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Introduction to cardiac electrophysiology

Electrocardiogram (ECG)

A recording of the electrical activity of the heart over time

3 distinct waves are produced during cardiac cycle

P wave caused by atrial depolarization
QRS complex caused by ventricular depolarization
T wave results from ventricular repolarization and relax

Wave shapes and interval durations indicate clinically useful
information
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Introduction to cardiac electrophysiology

ECG delineation

Delineation: determination of peaks and boundaries of the waves

P and T wave delineation−a challenging problem

Low slope and low magnitude

Presence of noise, interference and baseline fluctuation

Lack of universal delineation rule

Waveform estimation
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Introduction to cardiac electrophysiology

Literature review

Filtering techniques: nested median filtering, adaptive filtering,
low-pass differentiation (LPD)

Basis expansions: Fourier transform, discrete cosine transform,
wavelet transform (WT)

Classification and pattern recognition: fuzzy theory, hidden Markov
models, pattern grammar (PG)

Bayesian inference: extended Kalman filter (EKF)

LPD: P. Laguna et al., New algorithm for QT interval analysis in 24 hour Hotler ECG:
Performance and applications. Med. Biological Eng. and Comput., 1990
WT: L. Senhadji et al., Comparing wavelet transforms for recognizing cardiac
patterns. IEEE Eng. in Medicine and Biology, 1995

J. P. Mart́ınez et al., A Wavelet-based ECG delineator: Evaluation on standard
databases. IEEE Trans. Biomed. Eng., 2004
PG: P. Trahanias et al., Syntactic Pattern Recognition of the ECG. IEEE Trans.

Pattern Anal. Mach. Intell., 1990
EKF: O. Sayadi et al., A model-based Bayesian framework for ECG beat
segmentation. J. Physiol. Meas., 2009
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Introduction to cardiac electrophysiology

Why using a Bayesian approach?

Bayesian models are well suited to the ECG processing:

Natural way to express what is known and unknown in a
probabilistic sense and “get it into the problem”

Allowing to evaluate which one of many alternatives is most likely
the source of the observations
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Window based Bayesian analysis of P and T waves

Construction of P and T wave blocks
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Window based Bayesian analysis of P and T waves

Modeling of T wave parts within
the D-beat window
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Window based Bayesian analysis of P and T waves

Signal model for T wave search blocks

Deconvolution model

xk =
L∑

l=−L

hluk−l + wk , k ∈ {1, . . . ,K}

u = (u1 · · · uM)T : unknown “impulse” sequence

h = (h−L · · · hL)T : unknown T waveform

K = M + 2L: the processing window length

uk = bkak : uk can be further decomposed by using a binary
indicator bk ∈ {0, 1} representing the T wave locations multiplied
by weights ak representing the T wave amplitudes.

wk : white Gaussian noise

9 / 56
P and T Wave Analysis in ECG signals using Bayesian methods

N



Window based Bayesian analysis of P and T waves

Signal model for T wave search blocks

Vector representation of T wave components

x = FBa+w (1)

x = (x1 · · · xK )T denotes the T wave search block portion

a = (a1 · · · aM)T denotes the T wave amplitude vector

B = diag(b) denotes the M ×M diagonal matrix whose diagonal
elements are the components of b = (b1 · · · bM)T

F is the K ×M Toeplitz with first row (h0:−L 0) and first column
(hT0:L 0T )T

w = (w1 · · ·wK )
T denotes the noise vector
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Window based Bayesian analysis of P and T waves

Model parameters

Bayesian estimation relies on the posterior distribution

p(θ|x) ∝ p(x|θ)p(θ)

∝ means “proportional to”

θ = (bT aT hT σ2
w )

T are the unknown parameters resulting from (1)

Likelihood function

p (x|θ) = 1

(2π)
K
2 σKw

exp

(
− 1

2σ2w
‖x− FBa‖2

)

where ‖ · ‖ is the ℓ2 norm, i.e., ‖x‖2 = xTx
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Window based Bayesian analysis of P and T waves

