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ABSTRACT
Plug-and-play algorithms have shown impressive results on imaging
inverse problems, such as registration, super-resolution, denoising
and inpainting. These methods rely on a neural network denoiser
to learn an implicit prior of the image to be estimated. This pa-
per investigates a new plug-and-play approach for 3D point cloud
registration, which is crucial for a wide range of applications such
as urban planning, archaeology and autonomous vehicles. The 3D
point cloud registration problem is formulated as an inverse problem
whose unknowns are the image to be estimated and the transforma-
tion between the two point clouds. A plug-and-play approach using
an alternating optimization strategy is proposed for solving the reg-
istration problem. Experiments conducted on synthetic data and Li-
DAR point clouds are presented showing the potential of the method.

Index Terms— Point cloud registration, point cloud denoising,
inverse problems, Plug-and-play, Chamfer distance

1. INTRODUCTION

Over the past decades, the development of technologies such as Li-
DAR (Light Detection and Ranging) [1], photogrammetry [2] [3],
3D reconstruction [4] has improved the three-dimensional represen-
tation of urban environments. When using different 3D sensors,
one important problem is to register the point clouds acquired. The
aim of registration is to find the optimal geometric transformation
(translation, rotation, scaling) that minimizes the difference between
different point clouds. This transformation can either be rigid or
non-rigid, where non-rigid transformations allow the scene to be de-
formed from one point cloud to another. This paper studies a new
rigid point cloud registration method assuming that the transforma-
tion between two point clouds is a combination of a rotation and a
translation, as in many recent works [5] [6] [7] [8]. The Iterative
Closest Point (ICP) algorithm [9] has become a benchmark for 3D
point cloud registration. ICP operates by alternating between two
main steps: finding correspondences between the two point clouds
using nearest neighbors and computing the optimal transformation
to align these points. Since ICP is sensitive to the initialization of
this transformation and can converge to local minima, methods have
been developed to initialize ICP with a coarse transformation [7] [8].
Different efficient ICP variants were also studied in [10] to improve
the performance of ICP.

Point cloud registration methods can be mainly divided into two
classes. The first class of methods consists in minimizing a cost
function without explicitly finding a mapping between the points,
where the cost function is expressed using an appropriate distance
such as the Wasserstein distance [6], a likelihood [11], or a differ-
ence between vector descriptors [5]. The SPOT algorithm [6] lever-
ages optimal transport theory to align point clouds by minimizing the

Wasserstein distance. Gaussian Mixture Models (GMM) were con-
sidered in [11] for point cloud registration, where the Expectation-
Maximization (EM) algorithm was used to maximize the likelihood
(ensuring robust alignment even in the presence of outliers and de-
formations). This method obtains good performances, but its compu-
tational complexity makes it difficult to apply to large point clouds
and also it assumes that the point sets to be registered are not sig-
nificantly distant from each other. PointNetLK [5] is a registration
framework based on deep learning that extends the Lucas Kanade
(LK) algorithm [12] to point clouds. Features are extracted at each
point with PointNet [13] and the source cloud is iteratively trans-
formed. While this approach has demonstrated high precision and
robustness on complete point clouds, it struggles with partial reg-
istration and point clouds with outliers. The second class of reg-
istration methods identifies corresponding points in the two point
clouds and computes the optimal transformation using these corre-
spondences. Detecting and describing keypoints in point clouds is a
critical step in this second category, as the quality of the correspon-
dences significantly impacts the registration accuracy [14] [15] [16].

Plug-and-play methods [17] have recently received much atten-
tion to solve inverse problems by including a regularization term
based on a denoiser. They have been shown to be effective in vari-
ous image restoration problems such as denoising, super-resolution
or inpainting [18]. Recent advancements in deep learning have revo-
lutionized 3D point cloud denoising [19] [20] [21]. Neural networks
can learn complex structures and adapt to different noise types with
sufficient training data. Thus an efficient denoiser based on neural
networks can be considered as a tool to learn data priors.

