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Performances Analysis of GNSS NLOS Bias
Correction in Urban Environment Using a 3D
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Abstract—The well-known conventional Least Squares (LS)
and Extended Kalman Filter (EKF) are ones of the most
widely used algorithms in science and particularly in localization
with GNSS measurements. However, these estimators are not
optimal when the GNSS measurements become contaminated by
non-Gaussian errors including multipath (MP) and non-line-of-
sight (NLOS) biases. On the other hand, this kind of ranging
measurements errors occurs generally in urban areas where
GNSS-based positioning applications require more accuracy and
reliability. In this paper, we use additional information of the
environment consisting of bias prediction from a 3D model and a
GNSS simulator to exploit constructively NLOS measurements.
We use this 3D GNSS simulator to predict lower and upper
bounds of these biases. Then, we integrate this information
in the position estimation problem by considering these biases
as additive error and exploiting the bounds to end-up with a
constrained state estimation problem that we resolve with existing
Constrained Least Squares (CLS) and Constrained EKF (CEFK)
algorithms. Experimental results using real GPS signals in Down-
Town Toulouse show that the proposed estimator is capable of
improving the positioning accuracy compared to conventional
algorithms. Theoretical conditions have been established to de-
termine the acceptable bias prediction error allowing better
positioning performance than conventional estimators. Tests are
conducted then to validate these conditions and investigate
the influence of the bias prediction error on the localization
performance by proposing new accuracy metrics.

Index Terms—GNSS, Multipath and NLOS reception, Posi-
tioning in urban canyons, PR bias bounds characterization, 3D
GNSS simulator, 3D city model.

I. INTRODUCTION

FREE accessibility and considerable progress of Global
Navigation Satellites Systems (GNSS) during recent years

have paved the way for providing more and more reliable ge-
olocation solutions essential for a broad range of technologies
[1].

Indeed, the steep increase of applications relying on geolo-
cation especially in urban environments has fostered a growing
trend towards the use of GNSS for positioning in these areas.
However, this exponential progress of GNSS applications in
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land navigation is not without major hurdles in its course
of development. It is generally acknowledged that reliable
GNSS positioning is not ensured in harsh environments (urban
canyons, forested or mountainous areas with restrained sky
visibility). These environments present significant challenges
for satellites positioning which explains the gap between user
requirements on one side and the existing technologies on the
other side. The build-up urban setting engenders this GNSS
performance degradation that prevents satellite positioning
systems from reaching the required navigation performance in
terms of accuracy, integrity and availability. Tall buildings and
surrounding objects present in harsh environments block the
direct line-of-sight (LOS) signal from many satellites which
reduce satellite visibility and degrade the position availability.
The remaining non-masked received signals are often con-
taminated with ranging errors and have all together a poor
geometrical distribution which corrupts the position accuracy
by several meters of error [2].

The density of various obstacles surrounding the GNSS
receiver lead to receiving reflected and diffracted signals
from buildings, walls, vehicles and other objects. Contrary to
common perceptions, these contaminated signals may have
high power especially if reflected by glass, metal or wet
surfaces. This situation produces a bias on the pseudo-range
(PR) measurements and consequently biases the position cal-
culation. Refs [3] and [4] classifies the signals received in
indirect paths into two separate types: Multipath (MP) signal
if the signal is received through both direct and alternative
paths (hence received via multiple paths) and Non-Line-Of-
Sight (NLOS) signal if the signal is received only through
reflections. This NLOS bias is a positive ranging error that
may be potentially unlimited. Even though both the NLOS re-
ception and multipath interference are often grouped together
as multipath, they are actually separate phenomena that cause
very different ranging errors [4]. Therefore, it is important
to deal with these two phenomena separately although they
usually arise together in urban areas. To date, several studies
have attempted to deal with the multipath problem through
receiver-based techniques such as narrow-correlators [5]–[7].
In fact, received multipath signals deteriorate the correlation
function shape within the receiver, and this effect produces bi-
ased pseudorange measurements. This distortion of correlation
pic, caused by multipath reception, is highlighted in reference
[4]. Receiver-based signal processing techniques in [5]–[7]
mitigate multipath by separating out the direct and reflected
signals within the receiver. Unfortunately, NLOS reception
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doesn’t produce a distortion of the correlation pic as no direct
signal is available. Then, these methods are not efficient in
the case of NLOS reception since no direct signal is available.
While some researches has been carried out on MP mitigation
[5]–[9], there are still little solutions of the NLOS problem. In
this paper, we investigate a novel robust GNSS solution that
uses external bounds of PR biases to mitigate the effect of
MP/NLOS phenomena in the state estimation towards a more
accurate navigation.