Prior distributions

T wave indicator prior: minimum-distance prior

p (b) ∝
[

K∏

k=1

p (bk)

]
IC (b) = λ‖b‖

2

(1− λ)K−‖b‖2 IC (b)

binary T wave indicator bk is modeled as a Bernoulli sequence

b cannot have two elements bk = 1 and bk′ = 1 closer than a
minimum-distance d

IC (b) = 1 if b ∈ C and IC (b) = 0 if b /∈ C
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Window based Bayesian analysis of P and T waves

Prior distributions

T wave amplitude prior

p(ak |bk =1) = N (ak ; 0, σ
2
a)

ak are only defined at time instants k where bk =1,

uk =bkak is a Bernoulli-Gaussian sequence with minimum-distance
constraints.

J. Idier and Y. Goussard, Stack algorithm for recursive deconvolution of
Bernoulli-Gaussian processes, IEEE Trans. Geosci. Remote Sens., 1990
C. Soussen, J. Idier, D. Brie and J. Duan, From Bernoulli-Gaussian deconvolution to
sparse signal restoration, IEEE Trans. Signal Processing, 2011
G. Kail, J.-Y. Tourneret, F. Hlawatsch and N. Dobigeon, Blind deconvolution of
sparse pulse sequences under a minimum distance constraint: A partially collapsed
Gibbs sampler method, IEEE Trans. Signal Processing, 2012
· · ·
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Window based Bayesian analysis of P and T waves

Posterior distribution

T waveform coefficients prior

p (h) = N
(
0, σ2hI2L+1

)

Noise variance prior

p(σ2w ) = IG (ξ, η) =
ηξ

Γ(ξ)

1

(σ2w )
ξ+1

exp

(
− η

σ2w

)
IR+(σ2w )

Posterior distribution

p (θ|x) ∝ p (x|θ) p (a|b) p (b) p (h) p
(
σ2w
)

Complex distribution
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Window based Bayesian analysis of P and T waves

Partially collapsed Gibbs sampler

- Set k = 1

- While k ≤ K

Sample the T wave indicator bk

If bk =1

Sample the T wave amplitudes ak
Set the right-hand neighborhood bJd (k)\k = 0
Set k = k + d − 1

Set k = k + 1

- Sample the T waveform coefficients h

- Sample the noise variance σ2w

C. Lin et al., P and T wave delineation in ECG signals using a Bayesian approach and

a partially collapsed Gibbs sampler, IEEE Trans. Biomed. Eng., 2010
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Window based Bayesian analysis of P and T waves

Modified signal model for the non-QRS
intervals within a D-beat window
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Window based Bayesian analysis of P and T waves

Modified signal model for the non-QRS
intervals within a D-beat window
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Window based Bayesian analysis of P and T waves

Modified signal model for the non-QRS
intervals within a D-beat window

non-QRS signal components within a D-beat window

xk =

L∑

l=−L

hT,luT,k−l +

L∑

l=−L

hP,luP,k−l + ck + wk , k∈J

uT,k = bT,kaT,k : unknown “impulse” sequence indicating T wave
locations and amplitudes,

uP,k = bP,kaP,k : unknown “impulse” sequence indicating P wave
locations and amplitudes,

hT = (hT,−L · · · hT,L)
T : unknown T waveform,

hP = (hP,−L · · · hP,L)
T : unknown P waveform,

ck : baseline sequence, wk : white Gaussian noise

17 / 56
P and T Wave Analysis in ECG signals using Bayesian methods

N



Window based Bayesian analysis of P and T waves

Modified signal model for the non-QRS
intervals within a D-beat window

Representation of the P and T waveforms by a Hermite basis
expansion

hT = HαT , hP = HαP ,

H is a (2L+1)× G matrix whose columns are the first G Hermite
functions with G ≤ (2L+1)
αT and αP are unknown coefficient vectors of length G

Modeling of the local baseline within the n-th non-QRS interval by
a 4th-degree polynomial

cn = Mnγn ,

Mn is the known Nn× 5 Vandermonde matrix
γn = (γn,1 · · · γn,5)

T is the unknown coefficient vector
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Window based Bayesian analysis of P and T waves

Modified signal model for the non-QRS
intervals within a D-beat window

vector representation of the non-QRS components

x = FTBTaT + FPBPaP +Mγ +w , (2)

bT, bP, aT, and aP denote the M × 1 vectors corresponding to
bT,k , bP,k , aT,k , and aP,k , respectively.

