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ABSTRACT

Subband decomposition has already been shown to
increase the performance of spectral estimators but in-
duced frequency overlapping may be troublesome, bring-
ing edge effects at subband borders. A recent paper
proposed a method (SDFW) allowing to perform sub-
band decomposition without aliasing. In the present
paper, this subband decomposition is modified in or-
der to improve frequency resolution for any correlation-
based spectral estimator when applied to the subband
outputs. Three main improvements are proposed: sub-
band decomposition is based on comb filters, the warp-
ing operation suggested in the SDFW method is per-
formed using a complex frequency modulation and the
autocorrelation is estimated using all sub-series from
each subband. Simulation results demonstrate the an-
ticipated performance of the proposed method.

1. INTRODUCTION

Some authors recently showed that subband decompo-
sition can be a powerful tool for spectral estimation
[1], [2]. Actually, performances of traditional spectral
estimation methods can increase when applied to sig-
nals filtered by an appropriate filterbank rather than
applied to the corresponding fullband signal. In case
of sinusoids embedded in noise, this has been theoreti-
cally explained by the following properties:

e (P;) local SNR increases by the decimation ratio
(due to filtering operation) [2].

e (P,) frequency spacing increases by the decima-
tion ratio (due to decimation) [2].

e (P3) the condition number of autocorrelation ma-
trices decreases due to local order reduction [3].

In practical applications, properties P; and P, have to
take into account that decimation also brings a decrease

of the sample number. Moreover, these properties have
been established in the case of a bank of ideal infinitely
sharp bandpass filters. However, experimental results
show that they are still valid when using non-ideal fil-
terbanks such as modified Quadrature-Mirror Filters
(QMEF’s) [1] or cosine modulated filterbank [2]. Prop-
erty Ps is one of the most noticeable contributions of
subband decomposition and can be explained by the
eigenvalues interleaving theorem (see [3]). The problem
of spectral overlapping has already been addressed in a
recent paper [4] where a (non real-time) procedure was
proposed to perform spectral estimation from subbands
without aliasing even at subband’s borders. The main
contribution of the present paper is to propose a pro-
cedure based on [4] able to improve the performances
of any correlation-based spectral estimation method.
Compared to [4], three main improvements are pro-
posed in order to simplify the decomposition method
and to increase the frequency resolution. A comparison
of the proposed method performances and of the per-
formances of a “classical” fullband spectral estimation
is given, in terms of frequency estimation variance and
compared to the Cramer-Rao lower bound. The pa-
per is organized as follows. Section 2 presents problem
formulation and section 3 is devoted to the proposed
method. Simulation results are presented in section 4
and conclusions are reported in section 5.

2. PROBLEM FORMULATION

The observed signal is the sum of K sinusoids corrupted
by additive white Gaussian noise:

K
Uy = ZAleiZsznJrcﬁz + b, (1)
=1

where n = 1, ..., N. The problem of estimating the fre-
quencies f; from the observed samples u,,n = 1,..., N



has received considerable attention in the signal pro-
cessing literature (see for instance [5] and references
therein). As a consequence, many algorithms have been
studied to solve this spectral estimation problem. As a
matter of example, some algorithms are based on lin-
ear least squares (LS), High-Order Yule-Walker, Pis-
arenko and MUSIC methods [5]. Algorithms based on
the Singular Value Decomposition (SVD) of the auto-
correlation matrix have become very popular because
of their high resolution properties and their insensitiv-
ity to model order overestimation. In this paper, with-
out any loss of generality, we choose to use one of the
correlation-based frequency estimation approach: the
high-order Yule-Walker (HOYW) frequency estimation
method ([5], p. 151). This method is summarized be-
low:

e estimate the NV x IV autocorrelation matrix of u,,
denoted R,

e compute the SVD of R,,,

e solve the rank-truncated HOYW system of equa-
tions in the LS sense, which yields the estimated
AR parameter vector denoted a,

e determine the peaks of the pseudospectrum,
' 1
S(e”™) =

where A(z) is the estimated AR polynomial.

This method is chosen for its good frequency resolution
properties.

3. IMPROVING SPECTRAL ESTIMATION
USING SUBBAND DECOMPOSITION

Let us divide the frequency interval [0, 1] into 2M equal
subbands and denote v; = (j — 1)%2 4+ %22 | j =
1,...,2M the middle of the j** subband. Aliasing oc-
curs due to decimation of the signals by the filterbank.
Considering the j** branch of the bank represented in
figure 1 , the Fourier Transform of the decimated signal
versus the input of the filter bank u (n) can be written
as (do not pay attention to the modulation operation
of this figure, it will be explained later):

M-1
. 1 . .
Xj(ez27er) — M § Hj(eﬂw(ffﬁ )UA(eﬁﬁ(ffﬁ)).
=0

(2)
This expression highlights spectral overlapping given
by the terms for [ = 1,...,M — 1. QObviously, ideal
infinitely sharp bandpass filters bring no aliasing. In
order to cancel aliasing in practical conditions, we pro-
pose to use a bank of comb filters. The j** comb filter

(whose order is taken equal to the decimation ratio M)
has a frequency response equal to 1 in the middle of
the jt* subband and 0 in the middle of others. This
allows aliasing cancellation not in the whole subband
but only in its middle f = v; so that:

1 2TV

MUA (e )- (3)
Comb filters are usual in the field of subband decom-
position (see for example [6], p.227). However, the
proposed way of using them in this paper is somehow
original. As aliasing is cancelled on only one frequency
bin, a frequency modulation device is set prior to the
filterbank (see figure 1). Hence, any frequency under
interest f is shifted in the middle of its corresponding
subband v; such that:

)(‘7 (eiQﬂ'Ml/j ) —

U(ei27rf) — UA(ei%ﬂ/]‘) with Af =v;— f (4)

Thus, the use of comb filters and of appropriate mod-
ulation operation leads to get rid of the main draw-
back of subband decompostion, i.e. frequency alias-
ing. Therefore, any spectral estimation method can
be applied on the outputs of each subband. In order
to improve frequency resolution, we propose to use a
correlation-based method (HOYW for example) and to
pay a particular attention on the correlation estima-
tion. The whole proposed method is summarized as
follows:
for f=0to 1

1 - subband selection: find subband number j

knowing f.