This paper is divided into six main sections. In the second
section, we propose a review of the state of the art of the
use of 3D models for MP/NLOS mitigation. The third section
illustrates the general GNSS problem statement and outlines
the poor GNSS performance with results in an urban canyon
environment in Toulouse (South-West of France). The novel
robust estimator based on bias bounding is introduced in
section 4 with simulation results using a 3D GNSS simulator.
In section 5, we study the influence of PR errors and their
correction on the positioning performance in terms of accuracy
and we validate these theoretical results in section 6 by
analyzing real data. Finally, some conclusions are summarized
in section 7.

II. STATE-OF-THE-ART: GNSS POSITIONING IN
PRESENCE OF MP/NLOS

One of the main drawbacks of the use of Global Nav-
igation Satellites Systems (GNSS) for positioning in urban
environments is the presence of ranging measurements errors
combined with a low availability of signals and a poor
geometrical satellite distribution due to satellite masking. In
particular, signals contaminated by multipath interference and
NLOS reception induce biased position estimation with several
meters of PR errors in some harsh environments [10]. In order
to achieve required accuracy in these environments, many
researches had been conducted to overcome these challenges
at the level of antenna design, hardware, receiver, post-receiver
and in measurements or position domain [3], [11].

Broadly speaking, recent published studies on the field of
GNSS positioning in harsh environments fall under three head-
ings: LOS/NLOS distinction, i.e. NLOS detection and identi-
fication, MP/NLOS modeling and mitigation and MP/NLOS
constructive use. The former tends to distinguish between
clean LOS signals and NLOS range measurements. The litera-
ture on this category has highlighted several distinction criteria
including using additional hardware for NLOS-LOS distinc-
tion, for instance dual polarization antenna [12], a GNSS
antenna array and a sky-pointing camera [13]. Without using
additional hardware, [3] argues for others simple indicators
of NLOS reception such as elevation angle selection, C/N0-
based NLOS detection and inter-satellite consistency checking
[14]. Assuming that NLOS and LOS range estimates are
perfectly distinguished, unhealthy measurements may be either
discarded [15], down-weighted by robust estimation [16]–[18]
or used constructively to enhance positioning performances
[12]–[14].

The second approach tends to reduce the adverse impact
of deteriorated MP/NLOS signals on the estimation accuracy.

Different configurations of antenna arrays are among the
hardware solution for NLOS mitigation. Working in the re-
ceiver correlator output is another well-known approach. Most
efficient technics represent standard features of professional
grade GNSS receivers, in particularly those based on narrow
and double-delta correlators [5], [6], [8], [9]. However, charac-
terized by their high complexity, these in-receiver techniques
are not effective in case of NLOS reception, because all of
them are based on the assumption of LOS reception plus a
reflected path [19]. Hence, NLOS mitigation can be performed
on the data processing stage [11]. A number of other scientific
studies carried out on NLOS elimination at the level of post-
receiver, using robust estimation techniques [17], [18], MP
modeling [20], [21] or by hybridizations with other external
sensors [22].

