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Abstract—Detecting a target of known spectral signature from
an unknown background is one of main goal of hyperspectral
imaging. As the majority of hyperspectral imaging systems have a
poor spatial resolution, subpixel targets are usual. In this case, the
so-called replacement model is commonly advocated. This model,
valid for reflectance images, specifies that if a target is present,
the amount of background should reduce in the same proportion.
Nevertheless, the majority of the standard detectors, such as
the Match Filter or the Kelly detector, have been developed for
different contexts, and do not exploit this constraint. One of
the rare example that is suitable for the replacement model is
the Finite Target Match Filter, which is known to improve the
target selectivity detection. In this paper, we develop the exact
Generalized Likelihood Ratio Test for the model at hand. We
show that this new detector outperforms the standard ones, on
a real data experiment.

I. INTRODUCTION

Hyperspectral imaging is the extension of a standard 3-
colors picture to a hundred of spectral samples map. Hence,
each pixel contains a spectroscopy signature linked to the
materials belonging to the area of interest. As a consequence,
hyperspectral imaging is becoming a useful tool to deeply
analyse the environment in many applications, such as earth
observation and remote sensing [1], astronomy [2], defense
[3], mine detection [4] [5], gas detection [6], food safety [7],
or medicine [8].
One of the main goal of hyperspectral imaging is to detect
a target of known signature from an unknown background.
Many detection algorithms have been developed, most of
them assuming a Gaussian distribution for the background
and noise. Among the most popular schemes, we can quote
the Matched Filter (MF) [9] or the Constrained Energy Min-
imization (CEM) [10], that only differ from the presence or
not of the signal of interest in the covariance matrix used to
whiten the data. The Orthogonal Subspace Projection (OSP)
[11] is also a high Signal to Noise Ratio (SNR) approximation
of such schemes. Another popular detector offering very good
performance especially when the number of secondary data
is small, is the Generalized Likelihood Ratio Test (GLRT)
developed by Kelly [12]. To complete this short list of the most
used detectors, we can mention the Adaptive Coherent/Cosine
Estimator (ACE) [13] that considers a possible scaling factor
between the Pixel Under Test (PUT) and the secondary pixels.
As these algorithms have been derived for third applications,
such as radar processing, they are not exactly adapted to
hyperspectral reflectance maps. Indeed, the raw radiance mea-

surements recovered at the sensor level are usually transformed
in reflectances, to eliminate the effects of the non-uniform
sun illumination and atmospheric effects. Thus, the pixel’s
signatures can be compared to laboratory targets measure-
ments, called endmenbers. This useful pre-processing step
can be conducted using atmospheric and sun illumination
models, such as 6S [14], MODTRAN [15], or EXACT [16],
but also, identifying ground targets and comparing them to
their known signature. An example of such a technique is
the Empirical Line Method (ELM) [15] [17] that estimates
the supposed linear relationship between the radiance and the
reflectance using a Mean Least Square (MLS) optimization. As
a consequence of this pre-processing, the endmembers ampli-
tudes represent the proportion of the corresponding material,
called abundance. The standard model used in this case is
the so-called Linear Mixing Model (LMM), where the sum of
abundances is then constrained to be one. In case of subpixel
target, this model is also referred to the replacement model, as
when a target is present in the PUT, the background abundance
should reduce in the same proportion.
As stated before, most above-cited detectors, which are com-
monly used for reflectance maps, have been derived for the
standard additive model, without any constraint on the vector’s
amplitudes. One of the rare algorithm developed for the model
at hand is the so-called Finite Target Matched Filter (FTMF)
[18], which is the adaptation of the MF to the replacement
model. If the background is assumed to be Gaussian dis-
tributed, it consists in a two-step GLRT, where the mean
and covariance matrix of the background are estimated from
secondary data. This detector is shown to have a better target
selectivity than the standard MF, i.e. it reduces the false alarms
due to the presence of close-endmembers targets, by naturally
taking into account the target and background abundance [18].
This target selectivity improvement is of utmost importance
in geological remote sensing or defence applications when
searching for a specific material or target.
In this paper, we derive the exact, i.e. one-step, GLRT for the
replacement model. This detector is then the counterpart of the
popular Kelly algorithm for the replacement model. We show
that this new scheme has a simple and closed-form expression.
In order to assess the benefits of such a detector for subpixel
targets, we compare it to the popular algorithms using a real
data experiment.
The paper is organized as follows. We first describe the
replacement model and introduce the detection problem, in



section II. Section III is devoted to the computation of the one-
step GLRT algorithm. This new detector is then compared to
standard detectors through a real data benchmarking, in section
IV. Finally concluding remarks end this paper in section V.

