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ABSTRACT 
 
Since the rise of technologies using GNSS positioning 
systems, development of carrier phase tracking receiver 
for precise point positioning in hostile environments is 
becoming one of the most important challenges for future 
satellite navigation applications. Because phase locked 
loops (PLL) that track carrier phase suffer from cycle 
slips phenomenon, noise robustness of the formers has to 
be reinforced if one wants to use precise positioning 
techniques in the widest range of challenging 
environments.   
 
The purpose of this article is to propose a new PLL design 
using a phase unwrapping algorithm that effectively 
corrects cycle slips due to phase noise in low CN0. Unlike 
phase unwrapping algorithms using a threshold approach 
for cycle slips detection, the algorithm implemented in 
our PLL structure is based on a system of prediction and 
pre-compensation of the phase dynamic stress. In order to 
reduce the cycle slips and enforce noise robustness of 
phase tracking, this algorithm is adapted to tracking loops 
with the aim to propose two innovative PLL structures. A 
comparative study is performed to show the effectiveness 
of the two proposed structures in case of noisy 
environment. 
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INTRODUCTION  
 
Over the last years, precise point positioning (PPP) 
techniques have considerably progressed in terms of 
precision. Current PPP methods use accurate orbital data, 
accurate satellite clock data and carrier phase 
observations collected by GNSS receiver to estimate user 
pseudo-ranges [1,2]. Phase tracking is realized via phase 
locked loops (PLL) which have to provide accurate 
estimation of carrier phase. Although user positioning is 
more precise with carrier phase data than with code phase 
data [3], phase estimation suffers from a lack of 
robustness in case of low carrier-to-noise-density-ratio 
(CN0), thereof preventing using such techniques in a 
large number of hostile environments such as urban 
canyons. It also prevents this new appealing technique 
from being used in one of the main GNSS outlet, the mass 
market. 
 
Besides, the new generation satellites navigation systems 
offer now pilot tone signals allowing envisaging new 
tracking techniques to reach higher performances, in 
particular for urban users. But even with this new signals 
the critical aspect remains the carrier phase tracking loop 
when it question of high accuracy in bad reception 
conditions.  
 
One of the most important problems with noisy carrier 
phase tracking is cycle slips. Cycle slips are a distinctive 
characteristic of PLLs which directly results from the 
periodic nature of phase discriminators used in tracking 
loops [4]. These biases (the cycle slips), that can appear 
during the phase estimation and make the tracking fail, 
can be caused by either a high dynamic stress and/or a 
high noise level, including the consequences of signal 
fading due to multipath.  
 
Several techniques aimed at detecting and correcting 
cycle slips have already been developed and adapted to 
PLL [5,6]. Basically, they rely on a threshold approach 
that try to correct cycle slips by comparing the 
discriminator output with the previous output to 
determine, by thresholding, if a cycle slip has occurred or 
not. However, due to the nonlinear nature introduced by 
thresholding, these structures are not robust to noise and 
do not provide an adequate phase tracking for precise 
positioning in low CN0 environments. It is possible to add 
a filtering step for this unwrapping structure (i.e., the filter 
involved is the inverse system of the unwrapping structure 
under linear approximation) that improves the noise 
robustness [6], but this step is not efficient enough in 
challenging environments. 
 
What is proposed in this paper is two new PLL structures 
including a phase unwrapping system that offers better 
robustness to noise. More precisely, the phase 
unwrapping algorithm used for our PLL structures is 
based on a phase polynomial prediction and pre-
compensation to anticipate cycle slips [7]. The first 
proposed PLL structure consists in analyzing phase 

discriminator outputs, thanks to the weighted recursive 
least squares algorithm (WRLS) [8], with the aim to 
predict the next phase error estimation output and pre-
compensate it into the local replica in order to reduce the 
phase dynamic stress.  
The second proposed PLL structure takes advantage of 
the low-pass nature of loop filter [9-11]. Indeed, in this 
PLL structure, the system of pre-compensation is 
unchanged but prediction is now performed by analyzing 
loop filters outputs. However, since filter outputs 
represent information about the instantaneous carrier 
frequency, an additional step is necessary to convert 
frequency prediction into discriminator output prediction. 
A conversion step is thus proposed to estimate the next 
discriminator output thanks to the loop filter analysis. 
This article is divided in four parts. The first part 
introduces the general PLL structure and notations as well 
as the incoming signal model used in this paper. The 
second and third parts respectively deal with the first and 
the second proposed PLL structures and detail the two 
proposed algorithms. The last part is a comparative study 
which highlights the efficiency of the two proposed 
structures in term of noise robustness. 
 
