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ABSTRACT

Positioning and navigation by GNSS in urban contert
always challenging tasks, because of signal prdjmga
problems such as shadowing effects and multipatierw/
not enough GNSS signals are received in line-dfitsig
(LOS), classical approaches mitigating multipatfees
become insufficient because there is not enoughbiel
information available. Consequently, positioningoes
can be about tens of meters, especially in urbapars.

In this paper, we introduce a GNSS positioning apph

that uses constructively non-line-of-sight (NLO8)rmsls

in order to have enough information to computeutber’s
position. In this work, we use the SE-NAV softwdoe
predict the geometric paths of NLOS signals usirgga
realistic 3D model of the environment. More prelsise
we propose a new version of the extended Kalmaer fil
augmented by the information provided by SE-NAV,
referred to as 3D AEKF, for GNSS navigation in NLOS
context. In the proposed approach, the measurement
model traditionally based on the trilateration eopres is
constructed from the received paths estimated by SE
NAV. The Jacobian of the measurement model is
calculated through knowledge of the objects on tviie
reflections have occured. To use even less reliable
measurements, we propose a robust version of the 3D
AEKF. Simulations conducted in realistic scenaatisw

the performance of the proposed method to be etealua

INTRODUCTION

The number of global navigation satellite syster§S)
applications has steadily increased over the lasades,

in particular for personal mobility (e.g., GNSS-bleal
mobilephones, smartphones and services). Intetligen
systems of transportation are also an importannsag of
the GNSS market including in-car navigation anddroa
user charging. However, the urban environment pitsse
significant challenges for satellite positioninga @e one
hand, the user is expecting for a positioning amcyr
greater than that obtained in open sky areas, Becail
the proximity of the various points of interest and
intersections. On the other hand, the urban enwieom
creates difficulties in the GNSS signal reception,
particularly because of satellite masking and mpatti
phenomena. As a consequence, the receiver delavers
position that can be biased by an error of severa of
meters [1], [2], when it is not totally impossible
calculate a position. This is particularly truetle context

of urban canyons, i.e., when the streets are varyow
and/or the buildings are very high.



The main undesirable phenomena encountered in urban
areas are attenuations, multipath and shadowiregtsff
Multipath propagation occurs when GNSS signals beun
off buildings and reach the receiver's antenna via
different paths with a travelling time longer thtmat of
the LOS path. Multipath signals can be very strand
have small relative delays which makes them diffitm

be distinguished from the desired path signal. Eptam

of efficient in-receiver multipath mitigation mett®
include the narrow correlator, the strobe correlatbe
multipath estimating delay lock loop, the multipath
elimination technology, the vision correlator amhe fast
iterative maximum-Likelihood algorithm (see [1],]148]

for more details). However, in urban canyon envinent,

the number of LOS satellites is very low and thsifan
dilution of precision (PDOP) of these satellitesusially
unsatisfactory. We suggest in this work to investgthe
constructive use of multipath signals instead ofipdy
mitigating those reflections as in most current GNS
receivers. If the user is in an NLOS context, theeiver
will consider the received GNSS signal as a LOSaitid
estimate a pseudorange from the satellite biaseapbtp
several tens of meters. It has been recognizedthtnd-
alone GNSS receiver is not enough to provide rkdiab
location service in severely obstructed signal doonb.

To deal with these difficulties, the GNSS receigan be
assisted by several sources of information sudheatal
navigation sensors, wireless network or vision des
requiring additional infrastructure and complex
hybridization technologies. Another possibility ®
exploit all the available information for improvinthe
positioning performance in these harsh environments
One solution consists of comparing visible satlitvith

an a priori knowledge of the shadowed satellites [6
Another solution is to use NLOS constructively eath
than just deleting them. However, the difficulty using
NLOS signals is the capability of modelling the dém of

the indirect paths. Without this knowledge, it iffidult

to correct the distance error carried by the sighat has
undergone multipath. In [7] a geometric path model
used, whose parameters are estimated by a nonlinear
filter. In [8] and [9], paths are calculated bydascanning

of the environment. In [10], we have proposed a new
navigation strategy based on the augmentation c8&N
measurements by a 3D model of the environment.s Thi
approach tightly integrates the 3D model informatio

an extended Kalman filter (EKF) for positioning
computation.