Since at least four measurements are required for the posi-
tion estimation, discarding faulty measurements may imply the
unavailability of a PVT solution in some situations especially
in deep urban canyons characterized by reduced visibility, i.e.,
a lack of measurements. Then, recent studies have focused
on the constructive use of these MP/NLOS observables. One
way of doing this is to predict the MP/NLOS bias via aiding
information from a 3D city model and a propagation simulator
and then correcting it in the PR measurements [22]–[24]. 3D
models used jointly with a GNSS simulator characterize on-
the-fly the measurements errors in urban environments and
try to predict blockage and reflection of GNSS signals. With
an initial position input, these models simulate the GNSS
propagation in representative types of environments (e.g. open
sky, urban and deep urban) and provide the user with several
types of information such as the number and the characteristics
of reflections, additional PR biases, etc. The quality and
reliability of the simulated signals depend on how much close
the a priori input position to the actual position to be estimated
and on the reliability of the propagation modeling at the level
of ray-tracing. Refs [23] and [24] have used the 3D model to
predict PR errors and use it constructively on the estimation
step. To manage the problem of the vicinity of the input
point in the 3D simulator and the unknown position to be
estimated, some studies use a grid of input points in the zone of
interest which means considering signal reception at multiple
candidate positions. The estimation of the position is then
provided by comparison between the received observations at
the receiver and ones of the information provided by the 3D
model such as the sky visibility [2], [25], the delay information
[26], the PR measurements [25], [27], [28] and the position
consistency [3]. Others approaches combine a simplified 3D
model of the environment with a probabilistic method to
enhance performances [29], [30]. These techniques suppose
that building layout is highly symmetric, which is mainly
the case in the down-towns of most European cities. Using
this simplified 3D model, called urban trench, path delays
of MP/NLOS signals may be computed according to some
assumed probabilities of reception.

The main challenge of using 3D models and simulators in
the position estimation is the choice of the input position. An
input point not sufficiently close to the unknown position to
be estimated may induce erroneous ranging measurements.
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Besides, although the 3D simulator are becoming more and
more reliable, they contain a certain level of inaccuracy due
to not modeling of the moving objects in the environment
(cars, pedestrians...) and some immovable objects such as
trees. In addition, it is obvious that the predicted biases from
the 3D propagation model cannot be instantaneous and highly
accurate especially with the sensitivity of the phase lag of the
reflected signal. Therefore, we propose in this paper an original
solution to handle this inaccuracy and this chicken and eggs
problem of the input position choice. Instead of using directly
the output bias value provided by the 3D simulator as it was
classically done in previous studies, we will just use an upper
and lower bound of these biases. We seek to study the problem
of positioning with NLOS GNSS pseudoranges (PR) in urban
canyons by using a 3D city model and GNSS simulator to
find the most appropriate bias bounds to constrain and correct
then the PR measurements error. A novel sensitivity analysis
on the influence of bias estimation on the localization accuracy
using this method of PR measurements correction is proposed
at the end of this study to validate the theoretical conditions
presented in the fourth section.

III. GNSS PROBLEM FORMULATION
A. Problem Statement

A GNSS is a system allowing any user over the globe to
locate upon a common referential, navigate and have a mean
for synchronization on a common reference. The location esti-
mation is ensured by a dedicated GNSS device able to estimate
the time of arrival of signals along a line-of-sight (LOS)
from at least four satellites. However, in general harsh areas,
signals may be reflected by surfaces surrounding the GNSS
receiver and then inducing an additional MP or NLOS bias
in the ranging measurement. Then, the following linearized
measurement equation formulates the GNSS problem [19]:

y = H0x + b + v (1)

Where, throughout this paper, the [M, 1] state vector x =
(x−x0, y−y0, z−z0, bc)

T contains the parameters of primary
interest, i.e. the three coordinates of the user position (x, y, z)T

and the receiver clock bias bc, which is common between all
the received satellites. y = (y1, · · · , yN )T is the [N, 1] lin-
earised pseudorange (PR) measurements vector. H0 contains
the unit line-of-sight (LOS) vectors between the satellites and
the previous user position x0 = (x0, y0, z0)T . This matrix
describes the linear connection between the measurements
y and the unknowns x. b = (b1, · · · , bN )T refers to the
additional measurement bias caused by MP/NLOS receptions
[N, 1] and is commonly called PR bias. v = (v1, · · · , vN )T is
the measurement noise supposed to be a white Gaussian noise
characterized by a known covariance matrix R = E[vvT ].

