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Abstract—This paper studies a new attention-based recurrent
architecture, lighter and less computationally expensive than
a global attention network. This type of architecture achieves
better performance than commonly used recurrent networks for
time series regression. An application to congestion control is
considered, where the history of round trip times (RTT) evolution
history is used to monitor congestion control. The performance
of the proposed new congestion control strategy is evaluated with
both synthetic and real traces, showing that it can be efficiently
used to estimate the congestion state of a network.

Index Terms—Attention Networks, Congestion Control, Time
Series Regression, TCP, COPA

I. INTRODUCTION

TCP congestion control (CC) is an essential mechanism for
the transport of data and the fair sharing of Internet resources.
The main goal of TCP is to prevent network congestion, as the
latter might lead either to packet losses (due to router queue
overflow) or to an increase of the end-to-end delay. As a matter
of fact, the increase of the two metrics “latency” and “losses”
results in a decrease of the data transfer time. Basically, the
TCP CC algorithm is therefore an algorithm that schedules the
transmission time of a packet, as a function of the congestion
level of the network. The congestion level is determined thanks
to the return path used by TCP acknowledgments, which
allows monitoring using different metrics such as the evolution
of the round trip time (RTT), the number of lost packets,
the jitter (variance of the inter-packet spacing), etc. All these
metrics, or a subset, are then crunched by the CC algorithm
to compute the transmission time of a packet.

Network arrivals are often modeled as Poisson processes by
simplicity. Although several proposals, modeling and predict-
ing the Internet traffic remains a complex problem. This might
explain why these models [1], [2] have never been practically
used to improve the behavior of TCP CC. Nevertheless, to
obtain better CC algorithms, the networking community has
considered machine learning tools, where promising solutions
have been proposed [3], [4]. REMY CC was a pioneer in
this domain [3]. The main drawback is that a consistent CC
algorithm can require more than 24 hours for offline learning,
and is only valid for a given architecture [5]. Following this
first attempt, several other proposals have emerged. Among
others, COPA is a CC for improved video performance de-

ployed by Facebook1. COPA [6] attempts to estimate the
internal state of the network to send packets optimally. The
goal is then to estimate the network congestion state from
time series describing the evolution of key network parameters
(queue size, bottleneck load evolution, ...). COPA is one of
the most performant CC to carry video contents compared to
BBR or CUBIC [7], explaining our specific interest for this
CC mechanism. However, the contribution of this paper can
be applied to any CC based on time series to perform (e.g.,
using RTT or loss histories).

The main question addressed in this paper is: how to deal
with time-series available for CC to efficiently estimate the
evolution of the network state and, particularly, the level of
congestion? This problem motivates this work, which aims
to study a new neural network (NN) architecture based on
Attention for multivariate time series regression, with an ap-
plication to network congestion prediction. We introduce a new
model that is lighter and performs as well as global Attention.
This work reduces the number of parameters to be estimated,
resulting in a better computational cost when compared to
Attention. More precisely, instead of having a complexity
in O(L2) at each new time step, the new architecture has
a complexity in O(L), L being the size of the time series.
Another contribution of the proposed method is to show the
interest of the Attention networks for the regression of time
series, as they allow estimating more precisely some functions
such as the maximum function and to better consider the past
of the time series that has to be predicted.

A previous contribution investigated whether Deep Learn-
ing (DL) algorithms could improve the CC estimator used
in COPA [8]. In this study, we particularly focus on the
analysis of the computational efficiency and the performance
of Attention. Section II recalls the CC objective, and how
COPA, among others, attempts to reach this objective by using
a simple estimator. Section III introduces DL algorithms that
could be used to reach the same objective with their pros and
cons. The proposed DL architecture is presented in Section IV
with a performance evaluation in Section V using synthetic
and real traces. Section VI concludes this work.

1https://engineering.fb.com/2019/11/17/video-engineering/copa/



II. THE CONGESTION CONTROL OBJECTIVE

As previously discussed, the main objective of a CC algo-
rithm is to reach the full capacity available in the network
while minimizing the queue load. This optimal regime is
schematized by the optimal point in Figure 1.
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Fig. 1: Optimal congestion control point.