BT,diag(bT) and BP,diag(bP),

FT and FP are the K ×M Toeplitz matrices with first row(
hT1 αT 0TM−1) and

(
hT1 αP 0TM−1), respectively.

M, and γ are obtained by concatenating the Mn and γn, for
n = 1, . . . ,D.
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Window based Bayesian analysis of P and T waves

Modified window based Bayesian model

T wave indicator prior: block constraint

p(bJT,n
) =





p0 if ‖bJT,n
‖ = 0

p1 if ‖bJT,n
‖ = 1

0 otherwise,

Assuming independence between consecutive non-QRS intervals,
the prior of bT is given by

p(bT) =
D∏

n=1

p(bJT,n
) .

The priors of other parameters are defined similarly to the window
based Bayesian model.
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Window based Bayesian analysis of P and T waves

Block Gibbs sampler (BGS)

- In a D-beat processing window, for each non-QRS interval:

Sample the T indicator block bJT,n

For the k where bT,k =1, sample the T amplitudes aT,k

Sample the P indicator block bJP,n

For the k where bP,k =1, sample the P amplitudes aP,k

- Sample P and T waveform coefficients αT and αP

- Sample baseline coefficients γ

- Sample noise variance σ2w

C. Lin et al., P and T wave delineation and waveform estimation in ECG signals using

a block Gibbs sampler, IEEE ICASSP, 2011
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Window based Bayesian analysis of P and T waves

Simulation parameters

Preprocessing: QRS complexes detection using the algorithm of
Pan et al. (IEEE Trans. Biomed. Eng., 1985)

Processing window length: D = 10

The waveform amplitude are normalized to avoid scale ambiguity

Time-shift ambiguity is addressed by using deterministic shifts after
sampling waveform coefficients

For each estimation, the 40 first iterations are disregarded (burn-in
period) and 60 iterations are used to compute the estimates

Real ECG datasets from the QT database

Computation time: 8 seconds to run 100 iterations on a 10-beat
ECG block (Matlab implementation).
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Window based Bayesian analysis of P and T waves

Typical examples
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Window based Bayesian analysis of P and T waves

Typical examples
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Window based Bayesian analysis of P and T waves
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Window based Bayesian analysis of P and T waves

Typical examples
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Window based Bayesian analysis of P and T waves
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Window based Bayesian analysis of P and T waves

Premature ventricular contraction ECG
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Window based Bayesian analysis of P and T waves

Premature ventricular contraction ECG
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Window based Bayesian analysis of P and T waves

Evaluation on QTDB

Parameter
Window based

LPD WT
Block GS

bP: Se1 (%) 99.60 97.70 98.87

bP: P+2 (%) 98.04 91.17 91.03

Onset-P: µ± σ (ms) 1.7 ±10.8 14.0±13.3 2.0±14.8

Peak-P: µ± σ (ms) 2.7 ±8.1 4.8±10.6 3.6±13.2

End-P: µ± σ (ms) 2.5± 11.2 −0.1 ±12.3 1.9±12.8

bT: Se (%) 100 99.00 99.77

bT: P+ (%) 99.15 97.74 97.79

Onset-T: µ± σ (ms) 5.7 ±16.5 N/A N/A

Peak-T: µ± σ (ms) 0.7 ±9.6 −7.2±14.3 1.2±13.9

End-T: µ± σ (ms) 2.7± 13.5 13.5± 27.0 −1.6 ±18.1

1
Se , NTP/(NTP + NFN), NTP is the number of true positive detections, NFN is the number of false

negative detections
2
P+ , NTP/(NTP + NFP), NFP stands for the number of false positive
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Window based Bayesian analysis of P and T waves