The cost function used to estimate x is straightforward [31]:

J(y|x,b) = ‖y −H0x− b‖2R−1

= (y −H0x− b)TR−1(y −H0x− b)
(2)

Let us define the scalar product and norm related to the
matrix R as:

∀a, c ∈ RN , 〈a, c〉R−1 = aTR−1c, ‖a‖2R−1 = aTR−1a
(3)

We define the orthogonal projection on H0 with regard to
this scalar product as:

∀a ∈ RN , ΠH0

R−1a = H0(HT
0 R
−1H0)−1HT

0 R
−1a (4)

Let H⊥0 be the vector subspace orthogonal to H0 with
regard to the scalar product (3). The orthogonal projection
on this subspace is equal to:

∀a ∈ RN , Π
H⊥0
R−1a = a−ΠH0

R−1a = (IN −ΠH0

R−1)a (5)
Let us express now the cost function in (2):

J(y|x,b) = ‖(ΠH0

R−1)(y−b)−H0x‖2R−1 +‖(ΠH⊥0
R−1)(y−b)‖2R−1

(6)

Using this last expression (6) as shown in Appendix A, we
express the maximum likelihood (ML) state estimate as:

x̂ML = argmin
x

J(y|x,b) = H+
0 (y − b) (7)

where H+
0 = (HT

0 R
−1H0)−1HT

0 R
−1 is the pseudo-

inverse of H0 weighted by the inverse of the measurements
covariance matrix R. The error estimation in (7) is equal to:

δxML = x̂ML − x = H+
0 v (8)

This ML estimator is the Minimum Variance Unbiased
Estimator (MVUE) of problem (1) meaning that it is an
unbiased estimator with the lowest variance, i.e. it minimizes
the Mean Square Error (MSE) and hence maximizes the
accuracy under the model Gaussianity assumption. As shown
in Appendix A, the MSE of ML estimator is equal to:

MSE[x̂ML] = E[δxMLδx
T
ML] = (HT

0 R
−1H0)−1 (9)

This maximum likelihood estimator is equal to the least
squares solution applied on the PR measurements corrected
by MP-NLOS biases. Hence, it can be seen as a sum of
a bias free-estimate computed as if no additional bias were
present and a bias-correction term. Without having additional
information on the MP-NLOS bias, the computation of this
estimator will be impossible. In this case, a possible estimation
of the state vector is given by the Least Squares (LS) solution:

xLS = H+
0 y (10)

The error of LS estimation is given by the following:

δxLS = x̂LS − x = H+
0 (b + v) (11)

In the case of uncorrelated noise and MP-NLOS bias, based
on the expression of LS estimation error in (11) as shown in
Appendix A, the MSE of the LS estimator is equals to:

MSE[x̂LS ] = E[δxLSδx
T
LS ] = (HT

0 R
−1H0)−1+H+

0 E[bbT ](H+
0 )T

(12)

The overall MSE (the trace of MSE matrix) of the LS
estimator can be written as:
OMSE[x̂LS ] = Tr{(HT

0 R
−1H0)−1}+ Tr{H+

0 E{bb
T }(H+

0 )T }
(13)

This previous equation illustrates the effect of MP-NLOS
biases on the positioning error. Indeed, using (9) and (13),
without knowing PR bias, we show the following inequality:

OMSE[x̂LS ] ≥ OMSE[x̂ML] = Tr{(HT
0 R

−1H0)−1} (14)
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B. GNSS Positioning Performance in Urban Environments

Without having any additional information on the MP and
NLOS measurement bias, the LS state estimate will not
be accurate in the sense of minimizing the Mean Square
Error (MSE). This performance degradation becomes more
important in the presence of high ranging measurements errors
caused by MP/NLOS phenomena in deep urban environments.
In this section, we illustrate this aspect by evaluating the GNSS
positioning accuracy in an urban environment in Toulouse.