To better assess what is this optimal control point, consider
a simple model where a fixed-sized bottleneck queue with a
service µ bit/s, a max queue size qm, and a current queue size
or load ql, is crossed by a single flow at λ bit/s. This flow
might encounter three states:

1) if µ > λ, the queue is always empty and packets are
passed without delay;

2) if µ < λ and ql < qm, packets are stored and the end-
to-end delay increases;

3) finally if µ < λ and ql = qm, arriving packets are
dropped and severe congestion occurs.

The delay and delivery characteristics considering this bot-
tleneck link are illustrated in Fig. 1. The problem is thus to
operate as close as possible to this optimum operating point.
This problem has been solved by COPA [6] using an estimator
defined by:

min
i∈[t−L1,t]

xi − min
i∈[t−L2,t]

xi, (1)

with L1 << L2 and where xi is the univariate time series of
RTT, i.e., the round trip times of packets in the network.

COPA uses delay signals to detect congestion and sense the
network load with an oscillation of the capacity, as illustrated
in Fig. 2. In the congestion avoidance phase, COPA increases
and decreases the throughput periodically to probe the network
congestion level. This estimator has shown good performance
compared to currently used techniques such as TCP CUBIC.
However, it relies on the hypothesis that COPA is the sole
CC algorithm being used on that link. Indeed, in this case,
the flows’ throughput is synchronized, allowing the queue to
evolve as shown in Fig. 2, and thus the use of the estimator

Fig. 2: COPA mechanism described in [6]. The aim is to
stabilise the queue length around δ−1.

(1) because the queues will be emptied periodically. However,
if another CC is used, that estimator may not be as accurate.

The objective of this paper is to propose a supervised DL
method that can improve (1). More precisely, we want to
obtain an accurate estimation, even if there is a competing
CC algorithm on the same path. COPA already handles com-
petition by being more aggressive, but we think that having a
correct estimation of the state of the network might improve
performance.

III. EXISTING DEEP LEARNING ARCHITECTURES FOR
TIME-SERIES REGRESSION

Standard time series regression models can be grouped into
several families. The first family gathers prediction algorithms
based on parametric methods using for example Kalman filters
or ARIMA (AutoRegressive Integrated Moving Average) mod-
els and its improvements. Non-parametric methods also exist,
such as those based on support vector regression (SVR) [9] or
on k-Nearest Neighbors (kNN). A second family of regression
algorithms is based on neural networks, in particular DL
methods. To be able to process time series, Recurrent Neural
Networks (RNN) were first developed [10]. To overcome the
problem of gradient disappearance during training [11], other
methods have been introduced to improve the principle of
RNNs. These methods are based on more original architectures
such as GRU (Gated Recurrent Units) [12], LSTM (Long
Short-Term Memory) [13] and CNN (Convolution Neural Net-
works) [14]. More recently, a new architecture called Attention
has shown its interest in several applications [15]. First used
in natural language processing tasks, this architecture makes it
possible to obtain more precise prediction models, considering
that there is sufficient computing power. For example, we can
cite the work of [16] which shows that Attention is sufficient
on its own to solve translation or text interpretation tasks.

The problem studied in this paper is to build a neural
network architecture to estimate useful metrics for CC such
as (1). To perform the supervised learning, we propose to
train different models (that will be explained later) with the



following cost function

1

L

L∑
i=1

∥f(X1:i)− yi∥2, (2)

where yi is a vector which contains the metrics we want to
estimate at time i, X1:i ∈ Ri×d is a matrix containing the
observations up to time i (in (1) this matrix is composed
of the RTT, but other complementary observations could be
considered as well), L is length of the time series and f is the
model defined by the NN to be trained.

