhole model and the specified camera motion, six paral-
lel lines of observations appear in the image plane. The ground-truth
function introduces visible distortion at the image periphery. The
estimated function corresponds to the learned correction using the
proposed method. The mean squared reprojection error is signifi-
cantly reduced, from 7.52 with the pinhole model to 1.12 × 10−1

using the estimated function.
Figure 4 shows the tracking performance of a specific corner
(bottom-left) for each measurement function. The plot highlights
the tracking error of xi

c introduced by the pinhole model, as well as
its correction achieved by the NN. Finally, Table 1 provides quanti-
tative results for each measurement function allowing the tracking
accuracy to be appreciated.

Table 1: Mean-squared reprojection error (expressed in pixels), for
the different measurement models.

Model h (true) hm (pinhole) ĥ (ours)

MSE 2.2× 10−6 3.4× 10−4 4.4× 10−5
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Fig. 3: Distortion map with the pinhole model (no distortion), the
ground truth with the perfect distortion model and the NN correction
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Fig. 4: Tracking of the bottom-left corner with three different mea-
surement functions: hm (pinhole model), h (ground truth), and ĥ
(estimated function)

4. CONCLUSION

This work studied a non-parametric approach based on neural net-
works to jointly estimate the measurement model and the system
state within a particle filter framework. Simulation results showed
that the proposed method can learn the measurement function accu-
rately, significantly reducing the discrepancy between the estimated
and ground-truth functions. In particular, it demonstrated strong
potential for camera distortion estimation, enabling accurate cali-
bration without relying on explicit distortion models. This data-
driven strategy provides a flexible alternative to traditional paramet-
ric methods and holds promise for broader applications in state es-
timation for complex non-linear systems. Future work will explore
the integration of this framework into real-time sensor calibration
pipelines, addressing challenges such as temporal constraints and
real-world conditions.



5. REFERENCES

[1] A. Doucet, N. Freitas, and N. Gordon, Sequential Monte Carlo
Methods in Practice. Springer, 2001.

[2] F. Gustafsson, “Particle filter theory and practice with posi-
tioning applications,” IEEE Aerospace and Electronic Systems
Magazine, vol. 25, no. 7, pp. 53–82, 2010.

[3] T. Zheng, A. Xu, X. Xinchao, and M. Liu, “Modeling and
Compensation of Inertial Sensor Errors in Measurement Sys-
tems,” Electronics, vol. 12, p. 2458, May 2023.

[4] J. Dong, N. Goodman, A. Carre, and P. Rajagopalan, “Cali-
bration and validation-based assessment of low-cost air qual-
ity sensors,” Science of the Total Environment, vol. 977,
p. 179364, 2025.

[5] J. Yoo and J. Park, “Indoor localization based on wi-fi received
signal strength indicators: Feature extraction, mobile finger-
printing, and trajectory learning,” Applied Sciences, vol. 9,
p. 3930, Sept. 2019.

[6] Z. Zhang, “A flexible new technique for camera calibration,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 22, no. 11, pp. 1330–1334, 2000.

[7] J. Wang, F. Shi, J. Zhang, and Y. Liu, “A new calibration model
and method of camera lens distortion,” in Proc. IEEE/RSJ
International Conference on Intelligent Robots and Systems,
(Beijing, China), pp. 5713–5718, 2006.
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