
Tight Integration of GNSS and a 3D City Model 
for Robust Positioning in Urban Canyons 

 
A. Bourdeau1, M. Sahmoudi1, J.-Y. Tourneret2 

1Institut Supérieur de l’Aéronautique et de l’Espace (ISAE/SUPAERO), TéSA, Toulouse, France 
2Université de Toulouse (ENSEEIHT/TéSA), Toulouse, France 

 
BIOGRAPHIES 
Aude Bourdeau received an engineer degree in 
mathematics and numerical modeling from INSA 
Toulouse in 2010. Since October 2010, she is preparing 
PhD at the French Institute of Aeronautics and Space 
(ISAE). Her research interest includes signal processing, 
GNSS navigation in challenging environment and GNSS 
signal tracking. 
 
Mohamed Sahmoudi received a PhD in signal 
processing and communications from Paris Sud 
University and Telecom Paris in 2004, and an M. S. 
degree in statistics from Pierre and Marie Curie 
University in 2000. During his PhD, he was an assistant 
lecturer at Ecole Polytechnique, then a lecturer at Paris 
Dauphine University. From 2005 to 2007, he was a post-
doc researcher on GPS signal processing at Villanova 
University, PA, USA. In august 2007, he joined the ETS 
School of Engineering at Montreal, Canada, to work on 
GNSS RTK for precise positioning. In december 2009, he 
became an associate professor at the French Institute of 
Aeronautics and Space (ISAE), Toulouse, France. His 
research interest includes weak multi-GNSS signals 
processing, multipath mitigation and multi-sensor fusion. 
 
Jean-Yves Tourneret (SM’08) received the Ingénieur 
degree in electrical engineering from the ENSEEIHT  
(Ecole Nationale Supérieure d’Electronique,  
d’Electrotechnique, d’Informatique, d’Hydraulique, et des 
Télécommunications de Toulouse), France, in 1989 and 
the Ph.D. degree from the National Polytechnic Institute, 
Toulouse, France, in 1992. He is currently a Professor in 
the University of Toulouse (ENSEEIHT), France, and a 
member of the IRIT laboratory (UMR5505 of the CNRS). 
His research activities are centered around statistical 
signal processing, with a particular interest to Bayesian 
and Markov chain Monte Carlo methods. Dr. Tourneret 
has been involved in the organization of several 
conferences, including the European Conference on 
Signal Processing (EUSIPCO) in 2002 (as the program 
chair), the International Conference on Acoustics, Speech 
and Signal Processing (ICASSP) in 2006 (in charge of 
plenaries) and the Statistical Signal Processing Workshop 
(SSP) in 2012 (for international liaisons). He has been a 
member of different technical committees, including the 
Signal Processing Theory and Methods (SPTM) 
Committee of the IEEE Signal Processing Society from 
2001 to 2007 and from 2010 to present. He served as an 
Associate Editor for the IEEE TRANSACTIONS ON 
SIGNAL PROCESSING from 2008 to 2011. 

ABSTRACT  
Positioning and navigation by GNSS in urban context are 
always challenging tasks, because of signal propagation 
problems such as shadowing effects and multipath. When 
not enough GNSS signals are received in line-of-sight 
(LOS), classical approaches mitigating multipath effects 
become insufficient because there is not enough reliable 
information available. Consequently, positioning errors 
can be about tens of meters, especially in urban canyons. 
 
In this paper, we introduce a GNSS positioning approach 
that uses constructively non-line-of-sight (NLOS) signals 
in order to have enough information to compute the user’s 
position. In this work, we use the SE-NAV software to 
predict the geometric paths of NLOS signals using a high 
realistic 3D model of the environment. More precisely, 
we propose a new version of the extended Kalman filter 
augmented by the information provided by SE-NAV, 
referred to as 3D AEKF, for GNSS navigation in NLOS 
context. In the proposed approach, the measurement 
model traditionally based on the trilateration equations is 
constructed from the received paths estimated by SE-
NAV. The Jacobian of the measurement model is 
calculated through knowledge of the objects on which the 
reflections have occured. To use even less reliable 
measurements, we propose a robust version of the 3D 
AEKF. Simulations conducted in realistic scenarios allow 
the performance of the proposed method to be evaluated. 
 
