
Non-coherent CPM Detection under Gaussian
Channel affected with Doppler Shift

Anouar Jerbi∗ †, Frédéric Guilloud∗, senior member IEEE, Karine Amis∗, member IEEE,
Tarik Benaddi‡

∗ IMT Atlantique, Lab-STICC, UMR CNRS 6285, 29238 Brest, France,
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Abstract—We consider the transmission of a continuous phase
modulated (CPM) signal through a Gaussian channel affected by
Doppler shifts. We propose a receiver robust to the Doppler shifts
derived from a non-coherent detection criterion. We compare
its performance to another non-coherent receiver based on a
linear approximation of the CPM signal (Laurent decomposition)
to which we add a Doppler compensation. Simulation results
show that the first algorithm is robust to low-moderate Doppler
shifts, while the second is robust to any one. We finally compare
these two algorithms to delay-optimized differential detectors
which do not require any Doppler shift estimation. We also
provide complexity estimations to guide the possible complexity-
performance trade-offs.

Index Terms—IoT, CPM, non-coherent detection, Doppler shift

I. INTRODUCTION

Improving the connection of Objects to the Internet (IoT)
is possible by relaying the communication through Low Earth
Orbits (LEO) satellites [1], especially in areas where setting
up gateways is costly. There are two options: use an existing
wireless communication standard or design an ad-hoc one [2].
In this paper we are interested in the latter one for the uplink
and suggest using a Continuous Phase Modulation (CPM). Its
constant envelop enables an optimized energy efficiency of the
amplifier which is of utmost importance both for satellites and
objects.

This communication segment is affected by Doppler shifts
due to the high orbiting speed of LEO satellites. So the
detection algorithms should be robust to Doppler shifts. We
focus in this article on non-coherent CPM detection which can
be grouped into two families depending on the criterion they
are based on.
The first one pre-processes the received signal to neutralize
the phase contribution making possible the application of the
maximum-likelihood criterion for coherent detection on the
resulting signal. Numerous papers based on differential pre-
processed signals can be found in the state-of-the-art. The
common feature is the use of the product of the received
baseband signal and a conjugate time-delayed version of it,
yielding a signal that is referred to as differential signal.
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Different algorithms are proposed and applied either on time-
discrete differential signals (see e.g. [3]) or on time-continuous
differential signals (see e.g. [4]–[8]). The main advantage of
differential algorithms is their robustness to Doppler shifts,
but the signal-to-noise ratio (SNR) loss can be important
depending on the algorithm.
The second non-coherent detection class is derived from the
generalized maximum-likelihood criterion [9], [10] and only
requires the knowledge of the phase distribution. Algorithms
proposed either in [11] or in [12] with an uniformly-distributed
phase assumption belong to it. In this article, we propose
two algorithms both based on this non-coherent criterion and
robust to Doppler shifts. The contributions are (i) a novel CPM
non-coherent detection based on the direct application of the
generalized maximum likelihood principle (ii) the insertion of
blind Doppler estimation principle of [13] in the proposed
algorithm as well as in the CPM non-coherent detection of
[12] (iii) the comparison of the two resulting receivers with
the delay-optimized differential detector of [8] in presence of
Doppler shifts. The remainder of the article is organized as
follows: model and notations are introduced in Section II. In
Section III, we derive the non-coherent detection criterion and
the two proposed detection algorithms. Simulation results are
provided in Section IV and a conclusion is given in Section V.

II. SYSTEM MODEL AND NOTATIONS

We consider a sequence of N independent and identically
distributed (i.i.d.) information symbols a = {ai}0≤i≤N−1 to
be transmitted. Given M an even positive integer, ai takes on
values in the M -ary alphabet M = {±1,±3, .. ± (M − 1)}
with equal probabilities. The complex envelope of the
CPM-modulated signal is given by:

s(t,a) =

√
2Es

Ts
ejθ(t,a), (1)

where Es is the average symbol energy, Ts is the symbol
period and θ(t,a) is the signal phase which depends on the
information symbols. It is defined by:

θ(t,a) = 2πh

N−1∑
i=0

aiq(t− iTs), (2)



where h is the modulation index and q(t) is the phase shaping
pulse whose expression is q(t) =

