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Abstract—The conventional non-coherent differential detection
of continuous phase modulations (CPM) is quite robust to
channel impairments such as phase and Doppler shifts. Its
implementation is on top of that simple. It consists in multiplying
the received baseband signal by its conjugate version delayed by
one symbol period. However it suffers from a signal-to-noise
ratio gap compared to the optimum coherent detection. In this
paper, we improve the error rate performance of the conventional
differential detection by using a delay higher than one symbol
period. We derive the trellis description as well as the branch and
cumulative metrics that take into account a delay of K symbol
periods. We then determine an optimized delay K, based on the
minimum Euclidean distance between two differential signals for
some popular CPM formats. The optimized values are confirmed
by error rate simulations.

Index Terms—CPM, differential detection, Doppler shift, phase
shift

I. INTRODUCTION

ONTINUOUS PHASE MODULATIONS (CPM) are a

class of non-linear constant-envelope modulations with
a limited spectral occupancy. The constant envelope is in-
teresting when the channel includes a strong non-linearity
like e.g. in satellite communications. Moreover, non-coherent
CPM detection enables to face the possible phase distortion
introduced by the channel, without carrying out any phase
synchronisation !. Combined with the energy efficiency of
CPM, these properties make this kind of waveform a good
candidate for Internet of Things (IoT) [1], [2], especially for
Satellite IoT communications which arouse our interest in this
paper. Non-coherent CPM detectors can be grouped into two
families depending on the criterion they are based on. The
first one is derived from the generalized maximum-likelihood
criterion [3]-[5] and only requires the knowledge of the phase
distribution. Algorithms proposed either in [6] or in [7] with
an uniformly-distributed phase assumption belong to it. The
second one preprocesses the received signal to neutralize the
phase contribution making possible the application of the
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Let us mention that differential encoding can be used at the transmitter
to deal with the phase ambiguity at the receiver. Such techniques are out of
scope of this paper.

maximum-likelihood criterion for coherent detection on the
resulting signal.

Numerous papers based on differentially-preprocessed sig-
nals can be found in the state-of-the-art. The common feature
is the use of the product of the received baseband signal
and a conjugate time-delayed version of it, yielding a signal
that we will refer to as differential signal in the remaining
of the paper. Different algorithms are proposed and apply
either on time-discrete differential signals (see e.g. [8]) or on
time-continuous differential signals (see e.g. [9]-[12]). In [9]
applied to tamed frequency modulation (TFM) and in [12]
extended to CPM signals, a detection metric is defined from
a set of multiple sampled differential signal versions of the
original one (differing from the delay value). The sampling
rate is set to the symbol rate, which yields insufficient statistics
and possible severely degraded performance. Simulations are
used to compare different set definitions (with a maximum
delay equal to three symbol periods) for the TFM and the
Gaussian minimum shift keying (GMSK). However, the most
used representative of the second class is the conventional
differential detection as defined in [10], [11] and applied with
one symbol period as the delay value. Differential detection
is also robust against Doppler shifts, which is particularly
interesting in the context of Satellite IoT. The main drawback
of standard differential detection is the signal-to-noise ratio
(SNR) gap as compared to the optimum coherent detection.
To reduce this SNR gap, we propose in this paper to modify
the differential detection as defined in [10]. Our contributions
are threefold, (i) the theoretical extension of the usual CPM
differential detection algorithm to consider a delay higher than
one symbol period (including the description of the phase
trellis and the derivation of the equations of the branch and
cumulative metrics), (ii) the systematic determination of an op-
timized delay value based on the application of the minimum
Euclidean distance criterion between two CPM differential
signals and, (iii) the optimized delay values for different CPM
formats (modulation index, frequency pulse length, frequency

pulse type).

The remainder of this paper is organized as follows: in
Section II, the system model is presented and the notations
are introduced. In Section III, the differential detection using
a delay of K symbol periods is exposed, followed by the
optimization of K in Section IV. The simulations and the
resulting tables for different CPM formats are presented in
Section V. A conclusion is drawn in Section VI which ends
the paper.



