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Non-analytic at the origin, behavioral
models for active or passive non-linearity

jacques sombrin

Most non-linear behavioral models of amplifiers are based on functions that are analytic at the origin and thus can be
replaced by their Taylor series development around this point, e.g. polynomials of the input signal. Chebyshev Transforms
can be used to compute the harmonic response of the model to a sine input signal. These responses are polynomials of the
input signal amplitude. A second application of the Chebyshev transform to the first harmonic response or radio frequency
(RF) characteristic will lend the carriers and intermodulation (IM) products for a two-carrier input signal, again polynomials.
An important class of non-analytic non-linear behavior encountered in practice, such as hard limiters and detectors are either
empirically treated or only approximated by an analytic function such as the hyperbolic tangent. This work proposes to gen-
eralize the polynomial non-linearity theory by adding non-analytic at the origin functions that, like polynomials, are invar-
iant elements of the Chebyshev Transform. Devices modeled with these non-analytic at the origin functions exhibit
intermodulation behavior significantly different from that of classical polynomial models, giving theoretical foundation to
a number of important unexplained practical measurement observations.
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I . I N T R O D U C T I O N

Polynomial models are often used for non-linear memoryless
behavioral models of amplifiers [1, 2]. When starting with an
input-to-output transfer characteristic (e.g. the instantaneous
voltage transfer characteristic of an amplifier), the Chebyshev
Transform can be used to compute harmonic components of
the output. The fundamental or first harmonic response is the
AM/AM curve or radio frequency (RF) transfer characteristic.
For polynomial models, this curve is also a polynomial
because monomials are invariants of the Chebyshev transform
[2]. Then the Chebyshev Transform may be used again to
compute the levels of carriers and intermodulation (IM) pro-
ducts [3] for a two-carrier input signal. Their amplitudes are
also given by polynomials of input signal amplitude. The poly-
nomial model results can be applied to analytic functions
models because they can be locally expanded as integer
power series, their Taylor series developments at the origin
(or Mac Lauren development).

This work shows that some non-analytic at the origin func-
tions are invariant elements of the Chebyshev Transform
in the same way the monomials are. This property simplifies
the computation of the AM/AM curve, along with the
output signal harmonics and two-carrier intermodulation
products. It can be used also to easily invert Chebyshev trans-
forms and to derive an instantaneous input-to-output model

from the AM/AM curve. They can be used to model amplifiers
in contradiction to propositions to reject models with discon-
tinuity at the origin as not physical [4, 5].

The characteristics of these non-analytic at the origin
models are substantially different from that of polynomial
models. Their behavior may help to explain some puzzling
practical measurement observations of intermodulation pro-
ducts in passive and active devices.

In many behavioral models, the use of functions of the
modulus of the input (which is non-analytic at the origin)
instead of the square of the modulus (which is analytic and
can be derived from the classical theory) may result in an
unexpected discontinuity. It may change the behavior of the
model and it can be either physically acceptable or not.

I I . O V E R V I E W O F C L A S S I C A L
T H E O R Y

In the classical theory [1, 2], a real non-linear function f rep-
resents the instantaneous input-to-output transfer character-
istic, e.g. a voltage transfer Vout ¼ f (Vin).

When applying a sinusoidal input signal: Vin ¼ a cos (vt +
w) ¼ a cos (u), the output signal is composed of harmonics of
the input frequency, especially a DC component (or harmonic
0) and a fundamental component (or harmonic 1)

Vout = f (Vin) = f a cos (u)[ ]

= 1
2

f0(a) +
∑1

m=1
fm(a). cos (mu). (1)
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Function fm (a) is the amplitude of harmonic m in the
output signal. It is obtained as the order m Chebyshev trans-
form of f(u) ¼ f [a cos (u)]

fm(a) = 1
p

∫+p

−p

f a cos (u)[ ] cos (mu)du. (2)

The output amplitude at fundamental frequency, f1 (a),
always an odd function of a, is called the AM/AM curve.
The fundamental gain curve, or describing function (DF),
g(a) ¼ f1(a)/a, is always an even function of a. The
Chebyshev transform is a special case of the discrete Fourier
transform: it is the discrete cosine transform of the output
signal when the input signal is a cosine and so is periodic
and even. Function f may be non-analytic. Mathematically,
it can be any distribution for which the Chebyshev transform
can be computed. However, the classical theory generally
restricts itself to analytic functions and frequently to
polynomials.