In this paper, we adapt the ideas presented in if1@
high realistic simulation using a 3D model of Taide
downtown. The SE-NAV software [11] is used to poedi
the signal reception of systems such as GPS and
GALILEO into 3D virtual scenes of known urban areas
This software is based on a geometrical ray-tracing
algorithm that computes the shadowing effects dmd t
multipath generated by the objects of a given
environment. To use even less reliable measuremants
robust version of the proposed filter is also idtroed.
The robust approach proposed is adapted to thaaspec

context of urban canyons and to the tight integratf
GNSS and the 3D city model.

PROBLEM FORMULATION

GNSS positioning is based on the geometrical prlecdf
trilateration using radio waveforms received from
satellites. After computing the satellite positiarssng the
navigation message and estimating the ranges bettivee
receiver and the satellites, we can compute the'suse
position with a simple least squares algorithm or a
Kalman filter [1].

In radio positioning, one of the dominant limitatio
factors is the NLOS that happens when the direth pa
between the transmitter and receiver is blockech s in
dense urban environments. NLOS signals travel gelon
distance and thus are characterized by a longer
propagation time with power reduction and anglesbia
The identification of NLOS is challenging and petsrtio
discard NLOS measurements when there are enough
measurements identified as LOS signals. Our intdses
focused on harsh situations when there are lessftha
LOS signals available at the receiver. Our objects/to
exploit these NLOS signals. In recent work NLOShalg
have been processed jointly with LOS measurements
(with larger weights for LOS Signals). We propose t
estimate directly the NLOS measurements by using 3D
modeling [10].

If we use an EKF to compute the position, a probism
the Jacobian matrix necessary to compute the upzfate
the position. To calculate this matrix, we havektmw
the derivative of the function which gives the
measurement as function of the receiver position.
Receiver stand-alone is not able to determine ie df a
NLOS signal and moreover its evolution in spacee Th
multipath trajectory estimation needs the knowledde
the receiver geometric environment and in particthe
plans on which the signal could have been reflecféd
have chosen to obtain this knowledge from a 3D rhofle
the environment, developed by a specialized compagn

In [10], we introduced a positioning approach eipig
NLOS GPS signals, based on the integration of a 3D
model in the navigation algorithm. We showed tlmas t
method gives better results than a robust EKF ailotiee
context of a simple simulated 3D model. The main
contribution of this paper is to consider a moralistic

3D model of the reception environment in orderest the
performance of the algorithm introduced in [10] feal
data. All simulations will be conducted using th&-S
NAV software [11].

Simulating GNSS Signals with a 3D Model

The SE-NAV software has been developed by the
company OKTAL-SE to simulate GNSS signal reception
in stringent environment. SE-NAV simulates the
propagation of a GNSS signal in a 3D virtual scersing

a ray-tracing algorithm to compute the shadowirfgat$
and the multipath generated by objects of the



environment. It uses geometric optics to calculate
reflected, diffracted and transmitted rays. In thaper,
only the reflected signals are considered for reasb
simplicity. Fig. 1 presents a SE-NAV simulation of
reflected signals in Toulouse downtown. Signalsvhite

are LOS signals and signals in blue or red areipait
signals.

3D virtual scenes can be loaded in SE-NAV from the
most classical 3D formats if the environment is
represented as plans. For this paper, we have davkh

a scene provided by the SE-NAV software, which
corresponds to Capitole Square in Toulouse. After t
configuration of the 3D virtual scene, SE-NAV cake

as inputs the satellite and receiver positions spekds.
The software outputs are the geometrical configmmat
of received signals and Dopplers for all signafsthie
received signal is a multipath, SE-NAV providesoatise
coordinates of the reflection points and the equatiof
the reflection plans.