II. SYSTEM MODEL AND NOTATIONS

We consider a sequence of N independent and identically
distributed (i.i.d.) information symbols a = {a;}o<i<n—1 t0
be transmitted. Given M an even positive integer, a; takes on
values in the M-ary alphabet M = {£+1,43,..+ (M — 1)}
with equal probabilities. Note that all the signals considered
in this paper are assumed to be causal, hence ¢ > 0, unless
otherwise specified. The complex envelope of the CPM-
modulated signal is given by:

2F, .
s(ta) =/ e, (1)

where F; is the average symbol energy, T is the symbol
period and (¢, a) is the signal phase which depends on the
information symbols. It is defined by:

N-1
0(t,a) = 27h Y aiq(t —iT) 2)
i=0
where h is the modulation index and ¢(t) is the phase
smoothing-response whose expression is ¢(t) = ffoo g(u)du
with g(t) the frequency pulse. In practice, g(¢) has a finite
duration LT,. Without loss of generality, we consider that
g(t) = 0, vVt ¢ [0,LT,) and it satisfies the following
conditions:

{mwzg@ﬂ-w»
[y g(r)dr = q(LTy) = 3,

Our interest is satellite communications whose transmission
channel can be considered as non-frequency selective and
Gaussian with Doppler effect as the main propagation issue.
In the following, we neglect the Doppler effect and we will
investigate the receiver robustness against Doppler shift in
Section V. We thus assume that the modulated signal is
transmitted over a Gaussian channel. The equivalent baseband
received signal, denoted by r(t), is given by:

r(t) = s(t,a)e’ + n(t), 4)

0<t< LTy,

3
Vvt > LT. ©)

where ) is an arbitrary phase introduced by the channel and
supposed to be uniformly distributed in [0, 27). n(t) is the
realization of a zero-mean wide-sense stationary complex cir-
cularly symmetric Gaussian noise, independent of the signal,
and with double-sided power spectral density 2/Njp.

III. DIFFERENTIAL DETECTION OF CPM
A. K-delay based differential receiver

Let us consider a delay equal to K symbol periods. At
the receiver side, a differential signal denoted by Rk (t) is
generated using the received signal r(¢) and its delayed version
r(t — KTj). It can be decomposed as the sum of two signals:

1 *
Ri(t) = 5r(t)r(t — KT,) = Sk(t,a) + Nk(t), (5
where the first term does not include any noise contribution:

1 E. .
Sic(t,a) = 5s(t,a)s"(t = KT, a) = el (6)

S

with Ok (t,a) = 0(t,a) — 0(t — KT, a).

The second term, denoted by Nk (), consists of all noise-
dependent components. It is decomposed as

Nk (t) = Uk (t) + Wk(t)

with
U (1) :é (s(t, a)e¥n* (¢ — KTy) + ...
n(t)s*(t — KTy, a)e "),
Wic(t) =3 (n(t)n’ (¢t — KT.). a)

The computation of its autocorrelation leads to the following
expression:

BINk(t)Ng(t—1)] = (Ng+A°No)o(r)  (8)

with A = [s(t,a)| = /25> and §(¢) the delta function.

The random process N (t) is wide-sense stationary with zero
mean and constant power spectral density (PSD) equal to
(NZ + A%Ny). From now on, it will be assumed to follow
a Gaussian distribution as in [12].

B. Phase trellis description

Lett = 7 + nT,, with 0 < 7 < T. Taking into account
the properties of the frequency pulse given in (3), the phase
introduced in (6) can be decomposed as the sum of a time-
independent term and a time-dependent term:

Ok (T +nTs,a) = ¢p + 21hanq(7) + @n(T), 9
K—1
with ¢,, = 7h Z QAp—1,—; and
i=0
L—1
on(1) = 27> (an—; — an_x—i)q(T +iTy). .. (10)

i=1

—Qp—kq(T).
©n(T) represents a time-dependent contribution which cor-
responds to the last L memory symbols of both the signal
and its delayed version. The term ¢, represents the time-
independent part. ¢, (7) and ¢, are completely determined
by the set of symbols (a,—;)1<i<r+Kx—1. AS a consequence,
¢, doesn’t need to be stored, contrary to the original CPM
trellis description which comprises the cumulative phase as
a defining state parameter. We can thus define the state
Yn = [an—L—K+1s s an_1] for the n-th section of the trellis
representation of O (t,a). Note that there are MK+L-1
different possible states.