2 - complex modulation: shift the input signal’s
spectrum by the quantity Ay = v; — f using:

ua(n) = ™2y (n). (5)

3 - Subband decomposition: use the jt* filter of
the comb filterbank on the modulated signal ua
to get M filtered and decimated sub-series z; .

4 - Estimate the autocorrelation sequence ijm (k)
on each sub-series and the autocorrelation of the
output of the j** branch as:

M-1
R = 12 3 ey (), (©

5 - Spectral estimation : apply HOYW method
using ﬁfx]. (k) to estimate the amplitude of the
spectrum at only one frequency v;. U(e?™/) is
derived using (3) and (4).

end for.

Obviously, this algorithm can be written in a parallel



way, allowing the spectrum estimation on M simultane-
ous frequencies, using a spectral estimation procedure
on each branch of the filterbank. Moreover, it is im-
portant to note that the use of the different sub-series
of the decimated signal in each branch is the key point
in order to improve results when using subbands rather
than a classical fullband spectral estimation. Indeed,
as mentioned in the introduction, property P; ensures
that the filtering operation will increase SN R but the
use of M times less samples for autocorrelation estima-
tion would cancel this gain. Property P, shows that the
frequency spacing will increase by the decimation ratio
but at the same time, the number of samples decreases
by the same factor. Thus, from a Fourier resolution
point of view, there would be no improvement.

4. SIMULATION RESULTS AND
PERFORMANCES OF THE METHOD

Simulations are done in the case of a sum of 2 complex
sinusoids:

Uy = A16i27rf1n+¢1 +A26i2ﬂf2n+¢2 +by,n = [0’ ...,N—l]

(7)
b, is a Gaussian zero-mean white noise whose power
. . . . A3+ A2
is 0’?. The signal to noise ratio is SNR = %

An uniform modulated filterbank is used, in which all
filters are derived from only one comb filter of order
M:

ho(n) =1,¥n =0,..., M — 1 and 0 elsewhere, (8)

. 1 . inmtfM

— Ho(ez%rf) — Me—mf(M—l)SSi:lr;]:f , (9)
The filterbank frequency response is plotted on fig. 2.
First, performances of the proposed method are com-
pared to a fullband classical spectral estimation, in
terms of frequency estimation variance. The Cramer-
Rao lower bound is also plotted (derived in [7], p.414
for a sum of p sinusoids). Figure 3 presents these re-
sults for both frequencies f; and f,. These simula-
tions have been run for 4, = 4, = 1, f; = 0.15,
fo = 0.35 and N = 1000. The autocorrelation esti-
mation method was chosen unbiased. The variance of
the estimator of parameters fi; and f, is estimated us-
ing 50 Monte-Carlo runs for each SNR. Moreover, it is
important to note that for fair comparison, the ratio
“model order” /“number of samples” is kept constant.
As a consequence, the model order is p = 750 for full-
band simulations and pg, = 24 for subband modelling
with M = 32 subbands so that p ~ Mpgyu. Figure
3 highlights the improvement brought by the HOYW
method applied to subband signal (following the pro-
posed procedure) rather than to the fullband signal. In
order to clearly show this improvement, fig. 4 presents

50 realizations of the model spectrum around frequen-
cies fi and fs5 using subband decomposition or not at
SNR = —17 dB (subband spectrum has been moved
forward for better readability). Spurious peaks appear-
ing on fullband spectral estimation disappeared using
subband decomposition.

Dealing with numerical accuracy (property P;), sim-
ulations were run at SNR = 0dB on 50 realizations
using the above parameters in order to compare condi-
tion number of autocorrelation matrices. For fullband
spectral estimation, there is only one autocorrelation
matrix Vf € [0, 1[. Using the subband method, to each
frequency f corresponds a different subband signal, so
that condition number is varying versus the frequency.
In fig. 5, condition numbers are plotted in logarithmic
scale. This figure shows that property Ps is verified
experimentally. A gain varying from 30 to 70 dB is
observed, depending on the frequency f.

5. CONCLUSION

The aim of this paper was to propose a spectral esti-
mation method based on subband decomposition and
leading to better performances than spectral estima-
tion applied on the fullband signal. Subband decom-
position induces frequency aliasing (using non-ideal fil-
ters) which is a main drawback for spectral estimation.
A previous paper [4] has already presented a subband
decomposition method allowing to cancel aliasing. In
this paper, the previously proposed method is simpli-
fied by the mutual use of comb filters and frequency
modulation. Moreover, when using correlation-based
spectral estimation methods, it is pointed out that the
autocorrelation estimation in each subband has to be
performed using all information, in order to reach bet-
ter performances than fullband frequency estimation.
Simulations have been given, showing the improvement
brought by subband spectral estimation over the clas-
sical fullband one.
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Figure 2: Frequency response of comb filters for M = 8.
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Figure 3: Comparison of subband versus fullband spec-
tral estimation.
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Figure 4: Subband and fullband estimated spectra
around frequencies f; and fs for SNR = —17dB.
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Figure 5: Subband and fullband condition numbers.