INTRODUCTION 
The number of global navigation satellite system (GNSS) 
applications has steadily increased over the last decades, 
in particular for personal mobility (e.g., GNSS-enabled 
mobilephones, smartphones and services). Intelligent 
systems of transportation are also an important segment of 
the GNSS market including in-car navigation and road 
user charging. However, the urban environment presents 
significant challenges for satellite positioning. On the one 
hand, the user is expecting for a positioning accuracy 
greater than that obtained in open sky areas, because of 
the proximity of the various points of interest and 
intersections. On the other hand, the urban environment 
creates difficulties in the GNSS signal reception, 
particularly because of satellite masking and multipath 
phenomena. As a consequence, the receiver delivers a 
position that can be biased by an error of several tens of 
meters [1], [2], when it is not totally impossible to 
calculate a position. This is particularly true in the context 
of urban canyons, i.e., when the streets are very narrow 
and/or the buildings are very high. 



The main undesirable phenomena encountered in urban 
areas are attenuations, multipath and shadowing effects. 
Multipath propagation occurs when GNSS signals bounce 
off buildings and reach the receiver’s antenna via 
different paths with a travelling time longer than that of 
the LOS path. Multipath signals can be very strong and 
have small relative delays which makes them difficult to 
be distinguished from the desired path signal. Examples 
of efficient in-receiver multipath mitigation methods 
include the narrow correlator, the strobe correlator, the 
multipath estimating delay lock loop, the multipath 
elimination technology, the vision correlator and the fast 
iterative maximum-Likelihood algorithm (see [1], [3]–[5] 
for more details). However, in urban canyon environment, 
the number of LOS satellites is very low and the position 
dilution of precision (PDOP) of these satellites is usually 
unsatisfactory. We suggest in this work to investigate the 
constructive use of multipath signals instead of simply 
mitigating those reflections as in most current GNSS 
receivers. If the user is in an NLOS context, the receiver 
will consider the received GNSS signal as a LOS and will 
estimate a pseudorange from the satellite biased by up to 
several tens of meters. It has been recognized that a stand-
alone GNSS receiver is not enough to provide reliable 
location service in severely obstructed signal conditions. 
To deal with these difficulties, the GNSS receiver can be 
assisted by several sources of information such as inertial 
navigation sensors, wireless network or vision devices, 
requiring additional infrastructure and complex 
hybridization technologies. Another possibility is to 
exploit all the available information for improving the 
positioning performance in these harsh environments. 
One solution consists of comparing visible satellites with 
an a priori knowledge of the shadowed satellites [6]. 
Another solution is to use NLOS constructively rather 
than just deleting them. However, the difficulty in using 
NLOS signals is the capability of modelling the length of 
the indirect paths. Without this knowledge, it is difficult 
to correct the distance error carried by the signal that has 
undergone multipath. In [7] a geometric path model is 
used, whose parameters are estimated by a nonlinear 
filter. In [8] and [9], paths are calculated by laser scanning 
of the environment. In [10], we have proposed a new 
navigation strategy based on the augmentation of GNSS 
measurements by a 3D model of the environment.  This 
approach tightly integrates the 3D model information in 
an extended Kalman filter (EKF) for positioning 
computation. 
 
In this paper, we adapt the ideas presented in [10] in a 
high realistic simulation using a 3D model of Toulouse 
downtown. The SE-NAV software [11] is used to predict 
the signal reception of systems such as GPS and 
GALILEO into 3D virtual scenes of known urban areas. 
This software is based on a geometrical ray-tracing 
algorithm that computes the shadowing effects and the 
multipath generated by the objects of a given 
environment. To use even less reliable measurements, a 
robust version of the proposed filter is also introduced. 
The robust approach proposed is adapted to the special 

context of urban canyons and to the tight integration of 
GNSS and the 3D city model. 
 