C. Maximum likelihood (ML)-based detection

The ML criterion is applied to detect the information
symbols from R (t). Given the constant amplitude property
of CPM, it consists in maximizing the correlation between
Ry (t) and all possible realizations of Sk (t,a). The inner
product between Ry (t) and a specific realization Sk (t,a),
denoted by I'x (&), is defined as

FN(gl) = Re

NT,
/ RK(t)Sl*((t,é)dt] , (11)
0



which can be recursively computed:
r,(a=r,_1(a)+A,.(a) (12)

with

An(a) = Re (13)

nTs
/ R (£S5 (t,a)dt | .
(n—1)T,

The Viterbi algorithm is applied on the trellis. At the n—th
section, it computes for each state the maximum cumulative
metric (12) among all the paths arriving at this state.

The complexity of the differential detector can be estimated
in terms of the number of trellis states S = M +L~1 and the
number of multiplications per trellis section involved in the
metric calculations (Q = pSM, where p samples per symbol
are used to calculate the metrics. Note that the complexity per
symbol is not affected by the frame length.

IV. DELAY OPTIMIZATION

In this section, we aim at tuning K to improve the detection
error probability. Let us consider the following error event
when s(t,a) is transmitted, s(¢,a) is detected and a # a.
Given the ML-based detection criterion and the independence
between Ry and N, it means that:

NT, NT,
/ Ry (8) — Sic (1, a)[2dt < / Ry (8) — Sic (1, ) [2dt
0 0 (14)
which can be reformulated as:

1
Z > 50k (a, ), (15)

where Zx = [ Re[(Sk(t,a) — Sk(t,a)) Nj ()] dt.

Ax(a,d) = /[ 1Skc(t.a) — Sxc(t,8)dt is the Eu-
clidean distance between the two differential signals Sk (¢, a)
and Sk (t,a) corresponding to the symbol sequences a and
a. Zxi has zero mean. Assuming that Zx is Gaussian, the
probability of an error event is given by

~ Ep ~
P.(a;a) = — 7 d2%(a, 16
(a a) Q (\/Q(Ng +A2NQ) K(a a)) ( )
where () is the Q—function and where di(a,a) = Af}%é)

is the normalized Euclidean distance, ¢, denoting the average
energy per information bit in the differential symbol sequence.
Proceeding as in [13, Chapter 2, Paragraph 2.1.2], a union
bound on the probability of error is obtained at reasonably
high SNR. The error probability is thus approximated by

€b
P.x@ (\/2(N§ n AQNO)dfmn(K)> 17
where:
i (K) = min (di(a,a)) . (18)
ao#ao
By applying the same reasoning as in [13], we obtain:
d%(a,a) = logQTﬂ /NTS [1 —cos (Ok(t,e))]dt (19)
s 0

where e = a — a is the so-called difference symbol sequence.
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Fig. 1. BER of differential detection for the CPM scheme 3REC with
modulation modulation index h = 0.75 for different values of delay K.

Finding the minimum Euclidean distance is done by search-
ing over all possible pairs of sequences a and a. In practice,
these pairs are those whose respective paths on a phase tree
diverge at time O and merge again as soon as possible.
Proceeding as in [13], the phase difference tree is a good
method to determine the difference symbol sequences to be
considered and the corresponding pairs of symbol sequences.

For each value of the delay, a corresponding value of the
minimum Euclidean distance d,,;, is obtained. Since we are
looking for minimizing the error probability, the best choice
of the delay is the value that yields the highest dyip-

V. NUMERICAL RESULTS

In this section, we study different CPM formats. We focus
on Satellite IoT which involves short frame communications
over a non-frequency selective channel mainly disturbed by
Doppler effects. In the simulation setup, we thus consider N =
120 (note that this choice does not affect the conclusions) and
an AWGN channel without Doppler shift in Sections V-A,
V-B, V-C and with Doppler shift in Section V-D.