This paper investigates a new plug-and-play method for 3D point
cloud registration. Inspired by the success of plug-and-play methods
in the field of image restoration [18], we formulate the 3D point
cloud registration problem as an inverse problem and propose a new
plug-and-play algorithm to solve this inverse problem. This paper
is organized as follows: Section 2 introduces the proposed inverse
problem for point cloud registration and the plug-and-play algorithm
for computing its solution. Section 3 presents experimental results
allowing the performance of the proposed method to be evaluated.
Conclusions and future work are reported in Section 4.

2. POINT CLOUD REGISTRATION

The main idea of plug-and-play methods is to solve inverse prob-
lems using an implicit prior defined by a denoiser. This denoiser re-
places more standard regularization terms that are for instance used
for point cloud registration. After summarizing the principles of
plug-and-play approaches, this section describes the proposed point
cloud registration method.



2.1. Plug-and-play methods

There is a vast literature of plug-and-play methods for image restora-
tion [22]. In this paper, we follow the approach of Kadkodhaie [18].
This section recalls the principle of this method to solve inverse
problems and adapt it to 3D point cloud registration. Consider a
vectorized image x ∈ RN and its transformed and noisy version
y = Ax + ϵ with ϵ ∼ N (0, σ2

yI). The unknown image x can be
estimated by its Maximum a Posteriori (MAP) estimator:

x̂MAP = argmax
x

pX|Y (x|y).

This problem can be rewritten as the following inverse problem:

x̂MAP = argmin
x

1

2
∥y −Ax∥2 − σ2

y log pX(x), (1)

which can be solved by a gradient descent method:

xk+1 = xk − αA⊤(Axk − y) + ασ2
y∇x log pX(xk), (2)

where the initial value x0 and the stepsize α have to be adjusted
by the user. In order to solve (2), the gradient of the prior of x
has to be computed. However, choosing the prior can be difficult in
some applications and a badly specified prior can lead to inaccurate
results. An interesting idea is to approximate the gradient of the prior
using Tweedie’s identity [23]. Tweedie’s identity for a noisy image
z = x+ ϵ with ϵ ∼ N (0, σ2I) can be written as [23]:

∇z log pZ(z) =
Dσ(z)− z

σ2
,

where Dσ is the minimum mean square estimator of x for Gaussian
noise with a standard deviation σ. Since pZ = pX ∗ pϵ, if the level
of noise is small σ ≈ 0, the following approximation pZ ≈ pX is
obtained, leading to:

∇x log pX(x) ≈ Dσ(x)− x

σ2
. (3)

As a consequence, the gradient descent (2) can be replaced by:

xk+1 = xk − αA⊤(Axk − y) + ασ2
y

(
Dσ(xk)− xk

σ2

)
, (4)

which is the basis of plug-and-play approaches. Note that σ and
σy are two different values, since σ is the standard deviation of the
least-squares denoiser Dσ and σy is the standard deviation of the
measurements. Intuitively, (4) indicates that the regularization term
has a large value when the denoised version of xk is far from xk,
i.e., the noisier xk, the more important the regularization. The prac-
tical implementation of the gradient descent (4) requires to define
the initial value x0, the stepsize α and the hyperparameter σ2

y/σ
2.

2.2. Point cloud registration

The 3D point cloud registration problem can be formulated as an in-
verse problem similar to (1), allowing the plug-and-play framework
to be applied. Consider two point clouds:

y1 = {y11, . . . ,y1N},y1i ∈ R4,

y2 = {y21, . . . ,y2M},y2i ∈ R4,

where N and M are the numbers of points of the two point clouds.
Using the homogeneous coordinates, each point p ∈ R3 can be

rewritten as
[
p
1

]
∈ R4 and the transformation matrix T between

the point clouds y1 and y2 can be defined as:

T =

[
R t
0 1

]
=

R1 R2 R3 t1
R4 R5 R6 t2
R7 R8 R9 t3
0 0 0 1

 .

