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Abstract—This paper addresses the problem of spec-
tral analysis on radar measurements using high res-
olution methods. These methods have already been
shown to yield better results than Fast Fourier Trans-
form (FFT) based methods for accuracy on detected
frequencies and more particularly for frequency res-
olution. In most applications, these performances are
closely related to the performances of range and veloc-
ity estimation. In the paper, theoretical study shows the
interest of subband decomposition for improving per-
formances of frequency estimation in the case of the
use of High Resolution methods, while it is shown to
be inefficient when using FFT-based algorithms. Some
elements of computational cost are given, in order to
compare fullband and subband processing when using
Fast Least Square Autoregressive (AR) algorithm. Fi-
nally, experimental results are given, showing the inter-
est of subband decomposition within the frame of radar
signal processing either for accuracy and resolution on
frequency estimation.

Index Terms— Subband decomposition, radar, high
resolution, parametric modelling, spectral analysis.

I. I NTRODUCTION

W ITHIN the field of the European project
RadarNet (http://www.radarnet.org/), FMCW

(Frequency Modulated Continuous Wave) radars are
mounted on automotive vehicules in order to carry
out different applications (such as collision warnings
or parking aid). Signals obtained after demodulation
are combinations of sinusoids and their frequencies
carry both information of range speed. Accuracy and
resolution on range and speed estimates are directly
linked to those of frequency estimation and this pa-
per proposes subband decomposition as a way to im-
prove the performances of spectral analysis when us-
ing parametric modelings. Even when not using sub-

band decomposition, the use of parametric modelings
(High Resolution methods) has already been shown
to yield better results than Fast Fourier Transform
(FFT)-based techniques. Section II presents the in-
terest of High Resolution methods in the context of
frequency estimation for radar signals and section III
is devoted to subband decomposition. Simulation re-
sults are presented in section IV and conclusions are
reported in section V.

II. I NTEREST OF PARAMETRIC MODELINGS FOR

FREQUENCY ESTIMATION

Within the RadarNet context, the FMCW radar sig-
nals obtained after demodulation are linear combi-
nations of sinusoids embedded in noise. Therefore,
these signals can be written as :

u(t) =
K∑

m=1

Am cos(2πfmt + φm) + n(t), (1)

where K denotes the number of reflecting targets,
n(t) represents some additive noise (pink noise =1/f
noise in the case of RadarNet sensors) andAm is the
amplitude of a given component. The frequenciesfm

carry both information of range and Doppler shift al-
lowing to derive targets velocity.
Auto-Regressive (AR) modelling is the most com-
monly used in parametric spectral analysis. This
model assumes the discrete signal under studyu(n)
to be a linear combination of its past samples plus an
unexpected parte(n):

u(n) =
p∑

k=1

aku(n− k) + e(n), (2)

wherep is the model order. The choice ofp is of great
importance and several criteria have been introduced



as objective bases for selection of AR model order
[1], [2]. Once the corresponding AR parametersak

are estimated, a spectral estimator of the signalu(n)
can be proposed:

SAR(f) =
σ2

e∣∣1 +
∑p

k=1 ake−i2πkf
∣∣2 . (3)

The estimation of the AR polynomial roots leads to
frequency estimation: estimated frequencies can be
easily derived from the roots of the denominator of
(3). Compared to FFT-based methods, for which fre-
quency estimation is done using peak-detection al-
gorithm, the sensitive choice of a threshold in order
to distinguish signal components from noise ones is
no more necessary. Obviously, the estimation of AR
polynomial roots can be done in real-time using, for
instance, the Bairstow technique [3]. In this method,
the complex roots of a real polynomial are calculated
by finding real quadratic factors. Other algorithms, as
in [4], are based on a continued fraction representa-
tion of the rational transfer function.
From a spectral resolution point of view, the maxi-
mum frequency resolution using FFT-based methods
is of the form:

∆fFFT ' 1
Tchirp

, (4)

Tchirp corresponding to the length of the observed
signal given in (1) and∆fFFT corresponding to the
width of the spectral peak at -3dB level. Dealing with
AR modelling, it can be shown that in the case of a si-
nusoidal signal embedded in a white noise, the spec-
tral resolution can be written [5]:

∆fAR ' 6
πp (p + 1)SNR

, (5)

p being the model order and SNR the Signal to Noise
Ratio of the signal under study. Hence, for not too
low SNRs, there can be an important gain when us-
ing High Resolution methods for well chosen model
orderp.

III. SUBBAND DECOMPOSITION

Although some authors use subband decomposi-
tion to improve classical spectral estimation (based
on the Fourier transform) [6], it is more potent when
it is applied in combination with parametric spectral
estimation methods [7], [8]. In these papers, subband
spectral estimation is shown to yield better perfor-
mances than applying spectral estimation on the orig-
inal fullband process. This has been shown for a bank

of ideal infinitely sharp bandpass filters. However,
some experimental results have highlighted that the
improvements brought by subband spectral estima-
tion still remains in the case of non-ideal filterbanks
such as modified Quadrature-Mirror Filters (QMF’s)
or cosine modulated filterbanks [8]. Within the field
of frequency estimation, benefits of subband decom-
position for order selection are illustrated in [9] in the
case of two separate narrow peaks.
Thus, the performance of traditional or parametric
spectral estimation methods can be improved when
applied to signals filtered by an appropriate filterbank
rather than applied to the corresponding fullband sig-
nal. The list of benefits provided by subband decom-
position is as follows:

• Model order reduction and consequently condi-
tion number decreasing for autocorrelation ma-
trices [10].

