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Abstract—In this paper, we introduce a GNSS positioning ap-
proach that uses constructively non-line-of-sight (NLOS) signals.
A 3D model of the environment is used to predict the geometric
paths of NLOS signals. More precisely, we propose a version of
the extended Kalman filter augmented by a 3D model, referred
to as 3D AEKF, for GNSS navigation in NLOS context. In
the proposed approach, the measurement model traditionally
based on the trilateration equations is constructed from the
received paths estimated by the 3D model. The Jacobian of the
measurement model is calculated through knowledge of the wall
on which the reflection has occured. To use even less reliable
measurements, a robust version of the 3D AEKF is also proposed.
Simulations conducted in different realistic configurations allow
the performance of the proposed method to be evaluated.

I. INTRODUCTION

The number of global navigation satellite system (GNSS)
applications has steadily increased over the last decade, in
particular for personal mobility (e.g., GNSS-enabled mobile
phones, smartphones and services). Intelligent systems for
road transport is also an important segment of the GNSS mar-
ket including in-car navigation and road user charging. How-
ever, the urban environment presents significant challenges for
satellite positioning. On the one hand, the user is expecting for
a positioning accuracy greater than that obtained in open sky
areas, because of the proximity of the various points of interest
and intersections. On the other hand, the urban environment
creates difficulties in the GNSS signal reception, particularly
because of satellite masking and multipath phenomena. As a
consequence, the receiver delivers a position that can be biased
by an error of several tens of meters [1], [2], when it is not
totally impossible to calculate a position. This is particularly
true in the context of urban canyons, i.e., when the streets are
very narrow and/or the buildings are very high.
The main undesirable phenomena encountered in urban areas
are attenuations, multipath and shadowing effects. Multipath
propagation occurs when GNSS signals bounce off buildings
and reach the receiver’s antenna via different paths with a
traveling time longer than that of the line-of-sight (LOS)
path. Multipath signals can be very strong and have small
relative delays which makes them difficult to be distinguished
from the desired path signal. Examples of efficient in-receiver
multipath mitigation methods include the narrow correlator,
the strobe correlator, the multipath estimating delay lock loop,

the multipath elimination technology, the vision correlator and
the fast iterative maximum-Likelihood algorithm [1], [3]–[5].
However, in urban canyon environment, the number of LOS
satellites is very low and the position dilution of precision
(DOP) of these satellites is usually unsatisfactory. We suggest
in this work to investigate the constructive use of multipath
signals instead of simply mitigating those reflections as in
most current GNSS receivers. If the user is in a non-line-of-
sight (NLOS) context, the receiver will consider the received
GNSS signal as a LOS and will estimate a pseudorange from
the satellite biased by several tens of meters. It has been
recognized that a stand-alone GNSS receiver is not enough
to provide reliable location service in severely obstructed
signal conditions. To deal with these difficulties, the GNSS
receiver can be assisted by several sources of information
such as inertial navigation sensors, wireless network or vision,
requiring additional infrastructure and complexe hybridation
technologies. Another possibility is to exploit all the avail-
able information for improving the positioning performance
in these kind of harsh environments. One way consists of
comparing visible satellites with an a priori knowledge of the
shadowed satellites [6]. Another way is to be able to use NLOS
constructively rather than just deleting them. However, the
difficulty to use NLOS multipath is in the capability to model
the lengths of these indirect paths. Without this knowledge, it
is difficult to correct the distance error carried by the signal
that has undergone multipath. In [7] a geometric path model
is used, whose parameters are estimated by a nonlinear filter.
In [8] and [9], paths are calculated by laser scanning of the
environment.
In this paper, we propose a new navigation strategy based on a
3D model of the environment. This 3D tool is based on a ray
tracing algorithm predicting the signal reception of systems
such as GPS and GALILEO integrated into 3D virtual scenes
of known urban areas. The ray tracing algorithm computes the
shadowing effects and the multipaths generated by the objects
of a given geometrically represented environment [10]. For
reason of simplicity (in this preliminary contribution), we use a
simplified 3D model and we consider that the NLOS-multipath
has only one reflection path. This assumption is coherent with
the results presented in [2] which show that multipath with
only one reflection are generally the most powerful.