PROBLEM FORMULATION 
GNSS positioning is based on the geometrical principle of 
trilateration using radio waveforms received from 
satellites. After computing the satellite positions using the 
navigation message and estimating the ranges between the 
receiver and the satellites, we can compute the user’s 
position with a simple least squares algorithm or a 
Kalman filter [1]. 
 
In radio positioning, one of the dominant limitation 
factors is the NLOS that happens when the direct path 
between the transmitter and receiver is blocked, such as in 
dense urban environments. NLOS signals travel a longer 
distance and thus are characterized by a longer 
propagation time with power reduction and angle bias. 
The identification of NLOS is challenging and permits to 
discard NLOS measurements when there are enough 
measurements identified as LOS signals. Our interest is 
focused on harsh situations when there are less than four 
LOS signals available at the receiver. Our objective is to 
exploit these NLOS signals. In recent work NLOS signals 
have been processed jointly with LOS measurements 
(with larger weights for LOS Signals). We propose to 
estimate directly the NLOS measurements by using 3D 
modeling [10]. 
 
If we use an EKF to compute the position, a problem is 
the Jacobian matrix necessary to compute the update of 
the position. To calculate this matrix, we have to know 
the derivative of the function which gives the 
measurement as function of the receiver position. 
Receiver stand-alone is not able to determine the bias of a 
NLOS signal and moreover its evolution in space. The 
multipath trajectory estimation needs the knowledge of 
the receiver geometric environment and in particular the 
plans on which the signal could have been reflected. We 
have chosen to obtain this knowledge from a 3D model of 
the environment, developed by a specialized compagny.  
 
In [10], we introduced a positioning approach exploiting 
NLOS GPS signals, based on the integration of a 3D 
model in the navigation algorithm. We showed that this 
method gives better results than a robust EKF alone in the 
context of a simple simulated 3D model. The main 
contribution of this paper is to consider a more realistic 
3D model of the reception environment in order to test the 
performance of the algorithm introduced in [10] for real 
data. All simulations will be conducted using the SE-
NAV software [11]. 
 
Simulating GNSS Signals with a 3D Model 
The SE-NAV software has been developed by the 
company OKTAL-SE to simulate GNSS signal reception 
in stringent environment. SE-NAV simulates the 
propagation of a GNSS signal in a 3D virtual scene, using 
a ray-tracing algorithm to compute the shadowing effects 
and the multipath generated by objects of the 



environment. It uses geometric optics to calculate 
reflected, diffracted and transmitted rays. In this paper, 
only the reflected signals are considered for reason of 
simplicity. Fig. 1 presents a SE-NAV simulation of 
reflected signals in Toulouse downtown. Signals in white 
are LOS signals and signals in blue or red are multipath 
signals. 
 
3D virtual scenes can be loaded in SE-NAV from the 
most classical 3D formats if the environment is 
represented as plans. For this paper, we have worked with 
a scene provided by the SE-NAV software, which 
corresponds to Capitole Square in Toulouse. After the 
configuration of the 3D virtual scene, SE-NAV can take 
as inputs the satellite and receiver positions and speeds. 
The software outputs are the geometrical configurations 
of received signals and Dopplers for all signals. If the 
received signal is a multipath, SE-NAV provides also the 
coordinates of the reflection points and the equations of 
the reflection plans. 

 

 
Figure 1 – SE-NAV simulation in Toulouse downtown 

by OKTAL-SE. 
 

In summary, the SE-NAV simulator provides 
deterministic geometric information for the received 
GNSS signals at a certain position and for a given time 
instant. Note that the physical aspect of signal 
propagation is not considered in this paper. 
 
