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ABSTRACT

Order-Based Modal Analysis estimates resonances at frequencies
that are integer multiples of a rotating machine’s speed. These
resonances are represented as a cloud of frequency-versus-speed in-
tersections revealing the natural modes of the mechanical structure.
This paper shows that grouping these intersections can be cast as
inference in a coupled affine Gaussian mixture model where each
mode is represented by a straight line shared across all harmonic
orders, while a uniform component captures outliers. A dedicated
expectation maximisation (EM) algorithm is investigated for this
model, estimating mixture weights in closed form and the other
model parameters through a one-dimensional search. Cramér—Rao
lower bounds are derived for the joint estimation of slopes, in-
tercepts and mixing proportions in the proposed statistical model
allowing performance of the estimators of the unknown parameters
to be studied. Monte-Carlo simulations illustrate how the variances
of EM estimates approach those bounds. Applied to data from an
industrial turbomachine, the method extracts modal lines whose
characteristics agree with historical benchmarks, despite strong
deterministic harmonics and regime-dependent drifts.

Index Terms— Gaussian mixture models, expectation maximi-
sation, Cramér—Rao lower bounds, order-based modal analysis.

1. INTRODUCTION

Time—frequency techniques have become a cornerstone of modern
signal processing, providing a joint description of how spectral con-
tent evolves over time. These representations are routinely exploited
to detect salient patterns such as horizontal ridges (quasi-stationary
sinusoids), chirps or other sweeps, and more intricate modulations
such as time-varying amplitude or frequency components [2]. De-
pending on the compromise between time and frequency resolutions,
practitioners may favour the short-time Fourier transform, the con-
tinuous wavelet transform, or high-concentration bilinear distribu-
tions [9]. Such tools have been used successfully in many appli-
cations ranging from radar tracking and bio-acoustics to structural
health monitoring and operational modal analysis [12,13,16].
Modal analysis leverages prior knowledge about a physical
system subjected to vibrations to explain the measured response,
with the objective of estimating key parameters such as the natural
frequencies and damping ratios of its modes. For turbomachinery
blades, accurately identifying these modes and their amplitudes
is essential for monitoring R&T tests and for certification. Two
well-known obstacles complicate this identification [10]: 1) Strong
parasite harmonics: Shaft rotation induces deterministic responses

at integer and sometimes fractional orders of the speed, masking
the weaker natural modes, 2) Regime-dependent filtering: Blade
dynamics vary with operating point making modal frequency drifts
during tests with varying speeds. Traditional Operational Modal
Analysis (OMA) is not adapted to rotating machinery, as it relies on
the assumption that the input excitation is a broadband stochastic
process. This assumption is violated in rotating systems, where
the excitation is dominated by a small number of deterministic har-
monics tied to the shaft rotation. Recent approaches developed for
such systems aim to exploit the trajectories of these harmonic or-
ders to infer potential resonances at their intersection with structural
modes. These methods are collectively referred to as Order-Based
Modal Analysis (OBMA) [14]. Our specific contribution is the post-
processing step that turns OBMA’s raw output, a scatter of discrete
(frequency, order) points that are expected to align along affine
curves corresponding to the natural modes of the structure. Extract-
ing these curves amounts to a geometric clustering problem in the
(N, f) (regime, frequency) plane, made difficult by measurement
errors and outliers.

The OMA problem can be formulated as inference in a coupled
affine Gaussian mixture model (C-AGMM), in which the distribution
of observed frequencies for each harmonic is a mixture of Gaussian
components and outliers. Each Gaussian component corresponds to
a candidate for an intersection between an harmonic and a mode, and
its parameters—namely, the slope and intercept of the affine relation
f = amN + by,—are shared across all harmonics, which intro-
duces a constraint in the frequency regime analysis. This coupling
enforces global consistency of the modal structure across the dataset.
An additional outlier component accounts for spurious detections
unrelated to the natural modes. The parameters of the C-AGMM
are estimated with an expectation maximisation (EM) algorithm es-
pecially tailored to the affine coupling structure.

The contributions of this work are: 1) Formulation of OBMA
clustering using a coupled affine Gaussian mixture model, 2) Deriva-
tion of an EM algorithm that exploits the affine coupling between
modes to achieve computationally efficient parameter estimation and
3) Theoretical performance analysis based on the the Cramér—Rao
lower bounds (CRLB), highlighting the influence of model parame-
ters like the noise or the distance between modes for instance. The
paper is organized as follows: Section 2 introduces a probabilistic
model adapted to OBMA and investigates an EM algorithm to esti-
mate its parameters. Section 3 derives the Fisher information matrix
and the associated CRLBs. Section 4 validates the estimator against
these bounds through Monte-Carlo simulations and a run-up test on
an industrial turbofan.