For a function f that is an integer power of the variable u:
f(u) ¼ un, the transform is [2]

fm(a) = 1
p

∫+p

−p

a cos (u)[ ]n cos (mu)du

= 2
a
2

( )n n!

(n + m)/2
( )

! (n − m)/2
( )

!

. (3)

Note that equation (3) is valid only for integer m of same
parity as n, with 0 ≤ m ≤ n. The result of the integral is null
in other cases. Power functions (or monomials) are therefore
invariants of the Chebyshev transform: the transform of a
power function is a power function with the same exponent.
As a consequence, if the function f is a polynomial, then
all its Chebyshev transforms are polynomials. Even (respect-
ively odd) harmonics are given by the terms of even (res-
pectively odd) powers of input signal. Consequently, the
fundamental output amplitude, f1 (a), is given by a polynomial
with only odd degree terms. In case of two or more carriers
input, the intermodulation products around the fundamental
carriers will have odd orders only. Finally, the gain curve,
g(a) ¼ f1 (a)/a, is an even polynomial of input amplitude
(with only even degree terms) or an arbitrary polynomial
of input signal power (when power is proportional to the
square of the input signal: voltage, current or wave).

The interest of these invariants, as shown by Blachman [3],
lies in the possibility to iterate the Chebyshev transform (once
or many times). This makes computation of intermodulation
products easy for two-carrier and multicarrier signals. In
addition, the Chebyshev transform can be inverted easily
when approximated with a polynomial.

This presentation is limited to the AM/AM curve and real
polynomials but AM/PM can easily be taken into account with
complex coefficients polynomials as shown in [6]. All of the

results are formally the same. The AM/PM phase curve can
then be modeled as an even function of input amplitude
in the same way as the gain. The AM/AM and AM/PM
curves are identical to the amplitude and phase of the
sinusoidal-input DF in control theory [7]. The function
depends only on signal amplitude and not on signal frequency
when the non-linearity is memoryless (called static in control
theory).

A drawback of the polynomial models is their rapidly
divergent behavior as the input amplitude goes beyond the
maximum input value that has been used while characterizing
the amplifier. It can be a problem for telecom simulation
where Gaussian noise or multicarrier input signals with high
dynamic range (e.g. orthogonal frequency division multiplex
(OFDM) signals) have peaks much higher than their average
value [8]. To overcome this drawback, without introducing
a limiter, a number of analytic functions have been proposed
as models such as trigonometric (or Fourier–Bessel) series
decompositions, rational functions or the hyperbolic
tangent. Saleh proposed a rational function model of travelling
wave tubes [9] that is widely used. Cann [10] proposed a
model for solid-state power amplifiers (SSPA) in addition to
limiters and hyperbolic tangents. Rapp [8] used the Saleh
model and also proposed a modified model for the SSPA. A
more complete discussion of the SSPA models will be found
in Schreurs et al. [11].

To conclude, the main inferences of the classical analytical
function theory are the following:

1. Orders of intermodulation products around the fundamen-
tal signal output (i.e. the odd harmonic of order 1) are odd
integers: 3, 5, 7, etc.

2. A polynomial function will give only products of order
lower or equal to its degree.

3. In small signal operation, the level of an intermodulation
product will follow a slope, in dB/dB, with respect to the
input level, equal to an integer number.

This slope equals the lowest degree in the polynomial
that is higher or equal to the order of the intermodulation
product.

Generally, this is understood as: third-order intermodula-
tion products have a slope of 3 dB/dB, fifth-order 5 dB/dB,
and so on. However, if the third degree term in the poly-
nomial is null, whereas the fifth degree term is not, then
the third-order product would have a slope of 5 dB/dB.