A. LSTM networks

This section describes LSTM networks since they are com-
monly used for time series, and introduces the rationale of
this study. We noticed that some regression tasks, such as
the estimator presented in (1), cannot be accurately predicted
with LSTM networks. Indeed, the predictions obtained with
these networks can correctly estimate the maxima of a time
series, but they fail to memorize this information for the
next time steps. This observation will be further discussed
in Section V-A (see Figure 5b)2. This absence of memory
for LSTM networks has motivated the present study, which
aims at building a model able to efficiently estimate functions
such as the minimum and maximum of a sliding window from
one or several time series. In the rest of this paper, we show
that networks using Attention can estimate these maxima and
minima with a better accuracy.

B. Attention in a nutshell

Before explaining how vanilla Attention networks perform,
the following notations are introduced:

Notations
Symbol Signification
d dimension of the Time Series
L Length of the Time Series
M Number of layers
X ∈ RL×d Multivariate Time Series
Wk ∈ Rd×d

Wq ∈ Rd×d Matrices of Attention parameters
Wv ∈ Rd×d

P ∈ RL×d Position encoding matrix concatenated
with X

Attention is a time series processing mechanism originally
built to perform language translation tasks. However, it can
easily be extended to other domains, such as time series
regression. To illustrate how Attention works, we use the
running example displayed in Fig. 3. This example shows
a sentence where the relationships between each word are
represented either by plain or dashed lines, depending whether
there is a strong or weak relationship between two words.
Actually, these relationships are defined thanks to a weight

2Note that due to their nature, the same observation holds for all RNN and
CNN networks.

matrix. This weight matrix (where the sum of each row is
1) allows assessing the relationships between elements of the
time series.

Fig. 3: Example of the attention mechanism for a sentence. A
dashed line corresponds to a weak connection between words,
whereas a plain line is used for a strong connection.

The Attention mechanism itself is not sensitive to the rela-
tive position of the elements of the time series Xi∈ Rd, i =
1, ..., L. To solve this issue, it uses a position matrix P =
(pi,j) with i, j ∈ {1, ..., L} × {1, ..., d} defined as [16]:

pi,j =

{
sin

(
i

1002j/d

)
si j = 2n, n ∈ N

cos
(

i
1002j/d

)
si j = 2n+ 1, n ∈ N

The position matrix allows defining the position of a vector in
a time series, like a clock can define a time instant with three
hands for seconds, minutes, and hours. Note that the use of
sine and cosine functions for pi,j ensures positions pi,j are in
]− 1, 1[. Attention layer can then be defined as follows:

ATTENTION(Q,K,V ) = softmax
(
QKT

√
d

)
V , (3)

with

softmax(X)i,j =
eXi,j∑d
k=0 e

Xi,k

,

and 
K = WkX,

Q = WqX,

V = WvX,

where Wk, Wq and Wv are parameter matrices that are
determined during the training phase. This example illustrates
a particular case of Attention known as self-Attention (where
K,Q,V are functions of X). Note that the result of (3)
is a linear combination of the elements of the matrix X =
(x1, ...,xt)

T .
The roles of the matrices Wq , Wk and Wv are inspired by

the SQL language. They represent queries (q), keys (k) and
values (v). Note also that the duo of matrices Wq and Wk

allows the model to determine which elements of the past are
useful for the regression task. For example, if self-Attention
is applied to a matrix X of univariate RTT (i.e., d = 1)
with Wq = Wk = 1, the result of the softmax operation
gives a matrix of RL×L with rows close to 0, except the
row corresponding to the index of the maximum of X whose
elements are close to 1. Thus, by choosing Wv = 1, the result
of the Attention is a matrix whose elements are approximations
of the maximum of X . If we are interested by the minimum
of X (instead of the maximum), one can choose Wk = −1.



It is also possible to define more complicated queries, such as
finding when the maximum of RTTs occurred (considering X
also contains the time information with d = 2). In that case,
we need to choose Wq = Wk as the projection of X on the
RTTs axis, and Wv as the projection of X on the time axis.