1) General Experimental Setup:
Experiments have been carried out in Toulouse to assess the
level of performance of GNSS positioning in harsh areas.
The used GPS L1 C/A code PR measurements were recorded
along the Capitole Square in Toulouse using an AsteRx3
SEPTENTRIO receiver and a SPAN Novatel system including
a DGPS receiver tightly integrated with an IMU-FSAS (from
iMAR), with decimeter level of accuracy. We consider the
trajectory provided by the Novatel receiver as the reference
trajectory. The measurement was sampled at 10 Hz.

For this test, we use a 4-min trajectory along a deep urban
environment characterized by narrow streets and buildings
alongside the streets. The following table summarizes the set
of some of the received GPS/GLONASS signals during this
measurement campaign.

TABLE I: SOME RECEIVED SIGNALS IN THE CONSIDERED URBAN SECTION
(G FOR GPS SATELLITES AND R FOR GLONASS SATELLITES)

G13 G15 G22 G28 R08 R09 R11
Elevation (◦) 52.4 82.2 5.9 26 62 35 25.5
C/N0(dB-Hz) 42 47.7 35.5 27.7 34 24 28

The Sky-plot of the received GPS and GLONASS satellites
in the tested deep urban section is shown in Fig. 1.

Fig. 1: Sky-plot of GPS/GLONASS satellites

2) Evaluation of GNSS Positioning in Urban Environments:

These recorded PR measurements collected along this urban
canyon environment show how poor is the GNSS positioning
performance in presence of MP and NLOS biases. The ob-
tained results are shown in Fig. 2. This figure presents also
the cumulative distribution function (CDF) of the trajectory
position error with respect to the reference trajectory in each

(a)

(b)

Fig. 2: Example vehicular results in Toulouse: 2(a) Positioning using Least Squares
solution: Blue dots refer to the reference trajectory; red dots refer to the LS trajectory; 2(b)
Localization errors distribution of the Least Squares solution: North, East and Vertical
positioning errors in urban environments.

ENU direction using a conventional least squares with GPS
signal only.

As shown in Fig. 2, it’s obvious that GPS-based localization
using conventional estimators in urban areas can be highly
inaccurate. Satellite Shadowing, high Dilution Of Precision
(DOP) and reception of signals contaminated by MP and
NLOS biases are the main reasons of this degraded GNSS
positioning. It is apparent from these curves that GNSS-based
positioning accuracy is degraded since we obtain, for example,
more than 10 meters of position error in the north direction
in almost 40% of the time. Hence in this case, this status of
technology doesn’t match the user need in a wide range of
application.

This poor GNSS localization performance stems from large
ranging measurement errors and an unfavorable satellite geo-
metrical distribution. Indeed, satellite masking and shadowing
induce a bad satellite geometry which lead to a high DOP
that exceed 1 in 100% of the samples in this scenario for both
HDOP and VDOP. The mean value for both HDOP and VDOP
are also high (4.2 for instance for HDOP in this case). Another
interesting aspect that might be highlighted for GNSS-based
localization is signal unavailability due to satellite masking by
high buildings. We note that during an interesting part of the
trajectory, there is a problem of satellite visibility, with less
than four measurements available in some cases.