I I I . S I M P L E N O N - A N A L Y T I C
M O D E L S

A number of simple non-analytic models are commonly used
to represent real world device operations: threshold, limiters,
class AB, B, and C amplifiers or detectors as illustrated Fig. 1.

Owing to the lack of a general theory for non-analytic func-
tions, the harmonic and intermodulation content at the
output of such devices is in general computed directly for

Fig. 1. Some ideal non-analytic models.
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each case, using for example Fourier decomposition of square
waves for the threshold function. No general rules have been
drawn for the behavior of harmonics and intermodulation
products.

Other work exists in this domain, particularly in control
theory [7, 12], two-carrier or multicarrier input signal is
taken into account with multiple-input DFs. They are used
to linearize the system and express amplitudes of output
signals at frequencies of input signal. Noise and intermodula-
tion products at frequencies different from those of the input
signal are considered generally as errors in linearization.

Piecewise linear, piecewise polynomials or cubic splines are
used to model transistors measured curves such as drain
voltage versus drain current curve as a function of gate
voltage for simulation purposes but not to obtain closed
form results. Examples of DFs for such non-analytic functions
are given in [7, 12–14].

Blachman [2] gives the Chebyshev transform of some non-
analytic functions, for example, the product of a power func-
tion and Heaviside function H given by

f (u) = H(u) · un ⇔ f (u) = un, for u . 0

and f (u) = 0, for u ≤ 0. (4)

Its transform is:

fm(a) = a
2

( )n n!

G (n + m/2) + 1
( )

G (n − m/2) + 1
( ) . (5)

Note that the factorial functions in the denominator of (3)
have been replaced by the Gamma function in (5) as m and n
may not have the same parity and the arguments may become
half-integer. Since the Heaviside function is neither odd nor
even, it generates even and odd harmonics or products. In
particular, the output includes all harmonic orders of parity
opposed to that of the degree n, even for a constant (n ¼ 0)
or a linear polynomial (n ¼ 1) and harmonics of the same
parity as degree n up to n: m ¼ n, n 2 2, n 2 4, ... with
m ≥ 0.

I V . N E W I N V A R I A N T S O F T H E
C H E B Y S H E V T R A N S F O R M

In this paper, the presentation will be restricted to functions
that are not smooth (not C1 and so not analytic) only at
the origin. By definition of smoothness (C1), either the
function or one of its derivatives is not continuous at the
origin and higher-order derivatives are infinite or undefined.
Such a function cannot be replaced by a polynomial or an
integer series around 0, even in a small range. In Fig. 1, only
the threshold function and the linear detector are in this
case. A class B amplifier without limitation (half-wave recti-
fier) would also be in that case.

A non-linear function based on the terms given in (4) could
be used to model a non-linear class B amplifier in the small
signal range. A push–pull amplifier would be obtained by
complementing the positive part of the function with its oppo-
site for negative inputs, thus obtaining an odd function. Even
degree parts of this non-linear function do not disappear as

they would if it was forced to be analytical and they are the
cause of non-analyticity.

This is obtained by replacing the Heaviside function in
equation (4) by the sign function:

F(u) = sign(u) · un = H(u) − H( − u){ } · un. (6)

The sign function is odd and the parity of function f above
is opposed to that of exponent n.

Its transform is:

fm(a) = 2. sign(a).
a
2

( )n n!

G (n + m/2) + 1
( )

G (n − m/2) + 1
( ) .

(7)

Equation (7) is valid for all values of m with parity opposed
to that of n. In consequence, there are no harmonics or pro-
ducts of order having the same parity as n. More importantly,
equation (7) shows that powers of the input multiplied by sign
function are invariants of the Chebyshev transform like clas-
sical monomials. The polynomial model is generalized as

f (u) = P(u) + sign(u).Q(u) (8)

P(u) and Q(u) are arbitrary polynomials of input signal u.
Both may contain odd terms and even terms. Here, P(u) is
the polynomial that would be used in the classical theory.