∫ t

−∞ g(u)du with g(t) the
frequency waveform. In practice, g(t) has a finite duration
LTs and it must satisfy the following conditions:{

g(t) = g(LTs − t), 0 ≤ t < LTs∫ t

−∞ g(τ)dτ = q(LTs) =
1
2 , ∀t ≥ LTs

(3)

We consider a Gaussian transmission channel which introduces
a phase rotation of the modulated signal equal to 2πfDt+ ϕ
(Doppler shift). The phase ϕ is modeled as a random variable
with a uniform distribution in [0, 2π[ and the frequency shift
fD is constant. The baseband equivalent received signal,
denoted r(t), is given by:

r(t) = s(t,a)ej(2πfDt+ϕ) + η(t), (4)

where η(t) is the realization of a zero-mean wide-sense
stationary complex circularly symmetric Gaussian noise, inde-
pendent of the signal, and with double-sided Power Spectrum
Density 2N0.

III. DETECTION STRATEGY

The detection strategies proposed in this article are based
on the generalized maximum-likelihood [9] that we shall recall
below. Let T0 be the observation interval of the signal r(t) and
let A designate the set of possible symbol sequences, F the
variation interval of fD and I0 the modified first-order Bessel
function.
The generalized maximum-likelihood method [9] is used for
a blind Doppler shift estimation in conjunction with symbol
detection and consists in maximizing the following cost func-
tion

Γ(ã, f̃D) = log I0

(
1

N0

∣∣∣∣∫
T0

r(t,a)s∗(t, ã)e−j2πf̃Dtdt

∣∣∣∣)
− 1

2N0

∫
T0

|s(t, ã)|2dt (5)

over A×F . This is equivalent to:

max
ã∈A

Γ(ã, f̂D(ã)) (6)

with f̂D(ã) = argmax
f̃D∈F

∣∣∣∣∫
T0

r(t)s∗(t, ã)e−j2πf̃Dtdt

∣∣∣∣.
In the following, we apply criterion (6) according to two

alternative algorithms. The first (denoted A), based on a linear
decomposition of the CPM, is a combination of the methods
described in [12] (denoted NSD algorithm) and [13]. The
second (called B) is a sub-optimal algorithm for deriving the
criterion directly from (1).

A. Receiver A based on the linear decomposition of CPM

This receiver combines the non-coherent CPM detection
algorithm [12] with the Doppler estimation and joint detection
algorithm applied to a linear modulation [13]. We consider
a linear decomposition of the CPM modulation [14], [15]
to get an approximation of the modulated signal: s(t,a) ≃∑K−1

k=0

∑N−1
i=0 αk,ihk(t − iTs) where K is the number of

principal components, hk(t) the impulse response of the k-
th linear filter and αk,i a symbol defined from a (see [15] for
exact expressions).
The receiver consists of a cascade of a filter bank where filters
are adapted to hk(t), followed by a sampler at period Te, and
a whitening filter.
Te should be small enough to assume that the samples are
a sufficient statistic [16]. However, for a moderate frequency
offset (fDTs ≪ 1), Te = Ts is small enough.
The sampler outputs are given by:

xk,n = r(t,a)⊗ hk(−t)|t=nTs
≃ sk,ne

j(2πfDnTs+ϕ) + ηk,n

where

sk,n =

K−1∑
m=0

∑
i

αm,ipm,k((n− i)Ts), (7)

with pm,k(t) = hm(t) ⊗ hk(−t) and ηk,n =
η(t) ⊗ hk(−t)|t=nTs . We introduce the notation
xn = (x0,n, x1,n, ..., xK−1,n)

T and define sn, αn and
ηn likewise. We will also use the discrete impulse response
matrices Pn = [pi,j(nT )] for i, j = 0, 1, ...,K − 1. With
these notations, the observation vector reads:

xn ≃ ej(2πfDnT+ϕ)
Lw∑

l=−Lw

PT
l αn−l + ηn, (8)

where Lw is a parameter that depends on L.
As the noise samples ηk,n are correlated, a multidimensional
whitening filter (WMF) is implemented [12]. It is specified
by the sequence of matrices {Wl}0≤l≤Lw . The WMF output
observation vector, denoted by zn, is given by:

zn =

Lw∑
l=0

Wlxn−l

= ej(2πfDnTs+ϕ)
Lw∑
l=0

Wlsn−le
−j2πlfDTs +wn,

(9)

where wn =

Lw∑
l=0

Wlηn−l.