The point cloud registration problem can then be formulated as:{
y1i = Txm(i) + ϵ1,

y2i = xi + ϵ2,
(5)

where y1 and y2 are the two point clouds to be registered, m(i)
(∀i ∈ {1, . . . ,M}) returns a number between 1 and N that rep-
resents the index of the point in y1 associated with y2i, ϵ1 ∼
N (0, σ2

y1I) and ϵ2 ∼ N (0, σ2
y2I). This formulation allows a joint

denoising and registration of the two point clouds, by estimating the
unknown transformation matrix T jointly with the point cloud x:

x = {x1, . . . ,xM},xi ∈ R4.

The inverse problem (5) allows us to leverage the plug-and-play
framework to jointly denoise and register the two point clouds,
which is an important contribution of this work. The data fidelity
term 1

2
∥y −Ax∥2 appearing in (1) is due to the additive Gaussian

noise ϵ and can be viewed as a distance between y and Ax. In order
to take into account the differences between 3D point clouds and
images, this similarity measure needs to be modified to be better
adapted to 3D point clouds. Indeed, it can only be used to compare
vectors having the same dimensions, which requires to know the
association between the vectors of the two point clouds. When these
associations are unknown, the Chamfer distance [24] can be used,
leading to the following problem:

argmin
x,T

f(x,T )− λ2 log pX(x), (6)

with f(x,T ) = d(y1,Tx) + λ1d(y2,x),
1

The Chamfer distance d is defined as:

d(p, q) =

N∑
i=1

min
k=1,...,M

∥pi − qk∥
2

N
+

M∑
k=1

min
i=1,...,N

∥pi − qk∥
2

M
,

(7)

where p = {pi}i=1,...,N and q = {qi}i=1,...,M are two point
clouds. The Chamfer distance does not need any association be-
tween the two point clouds, guarantees the permutation invariance
and can be used for two point clouds with different sizes.

2.3. Optimization algorithms

This section presents the optimization algorithm that we propose
to solve (6). The proposed strategy follows an alternating update
scheme, where the point cloud x and the transformation T are iter-
atively updated in separate steps. At each iteration, one variable is
optimized while the other remains fixed. This strategy is detailed in
Algorithm 1.

1By definition, Tx = {Tx1, . . . ,TxM}.



Algorithm 1 Plug-and-play algorithm
Input: y1, y2, niter, Dσ , αx, λ1, λ2

Output: x, T
y1,y2 ← unit-sphere normalisation(y1,y2)
Initialization
x1 ← y2

T ← coarse registration(y1,y2)
for k ∈ {1, . . . , niter} do

xk+1 ← xk − αx
∂f(xk,Tk)

∂xk
+ αxλ2(Dσ(xk)− xk)

T k+1 ← T k −
(
J⊤

r (T k)Jr(T k)
)−1

J⊤
r (T k)r(T k)

k ← k + 1
end for

The optimization of x in (6) for a fixed transformation T can be
solved using gradient descent for the first term and inspired by
Tweedie’s identity as in (4) for the second term:

xk+1 = xk − αx
∂f(xk,T k)

∂xk
+ αxλ2[p(Dσ(xk))− xk],

where αx is the stepsize for the update of xk
2 and that p permutes

the order of points in the denoised cloud Dσ(xk), finding the nearest
neighbors to xk. This permutation is needed because the denoiser
does not necessarily return the point cloud in the same order as the
input. The plug-and-play method can be used with any point cloud
denoiser Dσ . This paper concentrates on Score-Denoise [20], a 3D
point cloud denoiser that uses a neural network to remove noise. To
enforce the stability of the algorithm, the point cloud is randomly
rotated before denoising, and the inverse rotation is applied to the
denoised output [25].

In order to estimate T for a fixed xk, we propose to use the
Gauss-Newton method. The Gauss-Newton algorithm uses a gra-
dient descent where the optimal stepsize is chosen at each itera-
tion [26]. The distance d(y1,Tx) in (6) can be reformulated as∑N+M

i=1 r2
i (T ) where:

ri(T ) =

{
1√
N
(y1i − Txki) if i ∈ {1, . . . , N},

1√
M
(y1ℓi

− Txi−N ) if i ∈ {N + 1, . . . , N +M},

where ki = argmin
j
∥y1i − Txj∥2 and ℓi = argmin

j
∥y1j − Txi∥2.