It is, however, more appropriate to depart from the classical
theory and explicitly separate the function in odd and even
parts, using different polynomials

f (u) = P( u| |) + sign(u).Q( u| |). (9)

The model of the odd part of the device characteristic:
sign(u).Q(|u|) is generally the only one that gives output in
the useful RF bandwidth. The even part P(|u|) should be con-
sidered when interested by the DC component (harmonic 0)
and second harmonic output or when the bandwidth is
large compared to centre frequency. Invariants of the
Chebyshev transform are

Even invariants, for any integer n: f (u) = u| |n, (10)

Odd invariants, for any integer n: f (u) = sign(u). u| |n.
(11)

The Chebyshev transforms of these invariants are readily
given by

Even transforms:

fm(a) = 2.
a| |
2

( )n n!

G (n + m/2) + 1
( )

G (n − m/2) + 1
( )

for even integer m, (12)
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Odd transforms:

fm(a) = 2.sign(a).
a| |
2

( )n n!

G (n + m/2) + 1
( )

G (n − m/2) + 1
( )

for odd integer m. (13)

Observe that the parity property (even or odd) is main-
tained throughout the Chebyshev transform. This implies
that, as in the classical theory, orders of intermodulation pro-
ducts around the fundamental carrier signal output will be
odd integers (3, 5, 7. . .) and will result only from the odd
part of function f(u).

There are two important differences with the classical ana-
lytic model theory:

† An odd invariant of any given degree (except an odd
integer), will give harmonics and intermodulation products
of all odd orders, instead of only orders lower than or equal
to its degree (and similarly for even invariants).

† Under small signal conditions, unlike in the classical ana-
lytic function theory, the output amplitude of a harmonic
or product is no longer a monomial of the input amplitude
with an integer exponent equal at least to its order m and
with the same parity. The exponent (and so the slope in
dB/dB) is equal to the degree n and not to the order m.
In small signal conditions, a third order intermodulation
product level does not always vary as a function of input
level with a slope of 3 dB/dB. The slope could be any
even integer (0, 2, 4. . .) as well as classically an odd
integer at least equal to its order (3, 5. . .).

The classical constraints on the slopes of small signal inter-
modulation products (3 dB/dB, 5, 7, etc.) are not physical but
an artifact due to the use of analytic invariants (the mono-
mials), polynomials and analytic functions to describe or
approximate the non-linearity.

Since the fundamental carrier output will result from the
odd part of the characteristic, sign(u).Q(|u|), the AM/AM
curve will be under the form: f1(a) ¼ sign(a).R(|a|) with the
polynomial R depending on the polynomial Q. The funda-
mental gain (or DF), an even function of a will be under the
form

g(a) = f1(a)/a = sign(a).R( a| |)/a = R( a| |)/ a| |. (14)

As in the classical theory, one can use an even function to
model the AM/PM curve and model its effect on the complex
envelope of the signal: ũ = a · eju. Function sign(ũ) is not
defined on complex numbers and it must be replaced by
ũ/ ũ| | = eju.

Now, in light of the results above, a more general family of
real and complex non-analytic invariants can be proposed,
where the exponents can be fractional or real numbers p

Even invariants, for any real p: f (u) = u| |p or f (ũ) = ũ| |p

(15)

Odd invariants, for any real p: f (u) = sign(u). u| |p or

f (ũ) = ũ. ũ| |p−1 (16)

The Chebyshev transforms of the above invariants are

formally given by the same equations as (12) and (13) with
integer n replaced by real p and factorial n! replaced by
Gamma function G (p + 1). These non-analytic functions
are also invariants of the Chebyshev transform and obey the
same laws as the monomials provided that the real exponent
p is higher than 21 to guarantee mathematical convergence
of the series of transforms [2].

V . P H Y S I C A L C O N S T R A I N T S O N
N O N - A N A L Y T I C I T Y

For these invariants to be physical models of transfer func-
tions, they must not create energy. This introduces additional
constraints on the exponent

1. The exponent must be positive or null to guarantee a finite
output for null input for any physical device (an infinite
output without input would not be acceptable).