 
SIGNAL MODEL AND GENERAL PLL 
STRUCTURE 
 
Before studying the proposed PLL structures, let us 
introduce some notations and definitions. 
 
Signal model 
 
The incoming signal s[n]  is supposed to be a complex 
exponential signal. As code delay and data navigation 
synchronization are supposed to be established, the 
generation of the signal does not include neither Gold 
codes nor navigation data bits. The latter assumption is 
also supported by the future possibility to work on data 
pilot signal (GALILEO) [12]. We can therefore model the 
incoming signal as 
 

[ ] [ ]( ) [ ]nbniPns += φπ .2exp.  

 
 

(1) 

 
with P the received signal power, φ[n]  the carrier phase 
to be tracked and b[n] the white Gaussian thermal noise 
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The thermal noise power σ2 is given by 
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(3) 

 
with CN0 the carrier-to-noise-density-ratio and Fe the 
incoming signal sample rate.  
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General PLL structure 
 
Basic PLL structure and notations are given in Fig. 1. 
According to this figure, we define s[n]  as the incoming 
signal, δθ[n] the estimated phase error (phase 
discriminator output) that is estimated from the 
correlation output f(δθ[n]) , θ[n] the loop filter output, 
θ[n] the estimated Doppler phase of the incoming signal 
and sr[n]  the local replica. 
 

 
 

Fig. 1: Structure and notations of a standard PLL. 
 

We suppose, in the following, to work either on an ATAN 
or an ATAN2 phase discriminator [14] and a second order 
PLL. Loop filter integrators and the NCO (Numerically-
Controlled Oscillator) are modeled according to the rate-
only feedback approach illustrated in Fig. 2, which means 
that if x[n]  and y[n]  denote respectively the input and the 
output of the integrator, one has 
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(4) 

 
with T the loop sample time (which corresponds to the 
correlation time). Numerical loop filter coefficients are 
chosen as a function of the loop bandwidth BL as 
described in [13]. 
 

 
 

Fig. 2: NCO and Integrator rate-only feedback 
approach. 

 
 
 
FIRST UNWRAPPING PLL STRUCTURE: 
ANALYSIS OF PHASE DISCRIMINATOR 
OUTPUTS 
 
Overview of the PLL 
 
If we want to enforce noise robustness of phase locked 
loops, we have to deal with the cycle slips phenomenon. 
To do so, we propose in this paper to incorporate into 
PLLs a phase unwrapping algorithm which offers better 
noise robustness than algorithms based on a threshold 
approach for cycle slip detection. This unwrapping 
algorithm relies on a polynomial phase model prediction 
which aims at anticipating cycle slips [7]. 

Since cycle slips occur during the phase estimation error 
step, the first adaptation of the unwrapping algorithm is to 
make it predict the next discriminator output. Indeed, if 
one can predict the forward phase estimation error 
δθ[n+1] , a pre-compensation step can be realized to 
anticipate this evaluation at the next step of error 
estimation. By doing so, the phase dynamic stress 
estimated by the phase discriminator is reduced and 
occurrence of cycle slip is then lessened. Because these 
cycle slips are due to a critical combination of phase 
dynamics and noise, pre-compensating the dynamic stress 
allows the phase discriminator to sustain a higher phase 
noise power. In light of this remark, the new PLL 
structure is then expected to be more robust to phase 
noise.  
 
General scheme of the new PLL structure is given in     
Fig. 3. More precisely, the new structure is operating as 
follows: at each step of loop iteration, a prediction of the 
next phase discriminator output is performed thanks to the 
past outputs. Algorithm used for this estimation is the 
weighted recursive least square algorithm (WRLS) [8]. 
Once the prediction calculated, we can use it to pre-
compensate it both for local replica generation and at the 
discriminator stage. This operation reduces the tracking 
phase dynamics. Notice that a gain K is added before pre-
compensating to reduce prediction error effect. 
Obviously, this gain will be chosen such as K≤1. 
 