Despite their remarkable performance, Attention networks
are difficult to use because of their massive size (the GPT-
3 model created by OpenAI for text interpretation has 175
billion parameters), and long training times. Indeed, to apply
an Attention model to a time series, it must be applied at
each time step. Thus, at the tth step (with t ∈ {1, ..., L}),
the computation complexity is linked to the matrix product.
To treat a time series of length L, the complexity is therefore
in the order of O(L3) (the computation done at step t − 1
cannot be used to ease the task because of the presence of the
non-linear layers), whereas methods such as LSTMs have a
complexity in the order of O(t). This computational time is a
motivation to find a new NN architecture that is as efficient as
Attention but faster, which is precisely the goal of this paper.

IV. PROPOSED ARCHITECTURE

To overcome both shortcomings of LSTM and Attention
networks, we propose a new hybrid architecture defined as
follows:

1) the observation matrix X is concatenated with the
position matrix P yielding

Xp = [X,P],

2) an LSTM layer is constructed:

Hi = LSTM(x1, ....xi) ∈ RJ×d,

where J is the size of the vector produced by the LSTM
network (with one layer and a unidirectional network),
to be chosen by the user.

3) an Attention network is constructed as follows:

Yi = ATTENTION(WqHi,WkX1;i,WvX1;i),

where the matrix Hi is used to determine which are
the most important past elements. The idea of this
architecture is not to use self-Attention directly (since if
is too computationally intensive), but to generate, thanks
to an LSTM network, a vector generating the requests
(J is thus the number of requests).

4) A non-linear layer (RELU activation function) is finally
introduced as in many DL architectures:

Z = FeedForward(Y)

The previous steps 2), 3) and 4) can be repeated for each of
the M layers of the network. The interest of this architecture
when compared to LSTM and Attention will be shown the
next section.

(a) Creation of the vectors Hi (first step).

(b) Attention used to know which Xi is used to get Yi.

Fig. 4: Two steps of the proposed NN architecture.

V. RESULTS

This section evaluates the performance and ability of the
proposed NN architecture to seek information from the past of
time series within two use-cases: the first experiment considers
synthetic data with an available ground truth whereas the
second experiments are conducted using real data from the
evolution of an IP router queue load.

A. Finding a minimum

As explained in Section III-A, a simple estimator of the
queue load is of the form (1). This section studies the
capacities of the proposed NN architecture to approximate
this estimator. The parameters of the NN were chosen by
cross validation leading to L1 = 5 and L2 = 30. The NN
was trained using a learning step of 0.001 and the optimizer
ADAM. The RTT time series were randomly generated at each
training step according to independent samples from a normal
distribution (N (µ, σ2) with µ, σ ∼ U(0, 10) fixed for each
time series) to prevent over-fitting.

Figure 5a shows that the new NN architecture, in addition
to learn faster how to estimate the function f defined in
(1), can learn to estimate the difference between two minima
with more accuracy than an LSTM network, which reaches a
learning plateau. Of course, this remains an artificial task and
the proposed network was created to solve that kind of task.
This first experiment also shows that the deeper the network
(i.e., the larger M ), the faster the elements from the past
can be learnt. The poor performance of the LSTM network
can be easily explained by the form of f , which is a simple
relationship between elements from the past of the time series.
Note that LSTM have problems to learn how to store elements
in its hidden vector, and to memorize all values (for example, if
the value of RTT is increasing, each value will be at some point
a minimum of the sliding window). Conversely, the proposed
Attention network directly refers to elements from the past,
which can be accessed in one step.



(a) Training loss. The colored envelopes represent the maximal and
minimal errors for 10 trained models.

(b) Estimations provided by LSTM and Attention networks for (1).

Fig. 5: Results for the synthetic task of estimating (1).

Figure 5b shows that LSTM networks cannot store the
relevant information during a correct amount of time. Actually,
LSTM regression seems to approximate the time series by a
piece-wise linear function to minimize the mean prediction
error. The LSTM network struggles to use specific past in-
formation contained in the time window of interest. Even if
this information were available, the hidden vector used by the
LSTM network would have difficulty storing all the relevant
information contained in the time window of interest. Con-
versely, the Attention mechanism successfully uses the values
from the past of the time series, yielding better estimates.