It is also worth noting that this poor GNSS localization
performance in urban areas does not depends on the GNSS
constellations or signals used. As explained in the introduction,
it is clear that any GNSS signal may be reflected by building,
walls or surfaces presents in the environment regardless the
satellite constellation used. Although the multi-constellation
aspect is essential in harsh environment settings to improve
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signals availability, no enhancement is acquired in terms of
ranging accuracy which is limited by physical phenomena
of signal propagation. Then, the trajectory obtained using a
conventional least squares with GPS and GLONASS signals
is surely more accurate than the one obtained using only
GPS signals but it does not reach the required navigation
accuracy needed for most of GNSS-based applications in
urban environments. Fig. 3 shows histograms of positioning
errors in each ENU direction using conventional LS with GPS
and GLONASS signals.

Fig. 3: Localization performance along an urban trajectory: North, East and Vertical
positioning errors in bi-constellation mode

C. GNSS Pseudoranges Correction

In this sub-section, we suppose that we can obtain an
estimation of the PR bias using an external information source
such as 3D GNSS simulator for instance. This estimation
is referred to as c. Also, we suppose that we build a new
weighting matrix Rb based on this predicted PR bias c.

The final solution of problem (1) with measurement cor-
rection would be a corrected least squares (CLS) using the
estimation of the PR bias and is expressed as:

xCLS = H+
b y (15)

Where yc = y − c are the corrected PR measurement
and H+

b = (HT
0 R
−1
b H0)−1HT

0 R
−1
b is the pseudo-inverse of

H0 weighted by the inverse of the measurements covariance
matrix Rb that might be different from R. The error of
estimation is given by:

δxCLS = x̂CLS − x = H+
b (b + v − c) (16)

If we note δb = b−c the error in the PR bias prediction, the
accuracy of the CLS estimator is characterized by the MSE.
Using straightforward matrices rules similar to those shown in
Appendix A, we express the MSE of the CLS estimator as:

MSE[x̂CLS ] = E[δxCLSδx
T
CLS ]

= (HT
0 R
−1
b H0)−1 + H+

b E[δbδbT ](H+
b )T

(17)

The overall MSE of the CLS estimator can be written as:

OMSE[x̂CLS ] = Tr{(HT
0 R

−1
b H0)−1}+Tr{H+

b E{δbδb
T }(H+

b )T }
(18)

Because the weighting matrix Rb is generally an
augmented matrix version of the covariance R, i.e.
Tr{(HT

0 R
−1
b H0)−1} ≥ Tr{(HT

0 R
−1H0)−1} and because of

the presence of PR bias prediction error δb in expression (18),
this yields the following inequality:

OMSE[x̂CLS ] ≥ Tr{(HT
0 R
−1H0)−1} = OMSE[x̂ML]

(19)
This means that the conventional LS estimator doesn’t reach

the optimal MSE while the proposed CLS estimator does
under the condition of low bias prediction error δb. But, the
accuracy of the proposed algorithm depends on the PR bias
estimation used to correct the PR measurements. Hence, a
good estimated PR bias that enhances performance compared
to conventional methods must follow as much as possible the
true bias as expressed in (18). In the following sub-section,
we propose to use bias bounds estimated from a 3D GNSS
simulator to both constrain and correct PR measurements.

IV. GNSS MEASUREMENT CORRECTION BY BIAS
BOUNDING

A. Measurements correction using PR bias bounds

We evaluate the added-value of PR bias correction in term
of localization performance along the deep urban path. To do
that, we use our proposed algorithm in [32].

We assume that at every time step the MP-NLOS bias b
is bounded, i.e. we assume the following inequality for each
time step and for each received PR signal:

(l)n ≤ (b)n ≤ (u)n,∀n = 1, 2, . . . , N

Where l = (l1, · · · , lN )T refers to the lower bound of
the PR bias and u = (u1, · · · ,uN )T is the upper bound of
the PR bias. This bias bounding allows constraining the LOS
measurement vector H0x:

cinf ≤ H0x ≤ csup (20)