Contributions and issue

Contributions

Window based Bayesian models for simultaneous P and T wave
delineation and waveform estimation

A PCGS and a block GS to resolve the unknown parameters of the
Bayesian models

Promising delineation results on QTDB database

Unresolved issue

ECG waveforms are homogeneous from their neighbor beats but not
exactly the same

Multi-beat processing scheme is not suitable for real-time
applications
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Window based Bayesian analysis of P and T waves

Contributions and issue

Contributions

Window based Bayesian models for simultaneous P and T wave
delineation and waveform estimation

A PCGS and a block GS to resolve the unknown parameters of the
Bayesian models

Promising delineation results on QTDB database

Unresolved issue

ECG waveforms are homogeneous from their neighbor beats but not
exactly the same

Multi-beat processing scheme is not suitable for real-time
applications

Solution: Beat-to-beat analysis / sequential analysis
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Beat-to-beat Bayesian analysis of P and T waves

Outline

1 Introduction to cardiac electrophysiology

2 Window based Bayesian analysis of P and T waves
Window based Bayesian model and a PCGS
Modified Bayesian model and a block Gibbs sampler

3 Beat-to-beat Bayesian analysis of P and T waves
Beat-to-beat Bayesian model and a block Gibbs sampler
Particle filters for beat-to-beat P and T wave analysis

4 Application in clinical research: TWA detection
TWA detection in surface ECG
Endocardial TWA detection

5 Conclusion and future works
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Beat-to-beat Bayesian analysis of P and T waves

Signal model for one non-QRS interval

Non−QRS interval QRSQRS
ECG Signal P−wave

T−wavelocal baseline
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Beat-to-beat Bayesian analysis of P and T waves

Signal model for one non-QRS interval

Vector representation of the nth non-QRS component

xn = BT,nHαT,n + BP,nHαP,n +Mγn +wn (3)

xn = (xn,1 · · · xn,Nn
)T denotes the signal portion within the nth

non-QRS interval

BT,n is the Nn × (2L+ 1) Toeplitz matrix with first row
(bn,L+1 · · · bn,1 0 · · · 0) and first column (bn,L+1 · · · bn,NT,n

0 · · · 0)T

BP,n is the Nn × (2L+ 1) Toeplitz matrix with last row
(0 · · · 0 bn,Nn

· · · bn,Nn−L) and last column
(0 · · · 0 bn,NT,n+1 · · · bn,Nn−L)

T

wn = (wn,1 · · ·wn,Nn
)T denotes a white Gaussian noise with a

unknown variance σ2
w ,n
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Beat-to-beat Bayesian analysis of P and T waves

Beat-to-beat Bayesian model

Modified T waveform prior

p(αT,n|bT,n, α̂T,n−1) =

{
δ(αT,n− α̂T,n−1) if ‖bT,n‖ = 0

N (α̂T,n−1, σ
2
αIG ) if ‖bT,n‖ = 1

α̂T,n−1 is the estimate of the T waveform coefficient vector
associated with the previous non-QRS interval Jn−1

IG is the identity matrix of size G × G

The priors of other parameters are defined similarly to the modified
window based Bayesian model.
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Beat-to-beat Bayesian analysis of P and T waves

Beat-to-beat block Gibbs sampler

The block Gibbs sampler for the nth non-QRS interval Jn:

- Sample the T wave indicator block bT,n

- Sample the T waveform coefficients αT,n

- Sample the P wave indicator block bP,n

- Sample the P waveform coefficients αP,n

- Sample the baseline coefficients γn

- Sample the noise variance σ2w

C. Lin et al., Endocardial T wave alternans detection using a beat-to-beat Bayesian

approach and a block Gibbs sampler, IEEE Trans. Biomed. Eng., 2012, to be

submitted
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Beat-to-beat Bayesian analysis of P and T waves

Typical example
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Beat-to-beat Bayesian analysis of P and T waves

Qualitative comparisons
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Beat-to-beat Bayesian analysis of P and T waves