Figure 1 — SE-NAV simulation in Toulous
by OKTAL-SE.

%

e downtown

In summary, the SE-NAV simulator provides
deterministic geometric information for the receive
GNSS signals at a certain position and for a gitem®@
instant. Note that the physical aspect of signal
propagation is not considered in this paper.

CONSTRUCTIVE USE OF NLOS SIGNALS

Geometric Modeling of NLOS
To be able to compute the Jacobian matrix of the
measurements, we have to express the NLOS paths as
functions of the receiver position. For this pumosie
adopt temporarily the notation of Fig. 2, whererl &

are the satellite and receiver positionsand b are the
reflection points on walls 1 and 2 respectivelyeMalls

are defined by their normal vectorg Bnd N and their
coefficients d and g, through the equations

NiX 4+ NyY +N;Z+d; =0

{N,?X +N2Y + N2Z+d, =0 @)

Ni, N,, d; and d can be determined thanks to SE-NAV
information.

Figure 2 — Geometrical path of a signal reflectedro
two walls (S is the satellite and R is the receiver

The pseudorange associated with a multipath signal can
be written
p=IIS =Ll + Il = LIl + I, — Rl 2)

It depends on the receiver position R and on known
elements such as the satellite position S anddgbat®ns
of the plans (1). Thanks to geometrical optics lawse
can use the equations of planar symmetry in order t
avoid the use of;land b. If we denote R the projection
of R on the wall 1, the distance;Detween R anddcan
be calculated as
R — DgN; = Py d, + NJR
{NITPR+d1:0—) RTONIN, (3)

The symmetric point of R relative to the wall 1disfined
by

R1 =R — 2D,
=(1-22M) R -2

IN4 12

d1Ny (4)

IN4112°

Planar symmetry has the property to keep unchatiged
distances, hence
I —RIl = lI, — R1J|. ®)

As the three anglef are equal, the anglgl; R1 is equal
to . As a consequence, using (5) we obtain
Iz = Ll + 111, = RIl = [II; = R1]I. (6)

Using the same approach for R2 (the symmetric of R1
with respect to the wall 2), we can express (2) as
p=1IS—R2||

p=Hs—<(1—2|’|V;:V”{)(1—2

Nle)
N4 12

(1 N2N2T> 2d, N, 2d2N2> ‘ ")
IN2112 ) NG NN 12 )
The differentiation of (7) with respect to R yields
—=—|1-2 > = 5 . (8)
dR IVl 1N I p



Integration of a 3D Model in the Kalman Filter

Fig. 3 presents the principle of an EKF dedicated t
satellite navigation. In this figur@?klk is the estimated

state vector at time instakiusing the measurements up to
to time k and Py, is its covariance matrix. The

measurement vectdf, consists of the pseudorangels
for i=1,---,n (where n is the number of in view
satellites) resulting from the visible satellites tanes
instant k. The matricesQ and R are the covariance
matrices of the state and measurement noises, both
assumed to be white Gaussian.
As we have simulated a trajectory in city downtowue,
consider a random-walk as evolution model. As a
consequence, the state vecxpis defined as

X =[x yie zic bI"
where ; yi z; ) are the three receiver coordinates and
is the receiver clock bias. The corresponding state
transition matrix® is equal to the identity matrix.
Finally, h, and Jh, denote the nonlinear function of the
measurement model and its Jacobian, respectively.

— —
M Xije-1=PXpe—1k-1 Piik-1 = PP_1 k1T +Q
Yiqr-1=hi Rijre-1) ]
] Ky = Pk\k—l]hkr(]hkpk\k—llhkr +R)1

! AV =Y — Vit \

Pk = Pyik-1 — Kid R Prji-1 [—

— X=Xt + K dV

Figure 3 — Extended Kalman Filter.

In what we call thereafter the trilateration versiof the
navigation filter, the trilateration equations aildeir
derivatives are used for andJh,, i.e.