We introduce a new approach of position computation with
indirect path measurements by tightly integrating the 3D
model information in an extended Kalman filter (EKF). In
the proposed method, the measurement model traditionally
based on the trilateration equations is constructed from the
received paths estimated by the 3D model. The Jacobian of the
resulting measurement model is calculated through knowledge
of the wall on which the received signal has been reflected.
To use even less reliable measurements, a robust version of
the proposed filter based on ideas developped in [11] is also
proposed.

II. NAVIGATION FILTER AUGMENTED BY A 3D MODEL

The Kalman filter is one of the most popular and widely
used implementations in navigation for multi-sensor data
fusion. In a Bayesian framework, the receiver position is
determined by an estimator that minimizes the mean square
error between the state vector and its estimator under the
assumptions of linear state and measurement equations. When
the state and/or measurement equations are nonlinear, the
minimum mean square error (MMSE) estimator can be ap-
proximated by the EKF that has received a considerable
attention for navigation applications. This paper concentrates
on the EKF-based MMSE estimator (possibly robustified using
M-estimation techniques) even if other solutions (increasing
computational complexity) such as particle filters could also
be investigated [12].

A. EKF principles for GNSS navigation

The receiver clock bias is a time-varying error that affects
simultaneously all range measurements in the same fashion.
Clock bias prediction is feasible today by integrating a chip-
scale atomic clock (CSAC) in a GNSS receiver [13]. Due to
the high degree of CSAC frequency stability, the clock bias
is predictable, and thus only three satellites are needed for
a full navigation solution. To focus on the integration aspect
with parameters associated with user environment, we do not
consider the clock bias estimation issue in this paper since we
use only simulated GPS signals and a 3D urban model.
The state model used for GNSS is based on the dynamic
equations associated with the vehicle motion. We use a model
with constant speed and we assume that the clock bias of
the receiver is known (thus the clock bias is not included in
the state vector). When the receiver has a uniform motion
(i.e., with near constant velocity), the navigation performance
is improved by including the velocity states in the dynamic
model. In this case, velocity is modeled as a random-walk
process and position is modeled as the integral of velocity via
the following state transition equation

Xk = ΦXk−1 + vk

with Xk defined as

Xk = [xk yk zk ẋk ẏk żk]T

where (xk yk zk) and (ẋk ẏk żk) are the three receiver
position and velocity components, and T denotes transposition.

The state transition matrix Φ is defined as

Φ =


1 0 0 ∆t 0 0
0 1 0 0 ∆t 0
0 0 1 0 0 ∆t
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,

and vk ∼ N (0, Q) is the process noise assumed to be
white Gaussian with covariance matrix Q. ∆t is the time step
between two iterations.
The measurement vector Yk consists of the pseudoranges ρi

k,
for i = 1, . . . , n (where n is the number of in view satellites)
resulting from the visible satellites at time instant k, i.e.,

Yk = [ρ1
k · · · ρn

k ]T

ρi
k = ‖Xi,k

sat −X
k
rec‖+ wk

where Xi,k

sat is the vector of coordinates for the ith observed
satellite at time instant k and Xk

rec contains the receiver
coordinates. In outdoor environments, the measurement noise
wk ∼ N (0, R) is usually modeled as a white Gaussian
sequence independent from vk, with covariance matrix R.
When the navigation filter has to be constructed with the
satellite pseudoranges, the nonlinearity of the measurement
model requires the use of an EKF. Fig. 1 shows the principle
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Fig. 1. Extended Kalman Filter

of an EKF dedicated to satellite navigation. In this figure,
X̂k|k is the estimated state vector at time instant k using the
measurements up to time k and Pk|k is the covariance matrix
of X̂k|k. Moreover, hk and Jhk denote the nonlinear function
of the measurement model and its Jacobian, respectively.
In what we call thereafter the classical version of the naviga-
tion filter, the trilateration equations and their derivatives are
used for hk and Jhk, i.e.,

hi
k(X̂k|k−1) = ρ̂i

k|k−1 = ‖Xi,k

sat − X̂
k|k−1
rec ‖. (1)

The trilateration equations provide a good measurement model
when the signal is received in LOS conditions. They represent



the geometric distance between the satellites and the receiver.
However, if the signal is received after reflection (due to mul-
tipath), this model no longer corresponds to the geometrical
reality. Consequently, the predicted measurements will differ
from the actual measurements, and the Jacobian will not be
correct to calculate the update. In this situation, we propose
to use a 3D city model to determine the true geometric path
travelled by the signal. Note that the navigation filter using the
3D city model will be referred to as 3D augmented navigation
filter (3D ANF).