CONSTRUCTIVE USE OF NLOS SIGNALS 
Geometric Modeling of NLOS 
To be able to compute the Jacobian matrix of the 
measurements, we have to express the NLOS paths as 
functions of the receiver position. For this purpose, we 
adopt temporarily the notation of Fig. 2, where S and R 
are the satellite and receiver positions. I1 and I2 are the 
reflection points on walls 1 and 2 respectively. The walls 
are defined by their normal vectors N1 and N2 and their 
coefficients d1 and d2, through the equations ����� + ���� + �	�
 + �� = 0���� + ���� + �	�
 + �� = 0�  

(1) 

 
N1, N2, d1 and d2 can be determined thanks to SE-NAV 
information. 

 
Figure 2 – Geometrical path of a signal reflected on 

two walls (S is the satellite and R is the receiver) 
 
The pseudorange ρ associated with a multipath signal can 
be written � = �� − ��� + ��� − ��� + ��� − ��. (2) 
 
It depends on the receiver position R and on known 
elements such as the satellite position S and the equations 
of the plans (1). Thanks to geometrical optics laws, we 
can use the equations of planar symmetry in order to 
avoid the use of I1 and I2. If we denote PR the projection 
of R on the wall 1, the distance DR between R and PR can 
be calculated as �� − ���� = ������� + �� = 0� → �� = �� + ���������  

 
(3) 

 
The symmetric point of R relative to the wall 1 is defined 
by 
 �1 = � − 2����                              =  � − 2 !"!"#�!"�$% � − 2 &"!"�!"�$ .  

(4) 

 
Planar symmetry has the property to keep unchanged the 
distances, hence ��� − �� = ��� − �1�. (5) 
 
As the three angles β are equal, the angle �����1'  is equal 
to π. As a consequence, using (5) we obtain ��� − ��� + ��� − �� = ��� − �1�. (6) 
  
Using the same approach for R2 (the symmetric of R1 
with respect to the wall 2), we can express (2) as � = �� − �2�� = (� − ) � − 2 !$!$#�!$�$%  � − 2 !"!"#�!"�$% ��� 

− ��)� − 2 ����������* 2��������� − 2���������*(. 
 
 
 

(7) 

 
The differentiation of (7) with respect to R yields +�+� = − )� − 2 ����������* )� − 2 ����������* � − �2� .  

(8) 

 



Integration of a 3D Model in the Kalman Filter 
Fig. 3 presents the principle of an EKF dedicated to 
satellite navigation. In this figure, �,-|- is the estimated 
state vector at time instant k using the measurements up to 
to time k and �-|- is its covariance matrix. The 
measurement vector �- consists of the pseudoranges �-/ , 
for 0 = 1, ⋯ , 3 (where n is the number of in view 
satellites) resulting from the visible satellites at times 
instant k. The matrices Q and R are the covariance 
matrices of the state and measurement noises, both 
assumed to be white Gaussian. 
As we have simulated a trajectory in city downtown, we 
consider a random-walk as evolution model. As a 
consequence, the state vector Xk is defined as �- = 45- 6- 7-  89� 
where (5- 6- 7- ) are the three receiver coordinates and b 
is the receiver clock bias. The corresponding state 
transition matrix Φ is equal to the identity matrix. 
Finally, hk and Jhk denote the nonlinear function of the 
measurement model and its Jacobian, respectively. 

 
Figure 3 – Extended Kalman Filter. 

 
In what we call thereafter the trilateration version of the 
navigation filter, the trilateration equations and their 
derivatives are used for hk and Jhk, i.e. ℎ-/ ;�,-|-<�= = �>-|-<�/ = ?�@AB/,- − �,CDE-|-<�? + 8 (9) 

  

Fℎ-/ = G− �@AB/,- − �,CDE-|-<�
?�@AB/,- − �,CDE-|-<�? 1H 

 
 

 
 

 
(10) 

where �@AB/,-  and �,CDE-|-<� are the vectors containing the 
coordinates of the i th observed satellite at time instant k 
and the receiver predicted coordinates. 
Eq. (9) provides a good measurement model when the 
signal is received in LOS conditions. It represents the 
geometric distance between the satellite and the receiver, 
with an additive receiver clock bias. However, if the 
signal has been received after one ore several reflections, 
this model no longer corresponds to the geometrical 
reality. In this case, we propose to use the 3D city model 
to determine the true geometric path travelled by the 
signal. Thanks to the estimation of the walls on which the 
reflections occur, we can replace (9) and (10) by 

equations based on (7) and (8). In the case of two 
reflections, we obtain for hk ℎ-/ ;�,-|-<�= = �>-|-<�/  (11) 

= I�@AB/,- − G)� − 2 ����������* )� − 2 ����������* �,CDE-|-<� �� 
− ��)� − 2 ����������* 2��������� − 2���������*( + 8. 