R (Ripe—) = Phik—r = | Xiae — Rrae | +b ©)
’ yik _ gkl
Jhi, = <—S.“t—f“_ 1 (10)
1xé = Zree |

where X:% and )?f%’;_l are the vectors containing the
coordinates of thé" observed satellite at time instakt
and the receiver predicted coordinates.

Eq. (9) provides a good measurement model when the
signal is received in LOS conditions. It represettis
geometric distance between the satellite and tbeiver,

with an additive receiver clock bias. However, lifet
signal has been received after one ore severaictifhs,

this model no longer corresponds to the geometrical
reality. In this case, we propose to use the 3 mivdel

to determine the true geometric path travelled by t
signal. Thanks to the estimation of the walls oricitthe
reflections occur, we can replace (9) and (10) by

equations based on (7) and (8). In the case of two
reflections, we obtain fdm,

h;.c(XAk|k—1) = ﬁlic|k—1

i N,N; NiNT\ et
Xk _((1-222)(1-2—2% | XX
sat (( 1N 112 Ny 1277

IN112J 1IN 11 IV 112

(11)

+ b.

Note that the navigation filters using the 3D aitypdel
will be referred to as 3D augmented navigatiorefit3D
ANF) and 3D augmented extended Kalman filter (3D
AEKF).

Robust Kalman Filter for Improved Performance
Modeling multipath presents a major constraint: the
NLOS trajectory is not a continuous function of the
receiver position. On the contrary, it is a highkbriable
and discontinuous function, as we can see in Figsda
consequence, the SE-NAV prediction is correct dirtliye
predicted receiver position is close enough to tiue
position. As it is not always the case, we canreieh
absolute confidence in SE-NAV prediction of signal
paths. To improve the performance of the 3D ANF) tw
solutions are proposed to search the better signal
modeling at each step, and one solution is propoésed
detect and mitigate outliers.
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Figure 4 — Bias of signals received by the receiver
during a trajectory in city downtown (In blue: satellite
4. In red: satellite 17).
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In a first step, several positions around the mtedi
receiver position are submitted to SE-NAV in order
know the predicted signal paths for each of these
positions. Then we retain for each satellite thedpted
signal paths which have the pseudorange the clusése
measurement. To keep the integrity of the EKF, we
recompute at the predicted receiver position the
pseudorange from the signal path configurationimeth
thanks to (7). We use this solution because ofhigaly
variability of the multipath. Simulations from SEAN
show that even a position error less than one nuzer



change the path predictions. So we test some positi
around the predicted position in order to improug o
chance to find the right path prediction.

In a second step, paths predicted as multipatheptaced

by the LOS modeling (9) if the pseudorange predittg

(9) is closest to the measurement than the oneigbeed
by SE-NAV. If SE-NAV does not provide any predictio
for a received signal, we also use (9) to model its
pseudorange, as we have no other information.

The third step consists of making the EKF robust to
outliers. We add to the Kalman filter an adaptive
stochastic method using a robust M-estimation aggro
[12]. This method uses a weighting function to adaml
correct the contribution of the updated parameiterthe
Kalman filter. Instead of minimizing the sum of icksal

squares(df;;,)’, the M-estimation method minimizes a
so-called influence function defined as [13]

ay if |[d?| < a (12)
Y(ar) =4 fl_d_?z if a<|d?| <c.
() 1a?le™ = iffaf| = c

The associated diagonal weight matrix is definezfr
(12) by
(13)

The robust EKF equations are identical to thosehef
EKF except for the innovation step, where the el
are weighted by the matrix D
Vi = D(Yi — Bjie—1)- (14)

Since the residuals with low weights have reduced
reliability, the robust processing associates advigalue

to their estimated noise. Consequently, the Kalgaim
matrix for the robust version can be calculated as

Ky = Pk|k—1]h£(]hkpk|k—1]h£ (15)
+D'R(DHT) .
The parameters and ¢ are chosen to keep the good
measurements and at the same time to eliminate

efficiently the outliers. We use the well known
Mahalanobis distance to determmandc

1
a = (JhxPyx-1JhE + R)?
c = 2a.