A. Influence of K on the detection performance

We first illustrate the influence of K on the detection
performance. We consider a CPM format with rectangular
frequency pulse, L = 3 and h = 0.75. The delay K takes
on values in {1,2,3,4}. The bit error rate (BER) is plotted
as a function of E/Ny in Fig. 1. We observe that K = 3
is the delay that yields the best BER. A gain of 3 dB is
obtained compared to the receiver with X' = 1 and almost
1 dB compared to the receiver with K = 2 while the receiver
with K = 4 exhibits a slight degradation of performance.

B. Optimization of K from the minimum Euclidean distance
criterion

The optimization of K based on the Euclidean distance
computation in (19) is run by Monte-Carlo simulations. For



TABLE I
OPTIMIZED VALUES OF K FOR RC CPM

Freq. pulse Modulation index
length L h=1/3 h=1/2 h=3/4
1 K=2 K=2 K=3
3 K=3 K=3 K=3
5 K=4 K=14 K=14
TABLE II

OPTIMIZED VALUES OF K FOR REC CPM

Freq. pulse Modulation index

length L h=1/3 h=1/2 h=3/4
1 K=2 K=2 K=4
3 K=4 K=4 K=3
5 K =5 K =5 K=5

each CPM format (g, L, h), several possible pairs of sequences
are considered which yield different realizations of e. The
optimized value of K is provided in Tables I, II, III for
raised cosine (RC), rectangular (REC) and Gaussian (GFSK)
frequency pulses respectively. We consider several modulation
indices h and several frequency pulse lengths L. The consis-
tency of the optimized delay has also been checked by BER
simulations for all CPM formats. Note that when several values
of K provide the same best error rate, then the displayed
value is simply the lowest one to reduce the complexity of
the decoder.

C. Comparison with some state-of-the-art receivers

In Fig. 2, we show a comparison between the optimized dif-
ferential receiver (K ), the conventional differential receiver
(K = 1), and also the coherent receiver. This comparison is
performed for 2 different CPM families: GFSK with & = 0.5
and BT = 0.3 (GMSK), and 5RC with h = 0.5. For
GMSK, there is almost 4 dB between the coherent BER and
the conventional differential detection (X = 1). Using the
optimized K = 3 reduces this gap by almost 2 dB. For the
SRC CPM, using the optimized K = 4 delay reduces the gap
to coherent BER from around 6 dB down to 2 dB. Note that the
curves for the coherent and the optimized differential receivers
are quasi-parallel which means that the diversity gain is almost
the same and the difference between the two is mainly in the
noise variance which is higher for the differential receiver.

D. Comparison in presence of Doppler shift

The differential detector is especially interesting in appli-
cations where the Doppler shift affects the communication.
When dealing with a constant Doppler shift fp, the received
signal is expressed as:

r(t) = s(ta)ej(w'*'%fm) + n(t).

The impact of fp is relative to the symbol duration Ts and so
the product fpTys is considered as a variable parameter in the
following to illustrate the influence of a constant Doppler shift.

TABLE III
OPTIMIZED VALUES OF K FOR GFSK (BT = 0.3)

Freq. pulse Modulation index

length L h=1/3 h=1/2 h=3/4
3 K=3 K=3 K=4
5 K=3 K=3 K=14
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Fig. 2. BER comparison between coherent and differential detection for two
CPM schemes: GMSK with BT = 0.3, and 5SRC with h = 0.5.

In Fig. 3, a performance comparison between the differential
detector and the coherent one in terms of BER is illustrated
for the rectangular pulse with h = 0.5 and L = 5 in presence
of a small Doppler shift. We observe a huge performance
degradation for the coherent detector whereas the differential
detector is not affected for the considered Doppler shift values.

VI. CONCLUSION

In this paper, the increase of the delay used in the conven-
tional non-coherent differential detection of CPM has been
shown to have an impact on the error rate. We have therefore
proposed to optimize this delay based on the minimum Eu-
clidean distance between two differential signals. We have ob-
tained an optimized delay ranging from 2 to 5 symbol periods
depending on the considered CPM format. Simulations have
confirmed the choice of the optimized delay value which offers
a gain from 2 to 4 dB on the error rate performance compared
to a single symbol duration delay. In a future work, CPM
with optimized differential detection will be investigated as an
alternative candidate waveform in the context of limited-power
Satellite Internet of Things (Satellite IoT) where Doppler shift
is an issue.
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