Optimisation of internet throughput in constellations of satellites

François Lamothe, Emmanuel Rachelson, Alain Hait, Cédric Baudoin, Mathieu Gineste et Jean-Baptiste Dupé

19 mars 2021

19 mars 2021

1/33

François Lamothe, Emmanuel Rachelson,

- A constellation of satellites
- Unsplittable flows
 - Problem presentation
 - Randomized rounding
 - Sequential randomized rounding
 - Results and proofs
- Dynamic unsplittable flows
 - Problem presentation
 - One-timestep methods
 - Multi-timestep methods

A constellation of satellites

Figure – Telesat constellation

Telecommunication constellation :

- Connect users to terrestrial networks
- Provide internet access in sparsely populated areas

Managing its telecommunications is a challenging problem !

Unsplittable flows

- Satellites \rightarrow Nodes
- Inter-satellites-links \rightarrow Arcs
- Users demands \rightarrow Commodities

Objective : Minimize the used capacity of the most used arc while routing each commodity on a **single** path.

Linear relaxation : Multi-commodity flows : each commodity route its flow on **several** paths

- NP-Hard problem :
 - Knapsack problem as a sub-problem
 - Edge-disjoint paths problem as a sub-problem
- Size of the instances in the applications : 400 nodes, 2000 arcs, 10 000 commodities
- Exact algorithms : 30 nodes, 80 arcs, 100 commodities
- Multi-commodity flows :
 - Polynomial problem
 - Solvable with linear programming or approximation algorithms

- Solve the linear relaxation :
 - Each commodity uses several paths
 - Flow distribution on the paths : $(x_{pk})_{p \in P_k, k \in K}$
- Independent randomized rounding of each commodity :
 - Commodity k chooses path p with probability x_{pk}
 - Fix $x_{pk} = 1$ in the unsplittable solution

^{2.} Prabhakar Raghavan and Clark D Tompson. Randomized rounding : a technique for provably good algorithms and algorithmic proofs. Combinatorica, 37(4):365-374, 1987.

- Solve the linear relaxation :
 - Each commodity uses several paths
 - Flow distribution on the paths : $(x_{pk})_{p \in P_k, k \in K}$

(a) Toy example : 2 nodes, 2 arcs

(b) A linear solution

- Independent randomized rounding of each commodity :
 - Commodity k chooses path p with probability x_{pk}
 - Fix $x_{pk} = 1$ in the unsplittable solution

- Independent randomized rounding of each commodity :
 - Commodity k chooses path p with probability x_{pk}
 - Fix $x_{pk} = 1$ in the unsplittable solution

- Independent randomized rounding of each commodity :
 - Commodity k chooses path p with probability x_{pk}
 - Fix $x_{pk} = 1$ in the unsplittable solution

- Independent randomized rounding of each commodity :
 - Commodity k chooses path p with probability x_{pk}
 - Fix $x_{pk} = 1$ in the unsplittable solution

Randomized rounding²

- Solve the linear relaxation :
 - Each commodity uses several paths
 - Flow distribution on the paths : $(x_{pk})_{p \in P_k, k \in K}$
- Independent randomized rounding of each commodity :
 - Commodity k chooses path p with probability x_{pk}
 - Fix $x_{pk} = 1$ in the unsplittable solution
- Provable approximation factor : $O(\frac{\log m}{\log \log m})$ m = number of arcs
- This factor is optimal

1. Prabhakar Raghavan and Clark D Tompson. Randomized rounding : a technique for provably good algorithms and algorithmic proofs. Combinatorica, 7(4):365-374, 1987.

François Lamothe, Emmanuel Rachelson,

- Solve the linear relaxation
- Then alternate between :
 - Fixing the path of a commodity through randomized rounding
 - Actualizing the linear relaxation
- Round the biggest commodities first

- Alternate between :
 - Fixing the path of a commodity through randomized rounding
 - Actualizing the linear relaxation

- Alternate between :
 - Fixing the path of a commodity through randomized rounding
 - Actualizing the linear relaxation

- Alternate between :
 - Fixing the path of a commodity through randomized rounding
 - Actualizing the linear relaxation

- Alternate between :
 - Fixing the path of a commodity through randomized rounding
 - Actualizing the linear relaxation

- Alternate between :
 - Fixing the path of a commodity through randomized rounding
 - Actualizing the linear relaxation

- Solve the linear relaxation
- Then alternate between :
 - Fixing the path of a commodity through randomized rounding
 - Actualizing the linear relaxation
- The order of rounding now has an impact : round the biggest commodities first
- Approximation factor : $O(\frac{\log m}{\log \log m})$ m = number of arcs

Experimental results

Graphs of increasing size

- SRR yield the solutions of best quality
- SRR has longer computing time than pure randomized rounding

Impact of the rounding order

Approximation proof

Approximation proof

Each commodity distributes its flow between the two arcs.

Each commodity distributes its flow between the two arcs.

Approximation proof

Every unsplittable solution is worse than the best splittable solution.

Rounding selected at random \rightarrow distribution of the total flow.

Approximation proof

We can bound how far the roundings can deviate from the mean. (Chernoff bound)

Approximation proof

The smaller the commodities, the more concentrated the distribution and the lower the bound

Dynamic unsplittable flows

- The constellation moves around the earth
- Source/destination of the commodities are moving
- Time discretization : several timesteps

Bi-objective :

Route the commodities on a single path inside the capacities. A penalty is paid when a commodity

change its path.

One-timestep methods

- Consider one timestep at a time : rolling horizon
- Problem = Static unsplittable flows + preferred path
- Solvers :
 - Sequential Randomized Rounding
 - Commercial MILP solver (very efficient in this case)

Previous timestep

Current timestep

- One-timestep : choose a path per commodity
- Multi-timestep : choose a sequence of paths per commodity
- Solvers :
 - Sequential Randomized Rounding
 - Require the use of column generation to solve the linear relaxation

- One-timestep methods :
 - $\bullet\,$ Faster $\rightarrow\,$ can use heavier methods to solve each timestep
 - Does not require column generation \rightarrow Commercial solvers are very effective
- Multi-timestep methods :
 - Slower
 - Can find significant improvement when close to optimality

- $\bullet~\mbox{Routing in a constellation of satellites} \to \mbox{Dynamic unsplittable flow problem}$
- Study of a new algorithm : Sequential Randomized Rounding
 - Very good results on the static problem
 - Extension of approximation factor
- Unmentioned :
 - How to solve the linear relaxation in multi-timestep methods
 - How to get a tighter linear relaxation (polyhedral analysis)