 
 

Fig. 3: PLL unwrapping structure analyzing phase 
discriminator outputs.  

 
So far, the new PLL structure has been defined; 
calculation steps of phase discriminator output prediction 
and pre-compensation are now detailed. 
 
Discriminator output polynomial model 
 
In order to predict the next phase discriminator output 
thanks to the WRLS algorithm, an analysis model of the 
former has to be established. The model chosen for the 
prediction step is an M degree polynomial approximation 
(which does not consider cycle slips phenomenon and 
assumes that the discriminator output is continuous), i.e.,   
 

      [ ] [ ]∑
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(5) 

where ε[n]  is the perturbation due to phase noise. 
Parameters {a0 … aM} are the polynomial phase 

. 
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coefficients that define our model. In this paper, the 
polynomial degree M will be constantly fixed to 1, i.e., we 
will suppose that the phase discriminator output can be 
approximated by a straight line. In practice, it is obvious 
that the discriminator output does not look like a line but, 
if we chose an sufficiently limited weight factor in the 
recursive least squares algorithm, this linear assumption is 
reasonable. 
 
The polynomial model defined by expression (5) will 
allow us, by estimating the parameters {a0 … aM}, to 
predict and pre-compensate the phase discriminator 
outputs thanks to the algorithm described next. 
 
 
Algorithm of prediction and pre-compensation 
 
The new PLL structure shown in Fig. 3 is based on an 
iterative unwrapping algorithm [7] which predicts and 
pre-compensates the phase discriminator output. 
Calculation steps of this algorithm are detailed further. 
 
 
1-Initialization 
To initialize the iterative algorithm of prediction/pre-
compensation, we have to compute a first estimate of the 
polynomial parameters {a0 … aM}. This initialization will 
be performed by analyzing the first phase discriminator 
outputs with the weighted least squares algorithm. 
 
More precisely, let us assume to know the N first 
discriminator outputs ∆θ∆θ∆θ∆θ(Ν)= [δθ[0], δθ[1] …δθ[N-1]] T. 
According to the polynomial analysis model of the 
discriminator output (5), we can write the linear matrix 
equation, 
 

      εaG∆θ += )()( NN  

 
 

(6) 
 
where εεεεΤ=[ε[0],ε[1],...ε[Ν−1]] is the phase noise vector, 
aT= [a 0, a1,…,aM]  the polynomial parameter vector and 
the N×(M+1) auxiliary matrix G(N) is  
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The weighted least squares estimate for polynomial 
parameters is 
 

( ) )()()()()(~ 11 NNNNN NN ∆θRGGRGa T1T −−−=  

 
 
 
 
 

(8) 

 
where RN is the weight matrix. In our study, we chose an 
exponential weight matrix RN=diag(1, λ… λN-1) with λ the 
weight factor. It is chosen as λ<1 to respect the linear 
approximation (5). 

2- Prediction of the next discriminator output 
Using the polynomial parameters vector estimation ã(n)  
(for n≥N), we can estimate the next discriminator output. 
This prediction is given by 
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where T
n 1+g is the (n+1)th row of  G(n+1), that is 
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3- Phase dynamics pre-compensation 
Pre-compensation of the phase prediction computed at the 
previous stage is performed as follows 
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where )(⋅∠  is the studied discriminator angle function 

ATAN or ATAN2, i.e., 
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with the atan2 function defined as 
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4- Polynomial coefficients updating 
A new estimation of the coefficients parameters {a0 … aM} 
is performed by updating the last estimation thanks to the 
WRLS algorithm, 
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(16) 

 
with Cn the gain vector and Pn the error estimation 
covariance matrix. 
 
 
5- Iteration  
Algorithm of prediction/pre-compensation is performed 
by iterating through steps 2-4 for each iteration step of the 
tracking loop. 
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Analysis of the PLL structure during the tracking 
 
In order to verify the efficiency of the proposed PLL 
structure shown in Fig. 3, let us track a Doppler phase and 
observe the discriminator output. Fig. 4 shows us how the 
proposed PLL structure is operating to anticipate cycle 
slips. We can see on this figure both steps of prediction 
and pre-compensation of the phase unwrapping algorithm 
used for our PLL for a free noise phase tracking. 
 