Going back to the detection criterion, we apply two approxi-
mations. The first one is to consider log I0(x) ≃ x. The second
one depends on the context: we assumes that fDTs is small
and that e−j2πlfDTs ≃ 1 in the expression (9) of zn. Given a
sequence ã of symbols in A, we define s̃n with (7) and finally

ỹn =

Lw∑
l=0

Wls̃n−l.

The likelihood function calculated in the joint symbol detec-
tion and Doppler estimation algorithm is:

ΓN (ã, f̂D(ã)) =

∣∣∣∣∣
K−1∑
k=0

N−1∑
n=0

zk,nỹ
∗
k,ne

−j2πnf̂D(ã)Ts

∣∣∣∣∣
−1

2

K−1∑
k=0

N−1∑
n=0

|ỹk,n|2. (10)

Maximizing (10) involves prohibitive complexity in practice.
We adapt the procedure used in [13] to deal with linear



modulations. A Viterbi algorithm is applied associated with
a windowing of size Nv for the detection of symbols, a
windowing of size ND ≥ Nv for the blind estimation of
the Doppler shift and an approximation of ΓN (ã, f̂D(ã)) by
∆N (ã) which is calculated in an iterative way as follows:

∆n(ãn) = ∆n−1(ãn−1)) + λn(ãn) (11)

with the branch metric being

λn(ãn) =

∣∣∣∣∣
K−1∑
k=0

Nv−1∑
i=0

zk,n−iỹ
∗
k,n−ie

−j2π(n−i)f̂D(ãn
n−ND

))Ts

∣∣∣∣∣
−

∣∣∣∣∣
K−1∑
k=0

Nv−1∑
i=1

zk,n−iỹ
∗
k,n−ie

−j2π(n−i)f̂D(ãn
n−ND

))Ts

∣∣∣∣∣
−

∣∣∣∣∣
K−1∑
k=0

ỹk,n

∣∣∣∣∣
2

.

The state at time n− 1 is defined by the vector(
ỹT
n−1 . . . ỹT

n−Nv+1

)T
, which implies a total of S =

MNv+Lw−1 states. As in [13], a per-survivor processing (PSP)
approach enables to estimate f̂D(ãnn−ND

) based on ãn and the
partial sequence ãn−1

n−ND
= (ãn−1 . . . ãn−ND+1) associated

to the surviving path at state level at time n − 1. The data-
aided (DA) estimation algorithms proposed for linear phase
modulations in [17] are easily applied to the CPM case.

B. Receiver B based on the exact expression of CPM

Considering the constant envelope of the CPM waveform,
the likelihood function (6) becomes:

Λ(ã) = Γ(ã, f̂D(ã)) =

∣∣∣∣∫
T0

r(t,a)s∗(t, ã)e−j2πf̂D(ã)tdt

∣∣∣∣
Let tk = kTs and let vn(t, ã) = r(t,a)e−j2πf̂D(ãn

n−ND
)t. To

reduce the complexity, we apply the iterative approximation of
Λ(ã) under the same principles of windowing and of definition
of the cumulative and branch metrics:

λn(ã) = Γn(ã)−

∣∣∣∣∣
∫ (n−1)Ts

(n−Nv)Ts

vn(t,a)s
∗(t, ã)dt

∣∣∣∣∣ (12)

where Γn(ã) =

∣∣∣∣∣
∫ tn

tn−Nv

vn(t, ã)s
∗(t, ã)dt

∣∣∣∣∣.
With the same reasoning, the search for the sequence

maximizing the likelihood function (5) is done using a Viterbi
algorithm executed on a trellis whose states at time n corre-
spond to all the possible realizations of s(t, ãnn−Nv+1). The
estimation f̂D(ãnn−ND

) is done as for receiver A using the
PSP approach on a window of length ND.
The development of the first term of the equation (12) leads
to:

Γn(ã) =

√
2Es

Ts

∣∣∣∣∣
Nv−1∑
m=0

∫ tn−m

tn−m−1

vn(t, ã)e
−jθ(t,ã)dt

∣∣∣∣∣ . (13)

The term depending on θ(t, ã) in the interval [tn−m−1, tn−m]
can be simplified:

θ(t, ã) = 2πh

n−m−1∑
u=0

ãuq(t−uTs) = Θ(t, ã)+πh

n−m−L−1∑
u=0

ãu

(14)
with Θ(t, ã) = 2πh

∑n−m−1
u=n−m−L ãuq(t− uTs).