II. THE REPLACEMENT MODEL

As stated in the introduction, the replacement model writes
[19]

y = αt + (1− α)b (1)

where

• y represents the spectral vector of the PUT, composed of
N spectral-samples,

• t represents the target endmember
• 0 ≤ α ≤ 1 is the unknown target abundance, or fill factor,
• b is the background spectral signature, assumed to be

Gaussian distributed with mean µ and covariance matrix
R, which we denote as b ∼ N(µ,R)

Moreover, using the adjacent pixels, we assume that we have
access to target-free data, zk, k = 0..., (K − 1), namely
secondary data, supposed to be distributed as zk ∼ N(µ,R).
The target signature t is assumed to be known from laboratory
measurements [1] and will be considered as deterministic.
The detection problem aims at choosing between H0(α = 0)
and H1(α 6= 0). As stated before, this detection problem is
not standard, as the background power varies between the two
hypotheses. Indeed, we should observe a noise decrease under
H1. This model is alike the detection problem derived in [20],
but here the noise power and the target amplitude are linked
together.

III. EXACT (I.E. ONE-STEP) GLRT

The direct GLRT consists in considering that the back-
ground characteristics (mean and covariance matrix) are not
a-priori known. Thereby, the probability density of observing
y under H0 is shown to be

p0 =
1√

(2π)N |R|
e−

1
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×
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where Σ0 = (y − µ)(y − µ)T +
∑K−1
k=0 (zk − µ)(zk − µ)T .

The mean and covariance matrix that maximize this
Likelihood are shown to be respectively

µ̂0 =
Kz̄ + y

K + 1

R̂0 =
1

K + 1
[ZZT −Kz̄z̄T +

K

K + 1
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where Z = [z0...zK−1] and z̄ = 1
K
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k=0 zk.

The likelihood under H0 becomes
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Similarly, the likelihood under H1 is
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where

Σ1(µ) =

K−1∑
k=0

(zk − µ)(zk − µ)T

+
[y − µ− α(t− µ)][y − µ− α(t− µ)]T

(1− α)2

Differentiating the likelihood with respect to µ leads to

µ̂1 =
1

K + 1
(Kz̄ + ỹ)

with ỹ = y−αt
1−α . Then, the covariance matrix that maximizes

p1 is shown to be R̂1 = 1
K+1Σ1(µ̂1), that can also be written

as follows, after some straightforward calculations:

R̂1 =
1

K + 1

[
ZZT −Kz̄z̄T +

K
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(ỹ − z̄)(ỹ − z̄)T

]
The likelihood under H1 becomes

p1 =
1
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The logarithm of this last expression writes

L1 = log(p1) = −N log(1− α)− K + 1

2
log(|R̂1|) + const.

As we have

|R̂1| =
1

(K + 1)N
|S| × [1 +

K

K + 1
(ỹ − z̄)TS−1(ỹ − z̄)]

where S = ZZT −Kz̄z̄T , differentiating L1 with respect to
α, conducts to

∂L1

∂α
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so that the Maximum Likelihood (ML) of α, that nulls this
last expression, is the solution of the following second order
equation

(1− α)2N [1 +
K
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t̄TS−1t̄] (2)

+ (1− α)(
2NK
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+ (
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with t̄ = t− z̄ and d = (y − t).
As we have N < K + 1, to ensure the invertibility of S,
the constant term is negative. Moreover, the coefficient of
(1 − α)2 is positive, so that the product of the two roots is
negative. Hence, the only valid solution is the positive one,
to ensure α ≤ 1.