Where cinf = (y1−u1− 3σ1, · · · ,yN −uN − 3σN )T is the
lower bound of the LOS measurement vector H0x and csup =
(y1 − l1 + 3σ1, · · · ,yN − lN + 3σN )T is the upper bound of
the LOS PR vector H0x and σ2

i = Ri,i,∀i = [1, . . . , N ].
Assuming that the bias is Gaussian between these two

bounds and since the MP-NLOS bias and the measurement
noise are independent, the total noise b + v will have a non-
zero Gaussian distribution with a covariance matrix equal to:

Rb = R + diag{[(un − ln)/6]2}n=1,...,N (21)

The mean value of the total noise distribution must be
subtracted from the PR measurement vector when estimating
the state vector. We get finally a constrained state estimate
with PR measurements correction using PR bias bounds:x̂CLS = argmin

x
‖y − (u + l)/2−H0x‖R−1

b

cinf ≤ H0x̂CLS ≤ csup
(22)

This quadratic problem can be resolved using the Matlab
routine quadprog. The obtained solution from (22) is referred
to as the constrained solution and can be combined with a
motion model to end-up with a constrained EKF with bias
bounding, called CEKF. The proposed approach is summarized
in the algorithm 1 below.
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Algorithm 1 : Constrained LS with bias bounding (CLS)
Inputs: y, H0

Output: x̂CLS

1: Search area and grid of candidate positions:
Define input points Γ = {xi = (xi, yi, z)

T } where z is
given by the 3D GNSS simulator.

2: Bank of 3D PR bias measurements:
Predict a bank of PR bias using SPRING, i.e. predict
Ω = {b3D(xi) = (b3D(xi)1, · · · ,b3D(xi)N )T } for each
input position and each received satellite.

3: Lower and upper PR bias bounds:
Define lower and upper bias bounds as:
l = min

xi∈Γ
(b3D(xi)), u = max

xi∈Γ
(b3D(xi)).

4: Lower and upper bounds of LOS measurement H0x:
Compute cinf = y−u− 3(σ)i=[1,...,N ] the lower bound,
csup = y − l + 3(σ)i=[1,...,N ] the upper bound and
Rb = R + diag{[(un − ln)/6]2}n=1,...,N .

5: Final Estimate: LS applied to corrected PR with aug-
mented covariance noise matrix and LOS PR bounding:x̂CLS = argmin

x
‖y − (u + l)/2−H0x‖R−1

b

cinf ≤ H0x̂CLS ≤ csup

Ref [4] explains that NLOS reception and multipath inter-
ference are separate phenomena that exhibit different rang-
ing errors. However, our proposed positioning algorithm is
correcting the additional bias on PR measurements, based
on PR bias bounds, without doing any distinction between
different reception status of the GNSS signal (MP or NLOS
reception). Hence, we have chosen to merge both MP and
NLOS phenomena in this paper. The idea is to correct the
additional pseudorange path, i.e. PR bias, in both cases of MP
and NLOS receptions.

The performance of this algorithm will be evaluated in
next sub-sections using bias bounds predicted with a reference
system and bias bounds predicted using a 3D GNSS simulator.

B. Measurements correction with reference PR bias bounds

In this sub-section, we have used the same data recorded
in an urban canyon environment with narrow streets and high
buildings in down-town Toulouse displayed in the Fig. 2.

We first use artificial PR bias bounds based on true bias
prediction. The prediction of the true PR bias is performed
using the algorithm proposed in [33]. This algorithm is based
on exploiting the errors in solutions or computed positions , i.e.
positioning errors δxLS , to predict the errors in observations
or PR measurements, i.e. PR bias b. As expressed in (11), the
positioning error of LS estimation δxLS depends linearly on
the pseudorange error b. Hence, PR bias can be determined
by simply inverting this equation as presented in [33]. To
better illustrate this method, the main steps are summarized in
algorithm 2.

PR bias represents the difference between the signal re-
ceived through reflections, with or without reception of direct

Algorithm 2 : True PR bias prediction
Inputs: y, H0

Output: True bias prediction bTrue

1: Reference satellite (most reliable satellite) selection:
based on elevation criterion for example.