 

 
Note that the navigation filters using the 3D city model 
will be referred to as 3D augmented navigation filter (3D 
ANF) and 3D augmented extended Kalman filter (3D 
AEKF). 
 
Robust Kalman Filter for Improved Performance 
Modeling multipath presents a major constraint: the 
NLOS trajectory is not a continuous function of the 
receiver position. On the contrary, it is a highly variable 
and discontinuous function, as we can see in Fig. 4. As a 
consequence, the SE-NAV prediction is correct only if the 
predicted receiver position is close enough to the true 
position. As it is not always the case, we cannot have 
absolute confidence in SE-NAV prediction of signal 
paths. To improve the performance of the 3D ANF, two 
solutions are proposed to search the better signal 
modeling at each step, and one solution is proposed to 
detect and mitigate outliers. 
 

 
Figure 4 – Bias of signals received by the receiver 

during a trajectory in city downtown (In blue: satellite 
4. In red: satellite 17). 

 
In a first step, several positions around the predicted 
receiver position are submitted to SE-NAV in order to 
know the predicted signal paths for each of these 
positions. Then we retain for each satellite the predicted 
signal paths which have the pseudorange the closest to the 
measurement. To keep the integrity of the EKF, we 
recompute at the predicted receiver position the 
pseudorange from the signal path configuration retained, 
thanks to (7). We use this solution because of the highly 
variability of the multipath. Simulations from SE-NAV 
show that even a position error less than one meter can 



change the path predictions. So we test some positions 
around the predicted position in order to improve our 
chance to find the right path prediction. 
In a second step, paths predicted as multipath are replaced 
by the LOS modeling (9) if the pseudorange predicted by 
(9) is closest to the measurement than the one predicted 
by SE-NAV. If SE-NAV does not provide any prediction 
for a received signal, we also use (9) to model its 
pseudorange, as we have no other information. 
The third step consists of making the EKF robust to 
outliers. We add to the Kalman filter an adaptive 
stochastic method using a robust M-estimation approach 
[12]. This method uses a weighting function to adapt and 
correct the contribution of the updated parameters in the 
Kalman filter. Instead of minimizing the sum of residual 

squares ;��,-|-/ =�
, the M-estimation method minimizes a 

so-called influence function defined as [13] 

J;��,= = K ��,L LM% N��,NO�<PQR$S$
�   0T N��,N < L0T L ≤ N��,N < M0T N��,N ≥ M . (12) 

The associated diagonal weight matrix is defined from 
(12) by �;��,= = J;��,=N��,N . (13) 

 
The robust EKF equations are identical to those of the 
EKF except for the innovation step, where the residuals 
are weighted by the matrix D X- =  �;�- − �,-|-<�=. (14) 

 
Since the residuals with low weights have reduced 
reliability, the robust processing associates a higher value 
to their estimated noise. Consequently, the Kalman gain 
matrix for the robust version can be calculated as Y- = �-|-<�Fℎ-�;Fℎ-�-|-<�Fℎ-�+ �<��Z�<�[�=<�. (15) 

The parameters a and c are chosen to keep the good 
measurements and at the same time to eliminate 
efficiently the outliers. We use the well known 
Mahalanobis distance to determine a and c L =  ;Fℎ-�-|-<�Fℎ-� + �="$ M = 2L. (16) 

 
 