2. ORDER-BASED MODEL ANALYSIS

2.1. Probabilistic model

To a first approximation, the natural modes of a rotating machine
depend only on the operating regime, which suggests a relevant rep-
resentation expressing the vibration frequency f (in Hz) versus the
engine speed /N (in rpm). In such a representation known as Camp-
bell diagram, modes appear as (nearly) horizontal curves, while
harmonics are characterized by oblique straight lines. Measure-
ments from strain gauge can be modeled as the output of unknown
resonant filters—corresponding to the system’s modes—excited by
the harmonic content of the rotating machine. These filters are
time-varying with coefficients depending on the rotational regime,
which itself evolves over time during a test. As a result, resonance
peaks in a regime-frequency analysis are located at the intersections
between the known harmonic trajectories and the quasi-horizontal
modal lines that need to be identified, as illustrated by the white
points in Fig. 1 that also contain outliers. The detection map built
for each sensor gathers all the local maxima identified along the cho-
sen harmonics. These maxima serve as candidate intersection points
for the probabilistic model developed in this paper. Precisely, we
consider a set of K harmonics defined by the frequencies f = di N,
kE=1,...,K (withdy = k/60Hz-RPM ™). For the kth harmonic,
Nj > 0 peaks are detected at locations (ng,1,. ..,k N, ) € RNw,
The natural modes in the frequency-regime plane are modelled as
M affine lines defined by:
Dy i f =amN + b, m=1,..., M.

The goal of the suggested OBMA model is to estimate the modal
parameters (am, bn,) from the detected points associated with the
white lines in Fig. 1.

Detection map overlaid on the spectrogram

Frequency (Hz)

” Engine speed (RPM)

Fig. 1: Example of detection map superimposed on a simulated spec-
trogram. Horizontal white lines are the natural modes, oblique lines
are the harmonics and white points are the detected local maxima
ny,; along the hamonics. Units are hidden for confidentiality.

For each point ny ;, a latent variable 2, ; = 0, ..., M is intro-
duced to indicate if the ¢th point on harmonic #k belongs to mode
Dy, (2i,s = m withm = 1, ..., M) or if the ¢th point is an outlier
(2k,s = 0). If z1,; = m, then fr,; = amNk,i+bm and fi; = ding,;
leading to nk,; = by /(dk — am). Assuming Gaussian detection er-

rors, the following result is obtained:
bm 2
Ny | 2k =m ~ N | ———— 0} |,
dk — Qm

where N (u, %) denotes the Gaussian distribution with mean z and
variance o2. Note that the variance o2 depends on the peak detection
algorithm. If zx ; = 0, the point is uniformly drawn along the kth
harmonic, i.e. nx,; | zx,s = 0 ~ U(NP™, NP**) where Ni*™ and
N are defined by the frequency-regime window. The complete
likelihood for the suggested OBMA probabilistic model is:

K Ng

[T 21 0),

k=1i=1

L(n,z|0) =

with the joint distribution

P(nk,is 2k, | 0) = p(ne,i | 25,6, 0) p(2k,i | 9),
and the unknown parameter vector @ = [a' ,b", 7w "]T, where a =
(a1,...,anm)", b = (by,...,bn)", and ® = (mo,...,7a1)"
with 77, = P(zk; = m | 8), m = 1,..., M, mg is the outlier
prior and Z%:o Tm = 1.

2.2. EM Algorithm

The EM algorithm is an iterative scheme for maximum-likelihood
estimation when part of the data is latent or missing. Starting from
an initial parameter vector 0©, each iteration alternates between
two complementary steps: the E-step that computes the expected
complete-data log-likelihood

Q(0;07) =

defined as an expectation with respect to the posterior of the latent-
variables under the current parameters, and the M-step that updates
the parameters by maximizing this expectation:

E,ine [logp(n,z | 0)],

oY = argmeaxQ(O;O(t)). 1)

The E and M steps are repeated until convergence. Note that the
observed-data likelihood is increasing at each iteration and that the
sequence L(8™) = p(n | 8Y)) increases monotonically toward a
local maximum of the model likelihood [3,11]. The E and M steps
for the suggested C-AGMM model are detailed below.

E step. For each observation ny ;, the E-step computes the posterior
probability that it was generated by each mode (or that it is an outlier)
given the current parameters 8*):

Nt = P(ons =m | 1, 6)

(i | zri =m, 00) 7l

SN (e |z =m,0D) 7))

M step. After computing the co-called responsabilities 'y( ) and

k,i,m
using the notation Ny = Z x—1 Nk, the priors 7, are updated as:

K Ng
(t+1) (t)
The maximisation of the @) function in (1) is equivalent to minimise:
K Ni ()
’Yk i,m b 2
(@ bn) = DY - (kz—dk_am), 6)

k=1 1i=1



allowing the modal parameters (@, bm) to be estimated for each
mode m. For a fixed a,, the value of b,,, minimising (2) is:

(t)

Vieiom Mk
E : 2
. o op  dr—am

bm(am) =

(®)

Z Vi,iym 1
= ok (dr—am)?