Furthermore, considering that |R̂0| = 1
(K+1)N

|S|[1 +
K
K+1 ȳTS−1ȳ], the one-step GLRT writes as follows
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IV. REAL DATA ASSESMENT

To assess the validity of previous derivations, we compare,
in this last section, the performances of the proposed direct
GLRT to two reference detectors, namely the MF and the
FTMF. It has to be noticed that the MF has been developed for
the standard additive model, where the noise level is the same
under H0 and H1, whereas the FTMF has been developed for
the replacement model, as stated in eq. (1).

For this benchmark we consider the ”airborne Viareggio

Fig. 1. Complete RGB view of the scene

2013 trial” [21], as we have access to the raw data measure-
ments and a fully ground-truthed and documented scenario.
Moreover, we also have access to calibrated ground targets
to conduct a precise radiance to reflectance conversion. This
pre-processing step is performed using the ELM method [15]
[17], with the two proposed calibration targets, namely a
black and white trap that can be seen on fig 1, respectively
around the positions [70, 330] and [250, 150]. This hyperspec-
tral detection experiment was conducted in Viareggio (Italy),
in May 2013, with an aircraft flying at 1200 meters heigh.

Fig. 2. RGB Zoom of the scene, centred in the target

The image size is [450× 375] and each pixel is composed of
N = 511 samples from the Visible Near InfraRed (VINR)
band (400 − 1000nm). The corresponding spatial ground
resolution is about 0.6 meters. Different kinds of coloured
panels as well as vehicles served as known and geo-referenced
targets, as can be distinguished in the parking lot on fig 1.
Each of these targets is characterized by a spectral signature,
obtained from ground spectroradiometer measurements.

For the detection benchmarking we consider the vehicle
referenced as V1 in [21], as a target. It is a blue car that can
be seen in the center of the zoomed image represented in fig.
2.
As stated before, a first processing step is performed to convert
the raw radiance measurements into a reflectance map, using
the ELM algorithm with a linear fitting transform. Then the
number of spectral samples is reduced to 32 informative sam-
ples, in order to decrease the amount of necessary secondary
data and to speed-up processing. For all the algorithms, the
secondary pixels consist in a 9 × 9 guard window (as it
is approximately the span of the target), a 11 × 11 pixels
demeaning window (to estimate the background mean value),
and a 15 × 15 pixels covariance matrix estimation window,
all centred on the PUT, as specified in [22]. Thereby the total
number of secondary pixels is K = 144, which is 4.5 times
the size of the data. To finish with the covariance matrix
estimation, we use Diagonal Loading (DL) to robustify the
inversion step.

The detector outputs for the zoomed area around the target as
represented on fig. 2, are plotted on figures 3, 4 and 5, for the
MF, the FTMF and the proposed direct GLRT, respectively. We
can first notice the better selectivity for both the two detectors
matching the replacement model, as sorts of dashed lines are
much more present on the MF output. These false targets
correspond to parking-lot splitters that can be seen on fig. 2.
This selectivity improvement was underlined in [18] where the
FTMF was first derived. In order to evaluate more precisely



Fig. 3. MF output around the target

Fig. 4. FTMF output around the target

the performance of each detector, we compute the number of
pixels, from the whole image, whose output is larger than the
output for the actual target position. This figure can be seen
as a false alarm number with an optimal thresholding. Using
this criterion, the ranking of the 3 detectors of interest are
represented in table I. As anticipated before, we can see the

MF FTMF Direct GLRT
13 4 0

TABLE I
FALSE ALARMS SCORE

superiority of the two detectors developed for the replacement
model, with even a perfect detection, without any false alarm
for the direct GLRT, presented in this paper. To finish with,
we have also plotted the estimated value of the fill factor, α̂
computed from eq. (2), on fig. 6. We can observe that the
fill factor obviously increases for the target position, with a

Fig. 5. Direct GLRT output around the target

Fig. 6. Estimated Fill Factor

maximum value of 40%, whereas it should be near 100%, if
the target endmember was exactly the same as the reflectance
measured in the PUT. This difference can be explained by
target signature mismatches, as well as pre-processing errors
or simply measurement noises.

V. CONCLUSIONS

In this communication, we consider the target detection
problem for hyperspectral imaging. In spite of the existence
of an underlying unitary constraint for reflectance images, the
detectors exploiting this characteristic are rare. Thereby, we
derived the exact GLRT for the model at hand, and show its
superiority on a real data experiment.
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