Qualitative comparisons
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Beat-to-beat Bayesian analysis of P and T waves

Outline

1 Introduction to cardiac electrophysiology

2 Window based Bayesian analysis of P and T waves
Window based Bayesian model and a PCGS
Modified Bayesian model and a block Gibbs sampler

3 Beat-to-beat Bayesian analysis of P and T waves
Beat-to-beat Bayesian model and a block Gibbs sampler
Particle filters for beat-to-beat P and T wave analysis

4 Application in clinical research: TWA detection
TWA detection in surface ECG
Endocardial TWA detection

5 Conclusion and future works
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Beat-to-beat Bayesian analysis of P and T waves

A marginalized particle filter

Measurement equation of the nth T wave interval

xT,n = BT,nHαT,n +wn

xT,n = (xn,1 · · · xn,NT,n
)T denotes the T wave interval within the nth

non QRS interval

Marginalization of the state variables

p(b0:n,αn|x1:n) = p(αn|b0:n, x1:n)︸ ︷︷ ︸
Optimal KF

p(b0:n|x1:n)︸ ︷︷ ︸
PF

F. Gustafsson et al., Marginalized Particle Filters for Mixed Linear/Nonlinear
State-space Models, IEEE Trans. Signal processing, 2005
C. Lin et al., Beat-to-beat P and T wave delineation in ECG signals using a
marginalized particle filter, EUSIPCO, 2012
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Beat-to-beat Bayesian analysis of P and T waves

Qualitative comparisons
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Beat-to-beat Bayesian analysis of P and T waves

Quantitative comparison on QTDB

Parameter
Beat-to-beat Beat-to-beat Window based

MPF Block GS Block GS

bP: Se (%) 99.95 99.93 99.60

bP: P+ (%) 99.23 99.10 98.04

Onset-P: µ± σ (ms) 1.1 ±8.3 3.4±14.2 1.7±10.8

Peak-P: µ± σ (ms) 1.2 ±5.3 1.1±5.3 2.7±8.1

End-P: µ± σ (ms) 1.7± 9.8 −3.1 ±9.8 2.5±11.2

bT: Se (%) 100 100 100

bT: P+ (%) 99.20 99.30 99.15

Onset-T: µ± σ (ms) 5.5 ±16.3 6.8± 19.3 5.7± 16.5

Peak-T: µ± σ (ms) −0.4 ±4.8 −0.8±14.0 0.7±9.6

End-T: µ± σ (ms) −1.8± 14.2 −3.8± 14.0 2.7 ±13.5
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Beat-to-beat Bayesian analysis of P and T waves

Contributions and applications

Contributions

A beat-to-beat Bayesian approach which leads to smaller memory
requirements and a lower computational complexity compared to
window based approaches

Ideally suited for real-time ECG monitoring and for on-line
pathology analysis

A dynamic model which exploits the sequential nature of the ECG

A marginalized particle filter which considers all the available beats
in the waveform estimation

Applications

ECG interval analysis

Pathology analysis: T wave alternans detection
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Application in clinical research: TWA detection

Outline

1 Introduction to cardiac electrophysiology

2 Window based Bayesian analysis of P and T waves
Window based Bayesian model and a PCGS
Modified Bayesian model and a block Gibbs sampler

3 Beat-to-beat Bayesian analysis of P and T waves
Beat-to-beat Bayesian model and a block Gibbs sampler
Particle filters for beat-to-beat P and T wave analysis

4 Application in clinical research: TWA detection
TWA detection in surface ECG
Endocardial TWA detection

5 Conclusion and future works
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Application in clinical research: TWA detection

T-wave alternans (TWA) detection

A A AB B

TWA: a consistent fluctuation in the T waves on an
every-other-beat basis (A-B-A-B-. . .)