2. The exponent must be at least equal to 1 to guarantee a
finite gain, and null output for null input, for a passive
device (not necessary for an active device with a power
supply).

For a positive real exponent p, the invariant is continuous
but, except for integer p of the same parity as the invariant, its
derivatives of order higher than p are not continuous at the
origin and derivatives of order higher than p + 1 are indefi-
nite. They are not smooth (C1). A model based on these
invariants will not be smooth, and so will not be analytic, at
the origin. This is acceptable because the energy in the
output signal is bounded when the input energy is bounded:
bounded-in, bounded-out condition [7].

By using invariants (15) and (16) to model a device charac-
teristic, one can explain small signal harmonics and IM pro-
ducts slopes of any positive or zero real value in dB/dB. For
example, the output of a hard limiter or trigger, an active
device with odd non-linearity and p ¼ 0, consists of all odd
harmonics and intermodulation products, each at a finite
and constant level: all slopes are 0 dB/dB. The gain can be
expressed by replacing the polynomial R in (14) by a sum or
series of terms with real exponents p. This will give the
designer much more flexibility for modeling practical
measurement data, first by using odd and even degrees in
polynomials of the modulus of the input signal, second by
complementing the function with terms having real valued
exponents.

The fact that a non-analytic at the origin model is better at
modeling the behavior of a device is not a demonstration that
the physical device itself has a discontinuity of some of its
derivatives. Much more complicated analytic (or at least
smooth) functions could be used to model the same behavior
down to the level of thermal or quantum noise, where
measurements would no longer be possible.

A simple example would be to replace the sign(u) function
by the hyperbolic tangent: tanh(ku), with a large enough mul-
tiplicative coefficient k. The sign function is the mathematical
limit of the hyperbolic tangent when k tends to infinity and it
gives qualitative and easy to understand results that can be
compared to measurements. The hyperbolic tangent model
is continuous and infinitely derivable but the results are
more complicated and would not permit easy iteration and
inversion of the Chebyshev transform.
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On the other hand, the simplicity and efficiency of a model
based on non-analytic at the origin functions may be a good
reason to examine some physical processes and try to find
demonstrations, based on physics, of the reality or not of
the discontinuity at the origin.

V I . B E H A V I O R O F C H E B Y S H E V
T R A N S F O R M I N V A R I A N T S

The output level of harmonics for a sinusoidal input (or
equivalently IM products for two-carrier input) as a function
of real exponent p are shown in Fig. 2 for the even parity and
odd parity invariants (15) and (16).

In the case of integer exponents, harmonics or products
disappear, in agreement with the classical theory, when they
have the same parity as the exponent and strictly higher
order. The curves are continuous functions of p, they only
seem to be discontinuous on a graph in dB.

V I I . A N A L Y S I S O F S O M E
M E A S U R E M E N T R E S U L T S

A) Passive devices: antennas and filters
Many authors [15–18] have reported even integer and/or non-
integer slopes for odd order intermodulation products in
passive devices such as antennas, filters and lines. These
slopes were either explicitly presented as unexplained or sup-
posed to be measurement errors.

The authors in [16] measured passive intermodulation pro-
ducts of orders 3, 5, 7, and 9 in a micro strip line with 14 dB
input level range around 900 MHz. They report slopes
between 1.6 and 2.5 dB/dB for third-order to ninth-order
IM products. Ratios of successive products are: I3/I5 ¼ 14 dB,
I5/I7 ¼ 15 dB and I7/I9 ¼ 10 dB. They also report slopes
between 2 and 2.9 dB/dB on two different coplanar waveguide
lines. They did not give an explanation for these unconventional
values. Measurement data from [16] is presented in Fig. 3.

A simple non-analytic model of the micro strip line, using
only one term with an exponent of 1.6, would give a slope of
1.6 dB/dB for all intermodulation products and ratios between

successive products of: 13.5, 8 and 6 dB; see Fig. 2(b) at
abscissa p ¼ 1.6.