• Frequency spacing and local Signal to Noise Ra-
tio (SNR) increase by the decimation ratio (for
signals composed by a sum of sinusoids cor-
rupted by additive noise) [11].

• Whitening of noise in the subbands [11].
• Linear prediction error power reduction for AR

estimation [7].

Obviously, subband spectral estimation has also some
drawbacks:

• Spectral overlapping (aliasing): when using non-
ideal filterbanks, the same harmonic component
may appear in two contiguous subbands at two
different frequencies.

• Relative variance increase for autocorrelation es-
timators (due to decimation).

The first drawback has already been addressed in
two recent papers [12] and [13]. Induced frequency
overlapping may be troublesome, bringing edge ef-
fects at subband borders and, in these papers, non-
realtime methods were proposed that allow for sub-
band spectral estimation without any problem of dis-
continuity or spectral overlapping at subband borders.
In a realtime context, these procedure are not useable
and another solution must be considered.

Aliasing occurs due to decimation of the signals by
the filterbank. Considering thejth branch of the bank
represented in figure 1 , the Fourier Transform of the
decimated signal versus the input of the filter bank
u(n) can be written as:

Xj(ei2πMf ) =
1
M

M−1∑

k=0

Hj(ei2π(f− k
M

))U(ei2π(f− k
M

)).

(6)
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Fig. 1. Uniform filterbank withM subbands.

This expression highlights spectral overlapping given
by the terms fork = 1, ..., M − 1. Obviously, ideal
infinitely sharp bandpass filters bring no aliasing. In
order to cancel aliasing in practical conditions, quasi
non-overlapping filters were used as in figure 2. Actu-
ally, the filters overlap as it can be seen in a semi log-
arithmic scale but the use of such a filterbank makes
it possible to detect peaks with amplitude greater than
−40dB.
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Fig. 2. Filterbank transmittance forM = 20 subbands.

Each subband has a frequency width equal to
0.5/M (normalized frequency). The use of such a
filterbank allows to estimate frequencies lying in the
middle of the subbands with no problem of aliasing
(not overlapping filters). For frequencies lying near
the subband border, a pre-processing step has been
proposed in order to bring back frequencies of interest
in the middle of their corresponding subband. It con-
sists in modulating the input signalu(n) by a quantity
of 0.25/M (half a subband width) and lowpass filter-
ing. The obtained signaly(n) is then passed through

the filterbank and frequency estimation can be per-
formed in the middle of the subband (where there is
no aliasing). More precisely, the modulated signal
u∆(n) is obtained using the following relationship:

u∆(n) = u(n) cos
(

2π
0.25
M

n

)
. (7)

Hence the spectrum of signalu∆(n) expresses as:

Su∆(f) =
1
4

[
Su(f − 0.25

M
) + Su(f +

0.25
M

)
]
.

(8)
After lowpass filtering with well chosen cut-off fre-
quency, it remains signaly(n) with spectrum:

Sy(f) =
1
4
Su(f +

0.25
M

), (9)

for frequencies lying in the relevant subband. The
true normalized frequency is then derived by adding
0.25/M to the frequency detected thanks to signal
y(n).

IV. SIMULATION RESULTS

For HR method, a Fast Least Square Algorithm
[14] is applied on signals at the output of an uni-
form filterbank with M = 20 subbands (the fre-
quency response is given figure 2). The computa-
tional complexity of this algorithm is10(N − p)p
operations. Then using subband decomposition and
an orderp/M in each subband, this complexity is re-
duced toM10( N

M − p
M ) p

M = 10(N − p) p
M . Even

more computational power can be saved if not all
subbands have to be analyzed. Knowing the AR pa-
rameters, the estimation of the AR polynomial roots
leading to frequency estimation is done using the
Bairstow algorithm [3].
Using these processing techniques, figure 3 shows the
FFT and AR spectra versus normalized frequency, re-
constructed from subband spectral estimation, for a
particular radar record of lengthN = 1024 samples.
An orderp = 30 was used with aM = 20 uniform
filterbank. It can be seen on figure 3 that HR methods
used conjointly with an appropriate subband decom-
position leads to a very important resolution improve-
ment with respect to the periodogram.
In order to show the improvement brought by subband
decomposition in terms of accuracy, the analyzed sig-
nal is now assumed to be a pure sinusoid embedded
in white noise with a random phaseφ uniformly dis-
tributed between 0 and2π.

u(n) = A sin (2πf0n + φ) + b(n), (10)
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Fig. 3. Comparison FFT vs AR spectra for resolution.

where A = 1, f0 = 0.1 (normalized frequency)
and b(n) is a white noise with powerσ2

b = 0.05
(SNR = 10 dB). The variance onf1 estimation
is plotted in figure 4 when subband or fullband AR
estimation is performed. This figure shows that the
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Fig. 4. Estimation variance atf1 versus the realization number.

variance of the frequency estimates is smaller with
subband decomposition.

V. CONCLUSIONS

The aim of this paper was to propose subband de-
composition as a way to improve spectral estima-
tion and more particularly frequency estimation in
the context of radar signal processing. When using
High Resolution methods (as AR modelling), which
has already been shown to yield better results than
FFT-based algorithms, it has been pointed out that
subband decomposition allows to reach better perfor-
mances (in terms of accuracy and resolution) on de-

tected frequencies. This improvement obviously re-
sults in a gain in accuracy and resolution for distance
and velocity. Moreover, it has been stated that com-
putational cost could also be reduced.
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