B. Integration of a 3D Model in an EKF

In the simple case of a single reflection, the geometric
distance between the ith satellite and the receiver can be
decomposed into two segments. Consequently, (1) has to be
replaced by

ρ̂i
k|k−1 = ‖Xi

sat,k − I
i
k‖+ ‖Ii

k − X̂
k|k−1
rec ‖ (2)

where Ii
k is the reflection point for the signal resulting from

the ith satellite at time k. Note that Ii
k depends on the satellite

position, the equation of the reflector wall and especially
the receiver postion i.e., X̂k|k−1. Consequently, to know the
correct Jacobian, we have to express Ii

k as a function of
X̂k|k−1 in order to derive this expression.
Thanks to the ephemeris, we can compute the satellite posi-
tions at the time of emission. Thus, the only unknown invariant
in (2) is the equation of the reflector wall. The 3D city model
can provide us with this information. For a given position of
the receiver and the corresponding satellite positions, this tool
is able to estimate the received NLOS signals and the walls
on which these signals have been backscattered.

C. Geometric Modeling of NLOS point of reflection
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Fig. 2. Geometric path of a signal reflected on a wall (S is the satellite and
R is the receiver).

For simplification purpose, we adopt temporarily the nota-
tion of Fig. 2, where S and R are the satellite and receveir
positions and I is the reflection point. The wall is defined by
its normal vector N and the coefficient d, through the equation

NxX +NyY +NzZ + d = 0.

N and d can be determined thanks to the 3D city model. The
projections of S and R on the wall, denoted as PS and PR,
are calculated as{

S −DSN = PS

NTPS + d = 0 ⇒ DS =
d+ NTS

NTN{
R−DRN = PR

NTPR + d = 0 ⇒ DR =
d+ NTR

NTN
.

From PS and PR, we can define the unit direction vector U
of the line connecting these two points

U =
PR − PS

‖PR − PS‖
.

The laws of geometrical optics indicate that the angles P̂SIS
and ̂PRIR have the same value α. Since MS (resp. MR) is
the distance between PS and I (resp. PR and I), the following
results can be obtained

tanα =
|DS |
MS

=
|DR|
MR

⇒MS =
MR |DS |
|DR|

MS +MR = ‖PR − PS‖ ⇒MR = ‖PR − PS‖ −MS

hence

MS =
‖PR − PS‖
|DS |
|DR| + 1

.

Finally, I is given by

I = PS +MSU.

By replacing each element with its expression in terms of R, S,
N and d, we obtain an equation for I that can be differentiated
with respect to each component of R. In other words, we can
differenciate (2) with respect to X̂k|k−1.

D. Robust Kalman for improved performance

When the 3D model is used as the measurement model, a
new problem appears. The 3D model is able to give geometric
information only for the paths associated with signals that are
visible to him at the position examined. This means that if
some signals received by the receiver are not visible according
to the model, the information they provide cannot be used.
Indeed, without the ability to predict measurements ρ̂i

k|k−1 for
these signals, it is not possible to calculate their corresponding
residuals dŶ i

k|k. This problem appears in particular when the
predicted position is inside a building. If the trajectory is close
to a wall, this situation can easily occur, even without having
a large prediction error. In this case, the 3D model cannot
predict any measurement since it considers that no satellite is
visible.
To use the information obtained for signals that are not seen by
the 3D model, one solution is to use temporarily a less accurate
but available model defined by the trilateration equations.
However, the use of these equations should be done carefully.
If the received signal is actually a multipath, the filter is biased
because of the modeling error resulting from the trilateration,



and a more accurate solution computed by the 3D ANF may
be corrupted. To avoid such cases, we propose to use a robust
version of the EKF that mitigates the modeling errors due to
trilateration.
Global robustness can be added in the Kalman filter by
an adaptive stochastic method using a robust M-estimation
approach [11]. This method uses a weighting function to
adapt and correct the contribution of the updated parameters
in the Kalman filter. Instead of minimizing the sum of residual

squares
(
dŶ i

k|k

)2

, the M-estimation method minimizes a so-
called influence function defined as [14]