Note that
∑N

i=1 r
2
i (T ) is equivalent to the first term in the Chamfer

distance in (7) and
∑N+M

i=N+1 r
2
i (T ) to the second term. Since the

only term in (6) that depends on T is d(y1,Tx), the estimation of T
for a fixed xk can be determined with the Gauss-Newton algorithm
as follows:

T k+1 = T k −
(
J⊤

r (T k)Jr(T k)
)−1

J⊤
r (T k)r(T k),

where r(T ) =
[
r⊤
1 (T ) . . . r⊤

N+M (T )
]⊤ ∈ R4(N+M), Jr is

the Jacobian matrix of r and T is initialized with the identity matrix.

2.4. Hyperparameter tuning

The proposed method requires to adjust the following hyperparam-
eters: λ1 that balances the weight between the two point clouds,

2Note that the minimum function and thus the Chamfer distance are not
differentiable everywhere. However, the gradients can be replaced by subgra-
dients (that can be computed analytically or with pytorch.autograd handling
non-differentiability automatically)

λ2 for the regularization term, αx the stepsize of the gradient de-
scent for x and niter the number of iterations. The number of it-
erations is fixed to simplify hyperparameter tuning. Optuna [27]
is an open-source framework for hyperparameter optimization that
uses a define-by-run approach, allowing the search space to be dy-
namically constructed during execution rather than predefined to a
fixed value. It is based on the tree-structured Parzen estimator, a
Bayesian optimization algorithm that identifies the optimal hyperpa-
rameter spaces. However, this approach has shown some limitations
since the hyperparameters are correlated with the level of noise and
we still need to find a maximum and minimum value of each hy-
perparameter. The problem was simplified by estimating αx and
λ2 while fixing λ1 = 1 with a transformation T equal to the iden-
tity. The value of λ2 obviously depends on the value of αx. Thus,
the first test was done without the data fidelity term, because in this
case, the only remaining hyperparameter is αxλ2. The best value
for αxλ2 was found by cross validation leading to αxλ2 = 0.1 for
niter = 100. Using this information, all the hyperparameters were
searched in the following intervals (for niter = 100): 0 < αx ≤ 500,
0 < λ1 ≤ 100 and λ2 = 0.1/αx. The optimal values for the hyper-
parameters of the experiments in the following section, determined
manually to provide the best results, are summarized in Table 1.

3. EXPERIMENTS

The proposed point cloud registration method is evaluated using Li-
DAR data available on the website of the National Institute of Geo-
graphic and Forest Information (IGN3). A rigid transformation, com-
posed of a rotation and a translation, was applied to a reference
LiDAR dataset associated with the stadium of Marseille in France,
which was down-sampled to provide the unknown point cloud x of
size 30000 points. Additive white Gaussian noises were added to the
reference and transformed point clouds to provide the sets y1 and
y2 (displayed in Fig. 2 (a)). Before running the algorithm, the point
clouds y1 and y2 were normalized using a unit sphere normaliza-
tion, which is commonly considered when using denoisers based on
neural networks [20]. Note that for all the experiments, the two point
clouds y1 and y2 have the same level of noise, i.e., σy1 = σy2 ≜ σy .

Table 1. Hyperparameter values used in the experiments.

Hyperparameters niter αx λ1 λ2

Denoising with σy = 0.02 50 100 1 0.0008

Registration with σy = 0.02 100 0.1 46 0.3

Registration with σy = 0.05 200 0.1 46 0.1

3.1. Denoising

Even though the aim of the proposed method is to solve 3D registra-
tion problems, we can also use it to solve other inverse problems.
It was first used for point cloud denoising to evaluate its perfor-
mance for a simpler problem. The transformation matrix was set
to the identity matrix and its update was frozen for this example.
With this setup, the plug-and-play algorithm reduces to a denoiser
with two noisy versions of the same point cloud. For this experi-
ment, we added two Gaussian noises with the same standard devi-
ation σy = 0.02. The Chamfer distance was used to evaluate the
performance of denoising. This distance was computed between the