By replacing (14) in (13), and after some straightforward
calculations, we come up with:

Γn(ã) =

√
2Es

Ts

∣∣∣∣∣
Nv−1∑
m=0

e−jπh
∑n−m−L−1

u=n−Nv−L+2 ãuIm(ã)

∣∣∣∣∣
with Im(ã) =

∫ tn−m

tn−m−1
vn(t, ã)e

−jΘ(t,ã)dt.
We deduce that the computation of λn(ã) depends only on
[ãn−1, .., ãn−Nv−L+2]. The Viterbi algorithm therefore applies
to a trellis with S = MNv+L−2 states (number of realizations
of [ãn−1, .., ãn−Nv−L+2]).

IV. PERFORMANCES

In this Section, an evaluation in terms of simulated error
rates and complexity estimation is proposed for the two algo-
rithms A and B. These performances will also be compared
to differential detection based decoders [8] which are robust
to any constant Doppler shift. Differential detection is built
on the generation of a differential signal which is obtained by
multiplying the received signal with its delayed version. The
considered delay is given by the number K of symbols and is
usually K = 1. However, performances can be improved by
optimizing K as proposed in [8]. In the following, notation
Kopt will refer to the optimized value of K according to [8].

A. Bit Error Rates Comparison

In this section, bit error rates (BER) are estimated through
Monte-Carlo simulations as a function of the ratio Eb/N0

where Eb denotes the average information bit energy. To this
aim, we take into account the overhead used for initialization
and estimation in the calculation of Eb/N0.
We illustrate the error rate performance by first considering the
GMSK waveform in Figure 1, with BT = 0.25 and L = 2
to transmit short frames of N = 120 symbols. The symbol
duration is fixed to Ts = 10−4s. The blind estimation of
fD in detectors A and B is obtained by an algorithm from
Rife and Boorstyn [17]. For detector A, we proceed as in
[18] by keeping only the first of the principal components
resulting from the linearization of the GMSK leading to a
one-dimensional whitening filter (K = 1) with Lw = 2. In
the simulations, the choice of Nv = 5 and ND = 8 proved to
be the best trade-off between complexity and performance for
both detectors.

For a small Doppler shift fDTs = 0.05, detector A and
B perform nearly the same with a loss of 1 dB compared to
the NSD performance which correspond to the performance
without any Doppler shift. When the Doppler shift is increased
to fDTs = 0.1, the performance of detector A is degraded
and a gap of 3 dB compared to the NSD is observed at
a BER of 10−4. Indeed, when the Doppler shift increases,



the assumption of sufficient statistics does not hold anymore.
This is not the case with detector B whose performance is
only limited by the capabilities of the Doppler shift estimation
algorithm. In fact, with a perfect Doppler shift estimation, the
detector B and NSD curves are superimposed.

Differential detectors are insensitive to the Doppler shift
and exhibit the same error rate whatever the value of fD. We
observe that fDTs = 10−1 is the threshold beyond which the
BER curve of the differential detection with optimized delay
crosses the BER curve of Detector B at a BER of 2.10−5.
The error rate comparison between Detector B and differential
detections for a 3REC CPM with h = 0.75 is illustrated in
Figure 2 using the same Doppler shift estimation as for the
previous GMSK case (same frequency resolution size). We
observe that the gap to NSD is however higher (about 3 dB
for a BER of 10−3). We also observe that the performance
of differential detection with optimized delay peforms better
below a BER of 10−2. It is of course possible to improve
the gap between Detector B and NSD by improving the
Doppler shift estimation, yielding a higher complexity. In the
following, a complexity estimation is proposed to unveil the
best performance-complexity trade-offs.

B. Complexity Estimation

In this Section, we propose to estimate the complexity of
detectors in terms of the number of trellis states (S), the
number of multiplications for metric calculation (QM ) per
trellis section and the number of multiplications for Doppler
Shift estimation per trellis section (QD). The complexity of
the three detectors is summarized in the Table I.