NAVIGATION USING 3D MODEL INTEGRATION 
Simulation Scenario 
The proposed simulation is conducted in a high realistic 
3D virtual scene of Toulouse downtown (France), around 
the Capitole Square. In Fig. 5, the simulated trajectory has 
been represented in yellow with its beginning at the top of 
the scene. Real ephemeris of eight satellites recorded 
during a measurement campaign have been used to 
simulate the satellite positions. 
A first run of the trajectory is performed to simulate real 
measurements. We consider that only one signal can be 
received for each satellite (if a path exists between the 
satellite and the receiver), i.e. the receiver measures only 

the pseudorange of the most powerful signal received for 
each satellite. Additional multipath signals that can be 
observed in practical situations are included in the noise. 
Receiver clock bias is added to the measurements thanks 
to a simulator provided in the Akos book [14]. 
 

 
Figure 5 – Trajectory (in yellow) simulated inside the 

3D virtual scene of the city downtown. 
 
Simulation Results 
We compare positioning results obtained with the 
trilateration EKF and the proposed 3D AEKF in our 
realistic environment. A white Gaussian measurement 
noise with standard deviation \ = 3^ affects the 
measured pseudoranges.. Fig. 6 shows that the positioning 
accuracy obtained with the 3D AEKF is better in the 
lower part of the trajectory, which corresponds to an area 
with strong multipath. This result is confirmed in Fig. 7 
where we can see that the 3D AEKF error is lower than 
the trilateration EKF error at the end of the simulation. 
Note that the errors very similar in the beginning of the 
simulation. Fig. 8 shows the same results for the 
estimation of the receiver clock bias. Another important 
property of the proposed strategy can be observed in 
Fig.’s 7 and 8, where we can see that the uncertainty of 
the 3D AEKF is always smaller than that of the 
trilateration EKF. All these results are confirmed in Tab. 
1 showing some error statistics for both filters. The mean 
and standard deviation of the 3D AEKF errors are clearly 
lower than those obtained with the trilateration EKF. 
 
CONCLUSIONS 
This paper has developed a new approach for GNSS 
navigation in critical NLOS environments. A tight 
integration of a 3D high realistic model of the 
environment with an extended Kalman filter allows 
NLOS signals to be used constructively. A robust version 
of the resulting navigation algorithm has also been 
investigated to use all the available information, even the 
less reliable measurements. High realistic simulation 
results showed that the proposed robust 3D AEKF 
outperforms a robust trilateration EKF. These results are 
currently under validation using real data. In particular, 
simulation results shown in this paper have been obtained 
with good signal to noise ratios (SNRs). With real data, 
SNRs are generally lower for reflected signals than for the 
line of sight signals. This will need a specific study. 
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Figure 6 – Positioning results for an additive Gaussian 

noise with standard deviation σ=3m (In green: real 
position. In blue: the trilateration EKF solution. In 

red: the 3D AEKF solution). 
 
 
 
 

 
Figure 7 – Error on the position estimation, for an 

additive Gaussian noise with standard deviation σ=3m 
(In green dashdot: 3σ value at each time for the 

trilateration EKF. In red dashdot: 3 σ value at each 
time for the 3D AEKF. In blue: trilateration EKF 

position error. In dark red: 3D AEKF position error ). 
 

 
Figure 8 – Error on the receiver clock bias estimation, 
for an additive Gaussian noise with standard deviation 
σ=3m (In green dashdot: 3σ value at each time for the 

trilateration EKF. In red dashdot: 3 σ value at each 
time for the 3D AEKF. In blue: trilateration EKF bi as 

error. In dark red: 3D AEKF bias error). 
 

 
Table 1 – Statistics of each filter errors 

 3D AEKF Trilateration EKF 
Position error: 

standard 
deviation (m) 

6.04 9.40 

Position error: 
mean (m) 

8.46 10.85 

Position error: 
maximum (m) 

26.88 38.44 

Clock bias error: 
standard 

deviation (m) 

6.05 9.46 

Clock bias error: 
mean (m) 

6.02 8.58 

Clock bias error: 
maximum (m) 

25.18 32.16 
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