A challenging problem: non-visible (microvolt-level) TWA detection
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Application in clinical research: TWA detection

T-wave alternans (TWA) detection

QRS
QRS detection

complexes
aligned ST−T 

ECG
cancellation

Global baseline T wave

delineation
Linear Filtering

QRS

Figure: General TWA preprocessing stage

Residual local baseline problematic for TWA detection

T-wave delineator must show inter-beat stability in the fiducial
point determination

TWA waveform analysis
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Application in clinical research: TWA detection

T-wave alternans (TWA) detection

QRS
QRS detection

complexes
aligned ST−T 

ECG
cancellation

Global baseline T wave

delineation
Linear Filtering

QRS

Figure: General TWA preprocessing stage

Residual local baseline problematic for TWA detection

T-wave delineator must show inter-beat stability in the fiducial
point determination

TWA waveform analysis

The proposed Bayesian approaches serve as a preprocessing step
for TWA detection
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Application in clinical research: TWA detection

Window based Bayesian model for TWA
detection in surface ECG

2D

ECG Signal

Local baseline
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C. Lin et al., T-wave Alternans Detection Using a Bayesian Approach and a Gibbs

Sampler, IEEE EMBC, 2011
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Application in clinical research: TWA detection

Block Gibbs sampler
G

ib
bs

 S
am

pl
in

g

a
(i)
o,1 a

(i)
e,1 a

(i)
o,2 a

(i)
e,2 a

(i)
e,D

i = 1
i = 2
i = 3
i = 4

Multiple test statistics resulting from the Gibbs sampling can be
used to derive reliability information.
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Application in clinical research: TWA detection

Detection performance comparison
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Application in clinical research: TWA detection

Outline

1 Introduction to cardiac electrophysiology

2 Window based Bayesian analysis of P and T waves
Window based Bayesian model and a PCGS
Modified Bayesian model and a block Gibbs sampler

3 Beat-to-beat Bayesian analysis of P and T waves
Beat-to-beat Bayesian model and a block Gibbs sampler
Particle filters for beat-to-beat P and T wave analysis

4 Application in clinical research: TWA detection
TWA detection in surface ECG
Endocardial TWA detection

5 Conclusion and future works
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Application in clinical research: TWA detection

ETWAS project

Endocardial T-wave Alternans Study (ETWAS) project

Collaboration with St. Jude Medical and Rangueil Hospital

To assess the feasibility of TWA detection in intracardiac
electrograms (EGMs) stored in implantable cardioverter defibrillators

Pre-onset episode signals and control reference signals are available

Endocardial TWA detection limitations:

Very short periods of recordings available (usually 10 to 30 beats)

Other patterns (A-B-C-A-B-C-· · · ) rather than A-B-A-B-· · ·
Perspective defibrillator implementation: real-time processing
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Application in clinical research: TWA detection

Endocardial TWA detection using the
beat-to-beat Bayesian approach

(BBGS algorithm)

parameter
extraction

H0

1H

EGM
Beat−to−beat
T waveform
estimation Statistical test

analysis

Discriminant no TWA

TWA

T wave

Beat-to-beat block Gibbs sampler to estimate the T waveforms

10 T wave parameters defined by a cardiologist

Discriminant analysis to reduce the dimensionality (Fisher score)

Univariate and multivariate statistical tests (t-test, KS-test,
Wilcoxon-test)
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Application in clinical research: TWA detection

T wave parameters
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Application in clinical research: TWA detection

Multivariate TWA detection

10×D difference matrix For a D+1 beat EGM signal portion

∆ = {δp,n}p=1,··· ,10, n=1,··· ,D

δp,n represents the absolute difference of the pth parameter between
beats n and n + 1

TWA detection is formulated as a multivariate two-class problem:

H0 : No significant beat-to-beat wave parameter variation.

H1 : Significant beat-to-beat wave parameter variation.