(16)

NAVIGATION USING 3D MODEL INTEGRATION
Simulation Scenario

The proposed simulation is conducted in a highisgal
3D virtual scene of Toulouse downtown (France)uacb
the Capitole Square. In Fig. 5, the simulated ttajg has
been represented in yellow with its beginning atttip of
the scene. Real ephemeris of eight satellites decbr
during a measurement campaign have been used to
simulate the satellite positions.

A first run of the trajectory is performed to siratd real
measurements. We consider that only one signalbean
received for each satellite (if a path exists betwéhe
satellite and the receiver), i.e. the receiver messonly

the pseudorange of the most powerful signal redefae
each satellite. Additional multipath signals thancbe
observed in practical situations are included m nloise.
Receiver clock bias is added to the measuremeatsksh
to a simulator provided in the Akos book [14].

Figure 5 — Trajectr in yello) simulated insidethe
3D virtual scene of the city downtown.

Simulation Results

We compare positioning results obtained with the
trilateration EKF and the proposed 3D AEKF in our
realistic environment. A white Gaussian measurement
noise with standard deviatiors = 3m affects the
measured pseudoranges.. Fig. 6 shows that théqmirsif
accuracy obtained with the 3D AEKF is better in the
lower part of the trajectory, which correspondstoarea
with strong multipath. This result is confirmed Hig. 7
where we can see that the 3D AEKF error is lowanth
the trilateration EKF error at the end of the siatialn.
Note that the errors very similar in the beginnofgthe
simulation. Fig. 8 shows the same results for the
estimation of the receiver clock bias. Another imgaot
property of the proposed strategy can be obsermed i
Fig.’s 7 and 8, where we can see that the uncéytain
the 3D AEKF is always smaller than that of the
trilateration EKF. All these results are confirmiedTab.

1 showing some error statistics for both filtereeTmean
and standard deviation of the 3D AEKF errors aeaudy
lower than those obtained with the trilaterationFEK

CONCLUSIONS

This paper has developed a new approach for GNSS
navigation in critical NLOS environments. A tight
integration of a 3D high realistc model of the
environment with an extended Kalman filter allows
NLOS signals to be used constructively. A robussios

of the resulting navigation algorithm has also been
investigated to use all the available informatiewen the
less reliable measurements. High realistic simomati
results showed that the proposed robust 3D AEKF
outperforms a robust trilateration EKF. These rtssate
currently under validation using real data. In jcattr,
simulation results shown in this paper have bedaioéd
with good signal to noise ratios (SNRs). With rdata,
SNRs are generally lower for reflected signals tfwarthe

line of sight signals. This will need a specifiady.
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Figure 6 — Positioning results for an additive Gausan
noise with standard deviatione=3m (In green: real
position. In blue: the trilateration EKF solution. In

red: the 3D AEKF solution).
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Figure 7 — Error on the position estimation, for an
additive Gaussian noise with standard deviatioms=3m
(In green dashdot: ¥ value at each time for the
trilateration EKF. In red dashdot: 3 ¢ value at each
time for the 3D AEKF. In blue: trilateration EKF
position error. In dark red: 3D AEKF position error ).
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Figure 8 — Error on the receiver clock bias estimabn,
for an additive Gaussian noise with standard deviabn
¢=3m (In green dashdot: & value at each time for the
trilateration EKF. In red dashdot: 3 ¢ value at each
time for the 3D AEKF. In blue: trilateration EKF bi as
error. In dark red: 3D AEKF bias error).

Table 1 — Statistics of each filter errors

3D AEKF Trilateration EKF
Position error: 6.04 9.40
standard
deviation (m)
Position error: 8.46 10.85
mean (m)
Position error: 26.88 38.44
maximum (m)
Clock bias error: 6.05 9.46
standard
deviation (m)
Clock bias error: 6.02 8.58
mean (m)
Clock bias error: 25.18 32.16
maximum (m)
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