Doppler dynamics used for the experiment is fixed to 
2Hz, i.e., 

      Hz22
)0( =π

φ& . 

 
 
 
 
 
 
 
 

(17) 

 
The phase discriminator is chosen as an ATAN 
discriminator for this example (and because we assume to 
work on a C/A GPS signal) and all others parameters of 
the tracking loop are given in Fig. 4.  
 

 
Fig. 4: Prediction and pre-compensation of 

discriminator output by analyzing discriminator 
output. 

 
We can notice that during the tracking, the discriminator 
output exceeds the linearity range [-π/2, π/2] of the ATAN 
function. However, no cycle slips appears because 
discriminator output prediction is precise enough to 
anticipate it. Indeed, pre-compensation of the predicted 
output makes the phase discriminator estimate a lower 
phase dynamics and prevent the discriminator output from 
exceeding the linearity bound. Fig. 5 illustrates the 
estimation of the phase polynomial parameters {a0, a1} 
during the track. We can see that, as expected, these two 
parameters tend to be null (for a second order PLL, there 
is no steady state error when tracking a frequency step). 
 

 
Fig. 5: Polynomial coefficients estimation for phase 

discriminator output analysis. 
 

Fig. 6 shows the Doppler phase tracked by the proposed 
PLL structure and a conventional PLL. We can see that 
for the proposed PLL unwrapping structure, the cycle 
slips does not occur contrary to the basic PLL structure. 
 
Efficiency of the proposed PLL structure for noisy phase 
tracking is studied in a later section. 
 

 
Fig. 6: Phase tracking for conventional and 

unwrapping PLL analyzing discriminator output. 
 
 
SECOND UNWRAPPING PLL STRUCTURE: 
ANALYSIS OF LOOP FILTERS OUTPUTS  
 
Overview of the PLL 
 
The PLL structure described in the previous section 
analyses the phase discriminator output to predict the 
forward output and pre-compensate it. We now propose 
another new PLL structure that analyses the loop filter 
outputs to predict the next discriminator output. This new 
structure is illustrated in Fig. 7. 
 

 
 

Fig. 7: PLL unwrapping structure analyzing loop filter 
outputs. 

 
The aim of the structure in Fig. 7 is the same as the 
structure presented previously in Fig. 6: to predict and 
pre-compensate the phase dynamic stress in order to 
anticipate cycle slips. Pre-compensation stage is 
unchanged however the prediction is now calculated by 
analyzing the loop filter outputs. The main interest of this 
new configuration is to take advantage of the low-pass 
nature of the loop filter. Indeed, loop filter outputs are less 
noisy than the phase discriminator outputs, so predicting 
the former may be profitable regarding the noise 
robustness. 
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Algorithm of prediction and pre-compensation 
 
As announced previously, the pre-compensation stage is 
the same as the one introduced in Fig. 3. The only 
difference is that prediction of the next discriminator 
output is realized by analyzing the loop filter outputs. To 
do so, we have to establish an analysis model of the loop 
filter output. As before, this model is chosen as an M 
order polynomial model: 
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with v[n]  the noise component and {b0 … bM} the 
polynomial parameters we want to estimate. As for the 
former PLL structure, M will be constantly fixed to 1. The 
algorithm that recursively estimates the polynomial 
parameters is the same as described in the previous 
section. 
 
Since loop filter outputs give information about the 
instantaneous carrier frequency, an additional step is 
necessary to convert frequency prediction into 
discriminator output prediction. This new calculation step 
is described hereafter. 
 
Conversion of loop filter output prediction to phase 
discriminator output prediction  
 
Working on loop filter output involves an additional 
calculation step that converts loop filter output prediction 
to phase discriminator output prediction. In order to 
perform this conversion, we have to express the 
discriminator output δӨ(n) as a function of the estimated 
polynomial coefficients {b0,…,bk}. To do so, we use the 
phase discriminator output transfer function of the PLL 
described in Fig. 8,  
 
      ( ) )()(1)()()( zzHzzz r θθθδθ −=−=  

 
 

(19) 

 
with δӨ(z) the  phase discriminator output, Ө(z) the phase 
dynamics we want to track, Өr(z) the phase estimation and 
H(z) the linear closed loop transfer function of the PLL 
(i.e., the one that does not considers cycle slips 
phenomenon), i.e., 
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with F(z) and N(z) the transfer functions of respectively 
the loop filter and the NCO [13].   
 