Substituting by, (@) into (1) leads to a 1D minimisation W.r.t. @,
that can be solved numerically (SciPy’s minimize_scalar).
Note that o, is not estimated since the uncertainty related to the n;
values can be known (it depens on the detection method).

3. PERFORMANCE ANALYSIS
The Fisher information matrix (FIM) of a probabilistic model is:
Z(8) = Eypiio)[—Vol(0:y)] = E[S(6)S(6)'],

where £(0;y) is the model likelihood, S(0) = Vef(0;y) is the
score vector and @ € R is the parameter vector to be estimated. For
an unbiased estimator 6, the variance of each individual parameter
is bounded below by the corresponding Cramér—Rao lower bound
(CRLB), which is the diagonal entry of the inverse FIM:
Var(éi) > [171(0)]“_, it=1,...,p,

Note that a steeper log-likelihood curvature (larger information) im-
plies tighter confidence intervals around every component 6;. To
evaluate Z(0), the score-outer-product identity can be used, which
avoids the use of second-order derivatives and requires the point-
wise score vectors to be computed. Because the incomplete log-
likelihood L(N | ) is a sum of 1D Gaussian terms, computing its
analytic gradient is straightforward. This computation is simplified
by introducing an unconstrained vector 7 = (11, ...,nar) ", which
is mapped into the simplex with the soft-max transform

M
, Z =1+ Z e,

j=1

e'm

) Tm (Tl) = Z

mo(n) =

N~

so that 7, € (0,1) and > %:0 Tm = 1 hold automatically. Using
the relation yk,;m = Tm fi,m/Pk, the residuals Ag;m = ngs —
i, m yield the following scores:

S . i) — r 7S i) = m7H7
e (Nk,1) = Yie,r — Ty Sap, (Nk,i) = Ve, o2 (dr, — am)?
Ak,i,m

Sb,, (Nk,i) = —_.
bm( kﬂ) Yk,m O-I% (dk — am)
A summation over the /N, samples of each harmonic leads to:

K Ny

—Irs(e) = Z Z]E[Sr(nk,z) Ss(nk,i)}y

k=11i=1

whose computation is explained below.
Block 1 (mixture weights). The relation E,, [y,] = 7, yields:

Lo = Niot (E[yeys] — mrmrs).

Block (a, b) and cross—term. Define the constants Cl ., = by, /[07 (d—

am)?], Di.m = 1/[02(dx — a.)] and the two integrals

Mi(m, ) = / Mm i) (n— iz i,

A (m, 7’) :/ TmTr Jk,m Sk g:mfk,'r' (n — ,uk,m) dn.

For each harmonic, the following results are obtained:

I(k) = Nk Ck,mck,sMk (’ITL, 8)7 I(E::),bs = Nk Dk,ka,sMk (m7 5)7

Am,as

with analogous formulas for Iélfj’bs and the cross—block entries
IC(l]:n)ﬂ?r = NCk,mAr(m,r) and Ié:?,nr = NgDgmAx(m, 7).

Approximations. For the separation approximation, the following
approximation holds: Yk, m7Yk,s & dms (With s = 1if m = s
and 0 else), which implies My, (m, s) =~ dmsop and Ay (m,r) = 0.
Thus, the diagonal terms simplify to:

IG) N Nipmmb2, (k) Nimm
Oi(dk _ am)4’ bm ,bm Uz(dk _ am)Q’
U;%(dk — am)3 ’

Am Am,

(B5)

am,bm

and all coupling terms depending on 7) are close to 0. The CRLB
is therefore block-diagonal in this regime: frequency—shape param-
eters (a, b) decouple from mixing weights. This is a theoretical jus-
tification for estimating the vectors (am, bm ) and 1 separately in the
case of well-resolved modal peaks. Similar results are obtained with
the modified CRLB in the presence of latent variables [5].

4. SIMULATION RESULTS

This section evaluates the performance of the EM algorithm of Sec-
tion 2.2 (that estimates the C-AGMM parameters) and verifies that
the Cramér—Rao bounds derived in Section 3 are consistent with the
mean square errors (MSEs) of the EM estimates computed using
Monte Carlo simulations. Two experiments are considered study-
ing the influence of the noise variance and the effect of the overlap
between two modes. For both experiments, the mixture probability
vector is w = [0.05, 0.325, 0.625] (5% of the detected points are
outliers), the number of harmonics satisfies K € {3,...,11} and
each harmonic intersects each mode. The sample size per harmonic
is Nj = 4, which agrees with real data. The MSEs of the EM esti-
mates are computed using 1000 independent Monte-Carlo runs ini-
tialized with the RANSAC algorithm [7]. They are compared with
those obtained using a Hough algorithm for line detection [6].