B. Application to network queuing estimation

This part considers a real application defined as the predic-
tion of the queue level at a bottleneck for a given path of a
network. For this purpose, we propose to use the time series of
RTTs as well as the time of transmission of these packets. The
training is done with a learning step of 0.0005 and the ADAM
optimizer. The data was collected using the Mininet emulator
and a parking lot scenario depicted in Fig. 6 as explained in
[17].

Fig. 6: Parking lot topology used for the tests. Probe packets
are used to build the time series X and are sent with TCP on
the path of interest.

Each link has a capacity of 50 Mbps and a nominal delay
of 10 ms. Each queue enables FQ-CoDel by default with a
size of 500 pkts. Packets are sent from the client to the server.
TCP flows are sent between c1, c2, c3 and c4 to maintain a
constant network load. Several studies have shown that short-
lived flows, mainly generated by Web data transfers caused by
user interactions, dominate the Internet traffic [18]. Thus, the
TCP traffic is generated in such a way that the length of the
TCP flows respects the Pareto principle (80% of short flows
and 20% of long flows) over the long run. The objective of
this first experimentation is to probe the network congestion
level, i.e., the load of the queues at nodes? s1, s2 and s3. The
probe flow follows the blue path outlined in Figure 6 and is a
TCP flow containing real data. Each TCP flow following the
red path has been generated as follows:

• the duration of each TCP connection has a Poisson
distribution with parameter λp = 1;

• the time between two starting flows has an exponential
distribution with parameter λe = 10;

• the server-client pair is randomly selected between the
pairs (c1, c3), (c1, c4) and (c2, c4);

• each TCP flow is generated with the iPerf traffic gener-
ator.

This setup enables realistic and variable network conditions:
• both queues can act as the bottleneck depending on the

network load and flows;
• the number of TCP flows changes to mimic a network

load;
• TCP constantly switches between the slow-start and

congestion avoidance phases. This allows a diverse dis-
tribution of the variables, representing various kinds of
behavior (few flows, congestion, slow-start/cruise-control
phase, unbalance between buffer load...).

Figure 7a shows that a plateau in the training phase is
reached by the LSTM network, while Attention allows the
relationship between the data and the network load to be
learnt quickly, and with greater accuracy. As (1) is a good
approximation of the load in the queues, we can expect the
real approximate to have a strong connection to that equation,
and so may need to use elements from far in the past. These



(a) Training loss. The colored envelopes represents the maxi-
mal and minimal errors for 10 trained models.

(b) Estimation of of the bottleneck load (with emulation) using
LSTM and Attention architectures.

Fig. 7: Results for a concrete task of estimating the current
load at the bottleneck in a network path.

remarks explain the fast learning of the proposed Attention
network. Note that the good performance of the new NN
algorithm is similar to that obtained with a global Attention
network. However, the proposed architecture allows a faster
training. Finally,it is interesting to note that for this example,
it is not useful to increase the number M of network layers
to obtain a better estimation accuracy.

Note that the parameters of the NN architecture imple-
mented for this case were determined by cross validation
leading to: M = 1, J = 3, d = 6 and 3 heads for the Attention
network. The hidden dimension of the LSTM layers was set to
18, and the dimension of the hidden layer in the Feedforward
network was 36. Finally, the learning rate used during training
was 0.0005.

VI. CONCLUSION

This paper studied a new hybrid deep learning architec-
ture using both an Attention network and a recurrent neural
network for time series regression. This architecture offers
an interesting compromise between accuracy and computation
time. The application to queue congestion detection provided
promising results as long as time past events can be useful

to get a correct guess of the current state of the network.
The accuracy of the regression is thus increased by long-
term dependencies. This work might improve congestion con-
trol algorithms that consider RTT, losses, etc., time-series to
compute packet sending time. In future work, it would be
interesting to design new machine learning algorithms having
a constant computational complexity at each time step, in order
to facilitate the deployment of the algorithm.
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