ψ(dŶ ) =


dŶ if |dŶ | < a

a if a ≤ |dŶ | < c

(a/c)dŶ exp
(

1− dŶ 2/c2
)

if |dŶ | ≥ c

The associated diagonal weight matrix is defined by

D(dŶ ) =


1 if |dŶ | < a

a/|dŶ | if a ≤ |dŶ | < c

(a/c)exp
(

1− dŶ 2/c2
)

if |dŶ | ≥ c

The robust EKF equations are identical to those of the EKF ex-
cept for the innovation step, where the residuals are weighted
by the matrix D

Vk = D
(
Yk − Ŷk|k−1

)
.

Since the residuals with low weights have reduced reliability,
the robust processing associates a higher value to their esti-
mated noise. A heuristic approach is followed here to choose
the inverse of D for weighting R. Consequently, the Kalman
gain matrix for the robust version can be calculated as

Kk = Pk|k−1Jh
T
k

(
JhkPk|k−1Jh

T
k +D−1R(D−1)T

)−1
.

The parameters a and c are chosen to keep good measurements
and in the same time eliminate efficiently the outliers. Constant
parameters did not yield good results because of the constraint
environment. In other words, there are situations where there
are two few received signals to compute an accurate position.
If this situation lasts too long, the estimated position may
have drifted significantly from the actual position when new
signals become available. Without taking this situation into
account, the robust EKF will reject the new signals that are
considered as outliers with large residuals. In consequence,
adaptive parameters are chosen based on the covariance of
the residuals. Residuals greater than their estimated standard
deviation are not considered reliable. Numerous simulation
results have conducted to choose the following parameters

c =
(
JhkPk|k−1Jh

T
k +R

)1/2

a = c/2.

As the covariance increases due to few received signals, the
proposed robust EKF does not reject new received signals
when position uncertainty is large. Conversely, the misesti-
mated pseudoranges are rejected when the position uncertainty
is small.

III. SIMULATIONS

A. Simulation scenario

The proposed simulations consider a simplified 3D environ-
ment providing signals received at a given location in LOS or
after one reflection. Simplifying hypotheses have been defined
as follows
• The satellites are fixed, which is equivalent to consider

that their ephemeris and their time of emission (informa-
tion included in the GNSS signals) are known.

• The building are represented by blocks with flat surfaces.
• Only one signal can be received for each satellite (if a

path exists between the satellite and receiver). Additional
multipath signals that can be observed in practical situa-
tions are included in the noise.

• If a LOS signal exists, it is the one received by the GNSS
receiver.

• This study only considers multipath signals obtained after
a single reflection. This hypothesis is coherent with the
results presented in [2] which show that multipath with
only one reflection are generally the most powerful.
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(a) 3D simplified environment used for
the simulations.

−200 −100 0 100 200 300 400
−200

−100

0

100

200

300

400

X position (m)

Y
 p

os
iti

on
 (

m
)

(b) Trajectory simulated inside
the city.

Fig. 3. Simulation scenario

A realistic trajectory of 900 m simulated inside the city
is depicted in Fig. 3(b). The simulation has been generated
in 3D even if only the 2D views have been represented
(with transparent buildings) for clarity. The green part of
the trajectory has been travelled first. In this first scenario,
five satellites are available. However, three of them are in
LOS during the first part of this trajectory whereas only two
LOS signal have been received during the second part of this
trajectory. The second part of the trajectory (in red) is the more
constraint area with only one visible satellite. Five satellites
are visible in the blue part of the trajectory, but with only
two of them in LOS. These two satellites are the only ones
visible during all the blue area, and unfortunately they have a
bad DOP. At the beginning of the magenta area, a new signal
appears. However, this signal is a multipath signal. We will
see below that this signal can affect significantly the position
estimation. Finally, in the black part of the trajectory, lots of
satellites are visible again, with three of them in LOS.