3https://geoservices.ign.fr/lidarhd



Table 2. PSNR comparison for the denoised point clouds

Initial data Score-denoising Plug-and-play

33.01 dB 38.23 dB 39.35 dB

ground-truth and one of the noisy point clouds in order to have a ref-
erence and then it was computed between the ground-truth and the
estimated point cloud. After unit-sphere normalization, the value of
Chamfer distance was on the order of 10−4 for the initial noisy data.
The PSNR defined as −10 log(err) where err represents the Cham-
fer distance was then used for performance evaluation. The results
obtained with a single application of the denoiser network [20] and
the proposed denoiser were then compared. As shown in Table 2, a
gain of 1dB is obtained with the plug-and-play approach.

3.2. Registration

The registration method was also evaluated after applying a known
transformation matrix to the LiDAR point cloud. In order to do so,
a rotation was created with Euler angles, with angles for the x-axis,
y-axis and z-axis equal to 40, 10 and 20, respectively. As for the
translation vector, it was fixed to t =

[
3 2 7

]⊤ without loss of
generality. Gaussian noises with standard deviation σy = 0.02 were
added to both point clouds. In this experiment with niter = 100, we
found that promising results were obtained with αx = 0.1, λ1 = 46
and λ2 = 0.3. The denoised point cloud is displayed in blue in
Fig. 2 (d). It can be compared to the ground-truth shown in green in
Fig. 2 (e), and the noisy point clouds registered with the plug-and-
play method (Fig. 2 (b)) and ICP (Fig. 2 (c)) with the same number of
iterations. As shown in Fig. 2, the estimated point cloud seems to be
well denoised and similar to the ground-truth. The PSNR between
the noisy point cloud and the ground-truth is 33.01 dB and goes up
to 39.87 dB after 100 iterations. Note that the point clouds are better
registered with the plug-and-play method than with ICP, as shown in
Table 3 with the PSNR values between y1 and y2 before and after
registration. Note that even though ICP seems to work better than
our method without noise, it is important to mention that 132 dB
represents a distance of 5 × 10−14 which is very low. This shows
that the proposed approach can register even with noisy data and
denoising iteratively while computing the transformation matrix can
improve the performance of the registration.
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(b) σy = 0.05.

Fig. 1. Evolutions of the NMSE between the ground-truth and the
estimated transformation matrix.

To measure the difference between the estimated transforma-
tion matrix and the ground-truth, the normalized mean square er-
ror (NMSE) is computed between these two matrices. The evo-
lution of the NMSE of the two methods through the iterations is
shown in Fig. 1 for two noise levels (σy = 0.02 and σy = 0.05).
The plug-and-play approach provides estimates with smaller NM-
SEs than with ICP.

(a) Initial point clouds after
normalization (y1 in red and

y2 in blue).

(b) Registered point clouds
with plug-and-play (y1 with
the inverse transformation

applied in red and y2 in blue).

(c) Registered point clouds
with ICP (y1 with the inverse
transformation applied in red

and y2 in blue).

(d) Estimated point cloud (x in
blue).

(e) Ground-truth (xgt in
green).

Fig. 2. Plots of Marseille’s stadium.

Table 3. PSNR comparison between the initial point clouds y1 and
y2 when a transformation T has been applied to the LiDAR data.

Method Rot. + trans. Rot. + trans. + noise

Initial data 11.09 dB 12.89 dB

Plug-and-play 132.00 dB 35.36 dB

ICP 247.52 dB 34.90 dB

4. CONCLUSION

This paper proposed a new plug-and-play algorithm for 3D point
cloud registration. Experiments show competitive results when com-
pared to the standard ICP algorithm for noisy point clouds. An in-
teresting property of the plug-and-play method is that it can be used
for joint registration and denoising of 3D point clouds. Future work
includes extending the method to handle outliers and partially over-
lapping point clouds. Application of this approach to point clouds
resulting from Pléaides-NEO, Pléiades and CO3D images or to point
clouds with different resolutions is also an interesting prospect.
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