C. Lin et al., Endocardial T wave alternans detection using a beat-to-beat Bayesian
approach and a block Gibbs sampler, IEEE Trans. Biomed. Eng., 2012, to be
submitted
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Application in clinical research: TWA detection

One reference EGM portion
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Application in clinical research: TWA detection

One episode EGM portion
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Application in clinical research: TWA detection

Fisher score of T wave parameters
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Figure: Fisher score of beat-to-beat parameter variations between
reference and episode signals of patient ♯8
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Application in clinical research: TWA detection

Beat-to-beat variation box-and-whisker
diagram
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Figure: Beat-to-beat variation box-and-whisker diagram of the three
most discriminant parameters of patient ♯8
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Application in clinical research: TWA detection

Statistical test results

Table: Statistical test results on reference and episode signals of patient ♯8.

Parameter
normalized cumulative

t-test KS-test Wilcoxon-test
Multivariate

Fisher score Fisher score t-test

T area 0.3814 0.3814 H1 H1 H1

H1
T amplitude 0.1995 0.5809 H1 H1 H1

T max asc slope 0.1953 0.7763 H1 H1 H1

T max desc slope 0.1158 0.8920 H1 H1 H1

T apex end dur 0.0596 0.9516 H1 H1 H1

QRS T max desc dur 0.0174 0.9690 H1 H1 H1

QRS T end dur 0.0091 0.9781 H1 H1 H1

QRS T max asc dur 0.0087 0.9868 H0 H1 H1

QRS T apex dur 0.0079 0.9947 H0 H1 H1

T duration 0.0053 1.0000 H0 H1 H1
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Conclusion and future works

Outline

1 Introduction to cardiac electrophysiology

2 Window based Bayesian analysis of P and T waves
Window based Bayesian model and a PCGS
Modified Bayesian model and a block Gibbs sampler

3 Beat-to-beat Bayesian analysis of P and T waves
Beat-to-beat Bayesian model and a block Gibbs sampler
Particle filters for beat-to-beat P and T wave analysis

4 Application in clinical research: TWA detection
TWA detection in surface ECG
Endocardial TWA detection

5 Conclusion and future works
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Conclusion and future works

Conclusions

Bayesian models based on a multiple-beat processing window which
simultaneously solves the P and T wave delineation and the
waveform estimation problems

A PCGS with minimum distance constraint
A block GS with block constraint

Bayesian model that enables P and T wave delineations and
waveform estimation on a beat-to-beat basis

A beat-to-beat block GS
Dynamical model issued from the same Bayesian framework and
particle filters

Applications of the different Bayesian models to T wave alternans
detection

TWA detection in surface ECG signals by using the window based
Bayesian model
Endocardial TWA detection in ICD stored by using the beat-to-beat
Bayesian approach
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Conclusion and future works

Perspectives

Preprocessing tools for other P and T wave pathology analysis
problems

Arrhythmia detection
P wave morphology classification

Extension to multi-lead surface ECG recordings

Bayesian model for multi-lead ECG
Data fusion
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Thank you for your attention!

56 / 56
P and T Wave Analysis in ECG signals using Bayesian methods

N



Appendix

Low-pass differentiation (LPD)

low-pass
filter G1(z)

ECG
derivative
filter G2(z)

wave
delineation

G1(z) =
1− z−8

1− z−1
, G2(z) = 1− z−6

Advantages: simple to implement, robust to waveform variations

Drawbacks: sensitive to noise, arbitrary thresholds

P. Laguna et al., New algorithm for QT interval analysis in 24 hour Hotler ECG:

Performance and applications. Med. Biological Eng. and Comput., 1990
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Appendix

Low-pass differentiation (LPD)
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Appendix

Wavelet transform (WT)

preprocessingECG
wavelet
transform

wave
delineation

WT of a signal x (t):

Wax(b) =
1√
a

∫ +∞

−∞
x (t)ψ

(
t − b

a

)
dt, a > 0

Discretization of the dilatation factor a = 2k and the translation
parameter b = 2k l to form a discrete wavelet transform (DWT):

ψk,l(t) = 2−k/2ψ(2−kt − l), k , l ∈ Z+

J. P. Mart́ınez, et al., A Wavelet-based ECG delineator: Evaluation on standard

databases. IEEE Trans. Biomed. Eng., 2004
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Appendix

Wavelet transform (WT)

57 / 56
P and T Wave Analysis in ECG signals using Bayesian methods

N



Appendix

Wavelet transform (WT)