Experiment 1: varying noise variance. This scenario considers
two modes with parameters (a1,b1) = (0HzRPM™', 150 Hz)
and (az,b2) = (25.107*Hz.RPM ™, 300 Hz) and the noise stan-
dard deviation o = o increases logarithmically in the interval
[0.1,100]Hz. Figure 2 displays for each value of o the empirical
RMSE:s of the EM estimates of by and b2 and the corresponding
square-root of the CRLBs (dashed lines). The MSE of b, is closer
to the CRLB than that of b;. This is expected because the CRLB
is attained only asymptotically, and each Monte-Carlo run provides
nearly twice as many effective samples for b2 for by (m2 ~ 2m1).
Note that the RMSEs obtained using the Hough and EM algorithms
are similar for small noise levels, with a slightly better performance
for the Hough algorithm for large noise variances.
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Fig. 2: Experiment 1: Influence of noise variance. RMSEs of EM
and Hough estimates for b, and bs (triangles, squares and circles)
and corresponding v/ CRLBs (dashed lines).

Experiment 2: mode separation. This experiment studies the im-
pact of the difference between the two frequencies b, and b2 on the
estimation performance (see [1] for a similar analysis). For a fixed
noise variance o = 20Hz, the second mode is moved toward the first
mode, i.e. by = 150 Hz and by = b1 + Ab with Ab € [5,150] Hz.
Figure 3 shows the RMSEs and square roots of the CRLBs of b1
and b2 as the two modes get close to each other. The MSEs of the
EM estimates are close to the CRLBs for large values of A, as ex-
pected. For small values of A, the performance of the EM algo-
rithm drops (higher MSEs and CRLBs) since the high SNR region
is not reached and the estimator is possibly biased [15, p19]. How-
ever, the EM algorithm performs better than the Hough transform for
close modes.This experiment provides a practical lower bound on the
minimum separation—and thus on the attainable precision—when
analysing clusters of closely spaced modes. It confirms that the EM
procedure is nearly efficient in well-conditioned regimes, while also
highlighting the practical limits set by high noise level or strong
spectral overlap, situations where the FIM approaches singularity
and the performance of the EM estimator decreases significantly.

Experiment 3: real dataset. The method was finally applied to
a real-world signal acquired during a fan-blade test campaign on a
turbofan engine. The detection map was generated in two stages.
First, order tracking was performed with the Vold—Kalman filter [8],
an algorithm widely used in industry (see [4] for alternative). Sec-
ond, spectral peaks were identified by estimating the local maxima
along the estimated orders. The EM Algorithm was then run with
a RANSAC initialization. The Akaike Information Criterion (AIC)
was applied to each candidate model in order to estimate the un-
known number of modes. The order associated with the lowest AIC
score was M = 18 with estimated modes shown in Fig. 4. In the fre-
quency band of interest, the modal lines coincide very closely with
those identified by domain experts with a much faster processing.

5. CONCLUSION & PERSPECTIVES

This work formulated order-based modal analysis with regime de-
pendent modes as an inference problem in a coupled affine Gaussian

b o A Hough RMSE(b;)
Hough RMSE(b;)
——- VCRLB 1)
VCRLE lbz)
..... VCRLB approx(b;)

VCRLE approxib;)

RMSE [Hz]
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Fig. 3: Experiment 2 — Influence of mode separation. RMSEs
of EM and Hough estimates (triangles, squares and circles) and
v/ CRLB (dashed lines) for different separations (o, = 20 Hz).

mixture model. A dedicated EM algorithm was then derived to com-
pute the maximum-likelihood estimator of the model parameters.
Cramér-Rao lower bounds were finally derived for the parameters
of this model allowing optimal performance to be determined. Sev-
eral experiments confirmed that the suggested EM estimator yields
parameter mean square errors close to these bounds, when modal
peaks are sufficiently separated and noise is moderate. The EM al-
gorithm performs similarly to the Hough method in easy regimes but
remains more accurate for small inter-mode separations. Moreover,
the EM algorithm provides association probabilities that can be used
for uncertainty quantification, which is important for practical appli-
cations. The application to data from an industrial turbofan showed
that the method extracts modal lines whose characteristics are very
close to those provided by experts, which is very encouraging. Fu-
ture work includes a fully Bayesian formulation with priors informed
by mechanical finite-element predictions, which would deliver pos-
terior uncertainties and impose natural regularisation.
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Fig. 4: Detection map from a real engine run-up test. Each dot rep-
resents a detected peak: black dots correspond to outliers, while col-
ored dots indicate assignment to one of the identified modes.
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