A second model with two terms (exponents 2 and 2.5) has
been adjusted only to third-order IM product measurements
from [16]. It shows even better agreement (see Fig. 3), result-
ing in quadratic average errors of 0.4 dB for third IM level (at
290 dBm) but also around 1 dB for fifth IM level (at
2100 dBm) in a 14 dB input power range. Errors of 5 dB
for seventh IM level and 9 dB for ninth IM level are pessi-
mistic but acceptable at the level of 2120 dBm.

The model can then be used to simulate efficiently and pre-
cisely the device behavior for other input signals, CW or modu-
lated, and to compute noise power ratio for a multicarrier signal.

The authors of [17, 18] report on measurements of third
order intermodulation products on base stations towers and
equipment giving non-integer slopes of approximately 2 dB/dB.

A polynomial model of order 49 has been used in [17] with
unsatisfying results.

B) Active devices: mixers and amplifiers
In [19], the authors have measured the non-linear voltage to
current response of one NMOS cold FET used in a double
balanced mixer. They computed three models of this current:
a third degree, a tenth degree and a piecewise third degree poly-
nomial approximation. This last approximation gave a much

Fig. 2. Harmonics (or products) levels as a function of real exponent p in power function: (a) even order (0 to 10) transforms of even functions of type f(u) ¼ |u|p
(b) odd order (1 to 11) transforms of odd functions of type f(u) ¼ sign(u).|u|p

Fig. 3. Comparison of measured levels (dots, data from [16]) and modeled
levels (lines, this work) of intermodulation products of orders 3 to 9.
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better fit than the first two, with an error 40 dB lower. However,
the authors finally rejected this approximation because it gave a
2 dB/dB small signal slope for the third-order intermodulation
product in BSIM3 simulation, which they did not find in their
measurements. The second-degree term, present in their single
transistor measurement, could have been partially masked
because of the double balanced mixer structure or the higher
LO power operation. Lower power measurement could better
identify if a residual 2 dB/dB small signal slope exists.

In contradiction to [19], the authors in [13, 14] have used a
model equivalent to BSIM3 that includes a second-degree
term in the drain current to drain voltage characteristic of
the transistor. Using harmonic balance (HB) software, they
simulated amplifiers and obtained small signal intermodula-
tion products with slopes varying from 2 to 3 dB/dB, for
different classes of amplifiers: A, AB, or B. This was confirmed
by the measurements in [13] and explained by the second-
degree term in the model in [14]. This is in line with the
theory using even and odd powers of the modulus.
However, with such a model, the slope should decrease to
2 dB/dB for very low signal power. If the measurements
confirm that the small signal slope value is constant and differ-
ent from 2 (real value between 2 and 3), then a model with a
real exponent would give a better approximation of the device.

V I I I . A P P L I C A T I O N T O S S P A
M O D E L S

A) Volterra models
Modulus of the complex envelope of input is used in Volterra
models [20–22]. In some cases, this is simply an empirical way
to express that the non-linear gain depends on the amplitude
or power of the input signal but not on the input signal phase.
However, the modulus is continuous but its derivative is dis-
continuous at origin. This means that the underlying theory
must be based on non-analytic at the origin functions,
instead of polynomials, if odd powers of the modulus are
used in the gain. In that case, the results obtained from non-
linear polynomials and analytic functions theory cannot be
applied without caution. The authors in [4] explain that
only even powers of the modulus should be used to avoid dis-
continuity at the origin and stay in the classical theory. This is
true but the classical theory is too restrictive.

The authors in [21, 22] introduce and validate the polar
Volterra model. The nth sample of the complex envelope of
the output signal is given in [21] by

ỹ(n) = h̃0, 0

+
∑P1

p1=0

∑P2

p2=0

∑M

m1=0

...
∑M

mp1=mp1−1

∑L

l1=0

...
∑L

lp2=lp2−1

∑L

lp2+1=0

...

∑L

l2p2−1=l2p2−2

× h̃p1, 2p2−1(m1, . . . , mp1 , l1, . . . , l2p2−1)
[

· a(n − m1) · · · a(n − mp1 ) · · · ejf(n−l1) · · · ejf(n−lp2 ).