 
Obviously, we do not know the expression of the tracked 
phase dynamics )(zθ . To inverse the expression (19), 

we use an estimation )(
~

zθ  of the phase dynamics built 

with the estimated polynomial coefficients {b0,…,bk}. 

These coefficients give us information about the 
frequency dynamics, i.e. (recall that M=1) 
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By integrating (21) and fixing the integration constant to 
0, we obtain 
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Fig. 8: Linear closed loop transfer function of the 

PLL. 
 
The expression (22) does not include the correlation stage 
of the PLL. If we want to precisely estimate the 
discriminator output, we have to calculate the phase 
dynamics associated to the dynamics (22) affected by the 
correlation time T. By developing the expression of the 
correlation stage and neglecting some small correlation 
terms, we obtain the equivalent phase dynamics 
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The phase dynamics expression (23) gives us [16] 
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By combining (20) and (25) into (19), it is possible to 
obtain an approximation of the phase discriminator output 

[ ]nθδ ~
 by calculating  
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Analysis of the PLL structure during the tracking 
 
Let us analyze a phase tracking with the PLL structure 
proposed in this section. Parameters of this tracking are 
the same as in the previous section so that Doppler 
dynamics used is fixed to 2Hz, the phase discriminator is 
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chosen as an ATAN discriminator and all others 
parameters of the tracking loop are given in Fig. 9. 
 

 
Fig. 9: Prediction and pre-compensation of 

discriminator output by analyzing loop filter output. 
 
We can see in Fig. 9 the evolution of the prediction and 
pre-compensation step during the track. We can notice 
that predicted and pre-compensated discriminator outputs 
are not the same as illustrated in Fig. 4. This difference 
results from the transient time of the polynomial 
coefficients estimation which induces an error in the 
frequency to phase conversion stage (26). Once again we 
note in Fig. 10 that no cycle slip occurs although the 
phase discriminator outputs exceed the linear range of the 
discriminator. As expected, prediction of the 
discriminator output reduces the dynamics at the 
discriminator input. Since this reduced phase dynamics 
does not exceed the discriminator linear range, cycle slip 
is avoided. 

 
Fig. 10: Phase tracking for PLL basic structure and 

PLL structure analyzing loop filter output. 
 
We can see in Fig. 11 the frequency polynomial 
coefficients estimates during the tracking.  
 

 
Fig. 11: Polynomial coefficients estimation for loop 

filter output analysis. 
 
 

We notice that, when steady state is reached, these two 
coefficients correspond as expected to the frequency 
dynamics, i.e., b0=2 and b1=0 (frequency dynamics: 
2Hz+0Hz/s). 
 
 
RESULTS  
 
In this section we study the noise robustness of the two 
PLL structures presented in this article. In order to 
highlight the robustness of these structures, we will 
compare them to a conventional PLL and another one that 
unwrap cycle slip by a thresholding method as described 
in [6]. To do so, a Doppler carrier phase dynamics will be 
fixed and tracked by all the four PLLs. 
For the simulation that follows, the incoming signal will 
be generated as described in equation (1) and the Doppler 
carrier phase as 
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with Te=1/Fe (we work here on a L1 C/A signal with 
Fe=2×1.023MHz) and  
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which correspond to a pedestrian Doppler dynamics 
[17,18]. For the analysis model of the phase discriminator 
output and the loop filter outputs, the polynomial degree 
M will be fixed to 1, so outputs will be approximated by 
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One can notice that, by fixing M=1 for the two proposed 
structures, we do not analyze the phase estimation error 
with the same degree. By estimating the parameters 
{b0,b1} of equation (30), we can  estimate the frequency 
dynamics and the phase acceleration; whereas the 
estimation of the parameters {a0,a1} of equation (29) is 
just informing us about the phase and the frequency 
dynamics. This is one of the advantages of analyzing loop 
filter outputs: with the same degree of analysis, one can 
access to a higher phase dynamics. Unfortunately, by 
analyzing loop filter output, we lose the phase 
information. However, this loss of phase information is 
not so critical since a phase step dynamic does not imply 
steady state error contrary to higher dynamics. 
 