Detector A based on Laurent’s decomposition enables sam-
pling at symbol time if the Doppler frequency shift re-
mains moderate. The calculation of branch metrics amounts
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Nv = 5, ND = 8
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TABLE I
COMPARISON OF THE DETECTORS IN TERMS OF COMPLEXITY (NUMBER
OF STATES S , NUMBER OF MULTIPLICATIONS PER TRELLIS SECTION FOR

DETECTION QM AND NUMBER OF MULTIPLICATIONS PER TRELLIS
SECTION FOR DOPPLER ESTIMATION QD )

Label Detector A Detector B Differential
detector [8]

S MNv+Lw−1 MNv+L−2 MKopt+L−1

QM
(Lw + 1)K2 +
NvSM

ρNvSM ρSM

QD ρS(ND +M − 1) +MSNFFT
2

log2(NFFT) none

to NvM
Nv+Lw multiplications per trellis section, while the

matched filtering involves (Lw + 1)K2 per trellis section.
In the case of detector B, the multiplications come solely

from the branch metric calculations. The numerical calculation
of the integral requires a discretization of the signal. Assuming
it is done with ρ samples per symbol time, the total number of
multiplications per trellis section is given by ρNvM

Nv+L−1.
Both detectors A and B use the Rife and Boorstyn [17]

algorithm to blindly estimate the Doppler shifts. Its implemen-
tation uses Fast Fourier Transform (FFT) on a vector of ρND

samples (ρ = 1 for detector A) obtained by multiplying the
received signal with the complex conjugate of the signal re-
constructed from the last ND symbols using the PSP approach
(amounting to Sρ(ND − 1) + MSρ multiplications). Zero
padding this vector up to NFFT samples is used to increase
the FFT resolution and thus the blind Doppler shift estimation
resolution which affects the overall performance (amounting
to MSNFFT

2 log2(NFFT) multiplications).
The optimized-delay differential detector is also based on a

trellis and the calculation of its metrics requires oversampling
the signal as well, that is ρ samples per symbol time. The



TABLE II
NUMERICAL VALUES OF S , Q AND E FOR GMSK

Label Detector A
(NFFT=32)

Detector B
(NFFT=256)

Differential
detector [6]
(K = 1)

Differential
detector [8]
(Kopt = 3)

S 64 32 4 16
QM 643 2560 64 256
QD 10816 67840 NA NA

number of multiplications is then given by ρMKopt+L and no
Doppler estimation is needed for the differential detector.

Table II summarizes the numerical values of S, QM and
QD used in our simulations in the case of GMSK with ρ = 8.
NFFT = 32 for detector A and NFFT = 32 × ρ = 256 for
detector B so that the frequency resolution is the same.

Considering both complexity and error rates, we can state
that differential detection with optimized delay from [8] is to
be chosen in the high SNR regime or if low complexity is
mandatory. If the constraint on complexity is a bit relaxed
and lower SNR is considered, then detector A can be chosen
if the Doppler shift is small. For larger Doppler shifts and low
SNR, improved performance can be obtained close to the non-
Doppler case with Detector B while increasing the complexity
(both on the metric part and on the Doppler estimation part).
The thresholds involved in this comparison do depend on the
considered CPM parameters.

V. CONCLUSION

In this article, we proposed two CPM detectors robust to
phase uncertainty and Doppler shift. The first one (A) is
adapted from a non-coherent CPM detection based on a linear
decomposition that we complemented by a blind Doppler
shift estimation part. The second one (B) is directly derived
from the non-coherent detection criterion applied to the CPM
waveform. The simulation results confirm the robustness of
these detectors to small Doppler shifts, and to higher Doppler
shifts for Detector B for which the only limitation is the
performance of the blind Doppler shift estimator. Detector A
and B are also compared to differential detectors. When an
optimized delay is used, differential detection performs better
in the high SNR / low error rate regime, while keeping a
low complexity: differential detection does not include any
Doppler shift estimation. As far as a lower SNR regime is
concerned, provided that complexity is not an issue, Detector
A for low Doppler shifts and Detector B otherwise offer better
performances.
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