Advantages:

suitable to locate different
waves with typical
frequency characteristics

Drawbacks:

require a priori information
on the waveform and width
rigid arbitrary thresholds to
determine the significance
of the wave components
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Appendix

Pattern Recognition

primitive
pattern

extraction
ECG

attribute
grammar
evaluator

syntactic and
semantic descrip-
tion of the ECG

wave
delineation

Advantages: syntactic approach, simple to implement

Drawbacks: insufficient delineation accuracy, sensitive to noise

P. Trahanias et al., Syntactic Pattern Recognition of the ECG. IEEE Trans. Pattern

Anal. Mach. Intell., 1990
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Appendix

Extended Kalman filter

phase
calculation

ECG
extended

Kalman filter

wave
delineation

A dynamic Gaussian mixture model to fit ECG:





θk+1 = θk + ωδ

zk+1 = −
∑

j∈P,Q,R,S ,T

αjωδ

b2j
∆θj exp

(
−
∆θ2j
2b2j

)
+ zk + ηk

O. Sayadi et al., A model-based Bayesian framework for ECG beat segmentation. J.

Physiol. Meas., 2009
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Appendix

Extended Kalman filter

Advantages:

sequential Bayesian
approach
light computational load

Drawbacks:

number of Gaussian kernels
known a priori

difficulties on handling
abnormal rhythms
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Appendix

PCGS principle

The PCGS is an extension of the Gibbs sampler.

Marginalization: marginalize some subsets of θ out of some steps
of the sampler

Trimming: discard a subset of the components that were to be
sampled in one or more steps of a Gibbs sampler

Permutation: reorder Gibbs sampling steps into different
permutations

The PCGS is flexible regarding the choice of the sampling
distributions, especially when there are strong dependencies among
certain subsets of θ.

D. A. Van Dyk and T. Park, Partially collapsed Gibbs samplers: Theory and methods,

J. Acoust. Soc. Amer., 2008
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Appendix

Time-shift and scale ambiguities

Issue: No unique solution for a convolution model

Scale ambiguity: h ⋆ u = (ah) ⋆ (u/a), ∀a 6= 0,

Time-shift ambiguity: h ⋆ u = (dτ ⋆ h) ⋆ (d−τ ⋆ u), ∀τ ∈ Z.

Solution: Hybrid Gibbs sampling

Metropolis-Hastings within Gibbs after sampling waveform
coefficients,

Deterministic shifts after sampling waveform coefficients:

Time-shifts to have h′

0 = max |h|,
Scale-shifts to have h′

0 = 1,

C. Labat et al., Sparse blind deconvolution accounting for time-shift ambiguity,

ICASSP, 2006
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Appendix

Delineation criteria
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Figure: Wave delineation based on the waveform curvature
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Appendix

Boundary issue between intervals
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Figure: An example of the boundary problem with PVC signal
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Appendix

Spectral methods for TWA detection

Consider an aligned ST-T complexes matrix of a 2D-beat window:

T =




T1(1) T1(2) . . . T1(N)
...

...
. . .

...
T2D(1) T2D(2) . . . T2D(N)




Spectral analysis by using periodogram:

Ŝn(f ) =
1

2D
|TF(Tk(n))|2 , k = 1, . . . ,D

1

N

N∑

n=1

Ŝn(0.5)− µ

σ

H1

≷
H0

γ

Drawbacks: large window size (2D ≥ 128), sensitive to noise
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Appendix

Statistical test for TWA detection

T-wave amplitudes are estimated as follows:

ai = max(Ti (1),Ti (2), . . . ,Ti (N))

µodd =
1

D

D∑

n=1

ai , i = 1, 3, . . . , 2D − 1

µeven =
1

D

D∑

n=1

ai , i = 2, 4, . . . , 2D

The statistical test can be formalized as:

H0 : µodd = µeven, H1 : µodd 6= µeven

Drawbacks: rough amplitude estimation, strong hypothesis on the
distribution, analysis window size
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