The four discriminators used to compare PLLs are 
ATAN. The loop bandwidth is fixed at BL=3Hz (high 
enough to estimate the dynamics (28)) and the prediction 
time T=20ms (because we assume here to work on a L1 
C/A signal).  For the two proposed PLLs, degree of the 
polynomial analysis is fixed to M=1 as said before. The 
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WRLS weight factor λ and the gain K are empirically 
determined and fixed to λ=0.8 and K=0.6. Concerning the 
thresholding PLL, a gain K is also present in the structure. 
This gain is fixed to K=0.3 as explained in [6]. 

 
Fig. 12 shows the average performance of the PLLs 
studied for 500 phase trackings of 20 seconds each. We 
can see, as a function of the CN0, 

- The probability of loss of lock, 
- The starting time of the loss of lock, 
- The rate of cycle slips per second (based on the 

tracking time before losing the lock), 
- The time of the first cycle slip. 

When a cycle slip occurs, one can observe on phase 
estimation a transient time which corresponds to the time 
needed for the PLL to recover the steady state 
equilibrium. This transient time can be long enough to be 
considered as a local loss of lock. Thus, during the phase 
tracking, all transient times due to cycle slips that exceed 
1s (which corresponds roughly to the acquisition time of 
the loop [9]) are considered as a loss of lock.  
 
We can see on Fig. 12 that, as expected, the two proposed 
methods have a better noise robustness than conventional 
and thresholding PLL structures. They decrease the loss 
of lock limit about 4~5 dBHz for this simulation as seen 
in Fig. 12(a). We can notice in Fig. 12(b) that the two 
proposed PLLs offer a longer time of phase tracking 
before losing lock. One can also see in Fig. 12(a) and Fig. 
12(b) that the PLL structure analyzing loop filter outputs 

is more robust to phase noise than the PLL structure 
analyzing discriminator output in term of loss of lock. 
This results from the fact that discriminator outputs are 
noisier than loop filter outputs and the analysis of the 

former then offers a better noise robustness. 
 
Concerning cycle slips, we can see in Fig. 12(c) that the 
two proposed PLL structures have a better noise 
robustness in terms of cycle slips rate than the 
thresholding PLL structure. Indeed, for CN0 ranges that 
correspond to a reasonable probability of loss of lock of 
each PLL structures, we can see that the two proposed 
structures offer a lower cycle slips rate than the 
conventional and the thresholding PLLs. We can notice in 
Fig. 12(d) that the three unwrapping PLL structures have 
better performances than the conventional PLL in terms 
of time of the first cycle slip. This result can be obviously 
explained by the fact that the conventional PLL is the 
only one loop which does not possess an unwrapping 
system. Best performance is obtained with the first 
proposed PLL structure, followed by the threshoding 
structure and finally the second proposed structure. This 
last performance is quite conflicting with the fact that 
analysis of loop filter outputs is expected to be more 
robust and to offer a better cycle slips correction. 
However, this result can be explained by the presence of 
the additional conversion step (that converts loop filter 
prediction to discriminator prediction) which implies error 
of discriminator output prediction as explained before. 
 

Fig. 12: Tracking performances of the two proposed PLL structures compared to the 
thresholding PLL and the conventional PLL. 
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CONCLUSION 
 
This paper has proposed two new unwrapping PLL 
structures that offer better noise robustness than 
conventional PLLs or PLLs using thresholding approach 
to correct cycle slips. These two structures are based on a 
system of prediction and pre-compensation of the forward 
discriminator output realized by analyzing the loop filter 
or discriminator output thanks to a polynomial analysis 
model. 
 
Simulations show that, compared to threshold-based 
PLLs, the two proposed PLL structures have a better 
noise robustness in terms of loss of lock performance. 
Indeed, noise limits of loss of lock are decreased and time 
of phase tracking before the loss is increased.  
Futures works will focus on adapting the proposed 
structures to multicarrier signals with the aim to enforce 
further the noise robustness of the loops and offer better 
performance in terms of cycle slips correction. The new 
generation of navigation signals (i.e., GALILEO signals) 
will also be used for testing the performances of the two 
proposed structures when they track a pilot signal with an 
ATAN2 phase discriminator.  
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