·e−jf(n−lp2+1) · · · e−jf(n−l2p2−1)
]
, (17)

where x̃(n) = a(n) · ejf(n) is the nth sample of the complex
envelope of the input signal.

Discarding the memory in the model, all phase terms in
(17) collapse except one. If combined with one of the
moduli, it gives back the complex envelope of the input
signal. Then, the output envelope is expressed as a product
of fundamental gain and input signal envelope

ỹ(n) = h̃0, 0 + x̃(n) ·
∑P1

p1=0

h̃p1 · ap1−1(n)
[ ]

. (18)

The non-linear gain in (18) is a function of the modulus of
the input signal. All integer degrees can be present with a
minimum of 21. This is acceptable for an active non-linearity.
It should be restricted to p1 ≥ 1 for a passive non-linearity.
The non-linearity is non-analytical at the origin when odd
degrees are used in the gain (even values of p1).

Equations (17) and (18) should not be restricted to integer
powers of the modulus. Real exponent values should be taken
into account (at least for the AM/AM curve) when necessary
to model measured even-integer or non-integer slopes of har-
monics or IM products.

B) Large signal scattering parameter models
The modulus of the input signal complex envelope is also used
in the definition of large signal scattering parameters in [23].
The large signal scattering parameter X21,11 is the fundamental
gain or DF between components at fundamental frequency of
the input and output waves. It can be obtained in a poly-
harmonic measurement in a large signal network analyser
(LSNA). Calibration equations for the LSNA also use the
modulus of the input wave [24]. All of these equations and
definitions must obey the constraints described in Section V
and should contain only even powers of the modulus if
there is no discontinuity of any derivatives at the origin. On
the contrary, odd integer and real exponents must be used
to model non-linear S-parameters of devices with discontinu-
ity at the origin and with harmonics or IM products small
signal behavior different from the one derived from the clas-
sical theory.

C) Modified Saleh models
Modified Saleh models given in [8, 11] have been proposed by
the authors (and generally been used) with integer values of
parameters that make them analytic or their small signal
behavior was not investigated. The modified Saleh model
proposed by Cann [10] was criticized in [5] as not being
analytical at the origin and so not being physical. The
author remarked that the behavior of simulated two-carrier
intermodulation products did not obey the classical theory
and “had never been measured”. This may depend on the par-
ameter and the exact algorithm used for simulation. Cann
proposed a revised model [25] that is analytical.

Clearly, as shown in this work, many authors have
measured even integer and non-integer dB/dB slopes for
odd IM products in small signal conditions, on active and
on passive devices, and this cannot be explained with an ana-
lytic model. Hence, a model cannot be rejected only because of
this behavior. The correct test is for the model to behave (or
not) as the physical device does in the input power range of
interest.
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For the measurement examples given in this work, a non-
analytic at the origin model has been found to be the simplest
one to obtain this behavior together with a better approxi-
mation of the transfer function in a greater range than poly-
nomial models.

Clearly also, a non-analytic at the origin model should be
used only if it is simpler than the polynomial model and if
it better fits the transfer curve and the IM products’ small
signal slopes measured on the physical device.

I X . C O N C L U S I O N

This work shows that:

1. In small signal conditions, the level of a harmonic or product
at the output of a non-linear function may vary with a dB/dB
slope versus the input level different from its order. Even
integer slopes and real valued slopes have been measured
and reported for odd IM products by many authors. They
are explained in this work by introducing new non-analytic
invariants of the Chebyshev transform.

2. A term of any real power (except an even integer) of the
input modulus will give harmonics and intermodulation
products of all even orders

3. A term of any real power (except an odd integer) of the
input modulus, multiplied by the sign function, will give
harmonics and intermodulation products of all odd orders.

No physical or mathematical reasons permit to restrict
non-linear functions used to model passive or active functions
to polynomials or analytic functions. In fact, some measured
behavior cannot be explained with polynomials or analytic
functions only.

A real exponent power series should be used instead of
polynomials where it permits to better approximate measure-
ment data and model non-linear passive or active functions.
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