B. Results

We first compare positioning results obtained with a classi-
cal EKF and the proposed 3D AEKF in our constraint envi-



ronment. Note that there is no noise affecting measurements
in this simulation. Fig. 4 shows that the trilateration EKF
is completely lost because of the large number of multipath
received during all the trajectory. On the contrary, the 3D
AEKF provides good results.
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Fig. 4. Positioning results without additive noise. In green dot: real position.
In blue dot: the trilateration EKF solution. In red diamond: the 3D AEKF
solution. In magenta: the last received signals.
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Fig. 5. Positioning result for an additive Gaussian noise with standard
deviation σ = 3m. In green dot: real position. In blue dot: the trilateration
EKF solution. In red diamond: the 3D AEKF solution. In magenta: the last
received signals.

The second set of simulations compares the two methods in
presence of an additive white Gaussian measurement noise
with standard deviation σ = 3m affecting the measured pseu-
doranges. Fig. 5 shows that the 3D AEKF begins to diverge
during the red area (defined in Fig. 3(b)). This divergence is
due to the lack of visible satellites. When the vehicle reaches
the blue area, the local multipath environment varies too fast,
producing aberrant position estimates. When the predicted
position is in a building, the 3D AEKF becomes blind and
therefore cannot correct the state vector until it leaves the
building. However, as soon as the predicted position is outdoor,
the proposed filter is able to converge to the correct position.
Fig. 6 shows that the 3D AEKF always keeps its integrity even
when the receiver is inside the building (blind area). The error

associated with the 3D AEKF is generally lower than that
obtained with the EKF except in the blind area. The errors on
the pseudorange estimations are represented for two satellites
in Fig. 7. Fig. 7(a) shows the case of a satellite that is always
visible, and always in LOS. Conversely, the second satellite
in Fig. 7(b) is almost always in NLOS when it is visible.
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Fig. 6. Results for an additive Gaussian noise with standard deviation σ =
3m. In red: 3σ value at each time for the 3D AEKF. In blue: trilateration
EKF position error. In dark red: 3D AEKF position error.
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(b) Satellite 2

Fig. 7. Errors on the pseudorange estimations, for an additive Gaussian noise
with standard deviation σ = 3m. In blue dashdot: the trilateration EKF. In
red line: the 3D AEKF.

The same simulation is conducted with robust trilateration
EKF and robust 3D AEKF. Fig. 8 shows that the robust trilat-
eration EKF is able to give a good positioning solution when
enough satellites are visible in LOS, i.e., at the beginning and
at the end of the trajectory. Conversely, the robust trilateration
EKF is lost when the NLOS dominate. The estimated position
is also wrong in the magenta area (as defined in Fig. 3(b)). The
use of all available information makes the robust 3D AEKF
capable to quickly find the right position at the exit of the red
area.
Fig. 9 shows small positioning errors for the robust 3D
AEKF compared with the errors obtained with the robust
trilateration EKF. In Fig. 10(a), we can see that the errors
on the pseudorange estimations for satellite 1 are lower than
the noise power for the robust 3D AEKF, which is not the
case for the robust trilateration EKF. Fig. 10(b) shows that
the 3D ANF method allows the pseudorange resulting from a
NLOS satellite to be estimated correctly. The estimations are
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Fig. 8. Results for an additive Gaussian noise with standard deviation σ =
3m. In green dot: real position. In blue dot: the robust trilateration EKF
solution. In red diamond: the robust 3D AEKF solution. In magenta: the last
received signals.
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Fig. 9. Results for an additive Gaussian noise with standard deviation σ =
3m. In red: 3σ value at each time for the robust 3D AEKF. In blue: robust
trilateration EKF position error. In dark red: robust 3D AEKF position error.
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Fig. 10. Errors on the pseudorange estimations, for an additive Gaussian
noise with standard deviation σ = 3m. In blue dashdot: robust trilateration
EKF. In red line: robust 3D AEKF.

less accurate only at the beginning and at the end of a period
during which the satellite is in view. However this inacurracy
is mitigated by the robust part of the filter.

IV. CONCLUSION

This paper has proposed a new approach for GNSS navi-
gation in critical NLOS environments. A tight integration of
a 3D model of the environment with an extended Kalman
filter allows NLOS signals to be used constructively. A robust
version of the resulting navigation algorithm has also been
investigated to use all the available information, even the
less reliable measurements. Simulation results showed that
the proposed robust 3D AEKF outperforms a classical robust
EKF. These results are currently under validation using a more
realistic model of the environment and real data. In these
conditions, the inaccuracy of the model can be considered as
an additive noise affecting the predicted measurements.
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