2: True positioning error determination based on refer-
ence position:
Compute δxLS = x̂LS −xTrue, where xTrue is obtained
from a reference system.

3: Predict true PR bias:
Using reference satellite and knowing the true positioning
error, invert equation (11), i.e. δxLS = H+

0 (b + v), to
predict the PR bias term (b + v).

signal, and the direct LOS signal from the satellite. Position
errors represent the difference between the estimated position
using the least squares (LS) algorithm and the reference
position. This error can be accurately estimated using the
reference information of vehicle position provided by a DGPS
receiver tightly integrated with an IMU.

As having a reference pseudorange, i.e. the value of direct
line-of-sight signal, is difficult to obtain, the pseudorange error
can be calculated using the error in the LS estimation. The
main problem is having a reference of the receiver clock bias
to apply this algorithm.

The receiver clock bias is eliminated by proceeding to a
differentiation of all ranging measurements across satellites
using a reference satellite. The selection of reference satellite
is quite important. This satellite must have a reliable and
almost clean ranging measurement. Basic indicators for this
selection process include elevation angle and C/N0 values.
Ref. [33] proposes a reference satellite selection using LOS
probability obtained via signal power distributions using ex-
perimental data. In this work, we have used the elevation angle
as an indicator for reference satellite selection.

In summary, this pseudorange bias prediction technique
relies on the use of position errors using a reference system and
the compensation of the clock bias using a reference satellite.
This technique has been tested and validated using real GNSS
data collected in Toulouse.

Based on this predicted true PR bias, we define upper and
lower bias bounds for each received PR signal as:{

l = bTrue −m, m ∼ N (µm, σ
2
m) +m

u = bTrue + M, M ∼ N (µM, σ
2
M) +M

(23)

Where bTrue is the true PR bias vector. In this sub-section,
we have taken these constants equal to: m = 17 meters, M =
12 meters, (µM)n ∼ U(0, 9), (µm)n ∼ U(0, 6), (σM)n ∼
U(0, 5) and (σm)n ∼ U(0, 3), ∀i = [1, . . . , N ].

These used values of m and M are fixed as a way of illus-
tration to assess the performance of the proposed positioning
algorithm based on artificial PR bias bounds. These variables
m and M are defined to make sure that the upper and lower
bounds are the most variable possible from the predicted true



7

PR bias, with a Gaussian variation. Others values of m and
M have been tested and give the same result.

By way of illustration, Fig. 4 shows these artificial bias
bounds for PRN 28:

Fig. 4: Artificial Bias Bounds and True bias for satellite PRN 28: Artificial bias bounds
are obtained using reference system

The accuracy of the position estimation depends essentially
on the correction made by mean bias bounds. Curves of the
trajectories obtained using conventional EKF (in red) and the
CEKF estimator with bias correction (in green) is shown in
Fig. 5(a). We illustrate also the uncertainty on the position
estimation for each estimator by drawing the ellipsoidal con-
fidence domain. The blue trajectory represents the reference
trajectory obtained with the SPAN Novatel system.

In Fig. 5(b), we have studied the positioning in a particular
point in this urban trajectory. We display the reference point
in blue dots, the CEKF solution and the conventional EKF
position. The LOS paths are also displayed from the received
satellites to the reference point. In this situation, only four
signals are received of which two are in direct paths plotted
in green. The other two signals, drawn in cyan, are received
in NLOS situation. This figure shows that the CEKF solution
gives better positioning performance compared to the conven-
tional EKF solution in this case of reception of only four PR
measurements: two LOS signals and two NLOS signals.

It can be clearly seen from Fig. 5 that the corrected EKF
with bias bounding gives good positioning performance. Fig.
6 shows the cumulative distribution function of the horizontal
position errors of EKF estimator, CLS with bias bounding and
the CEKF with bias bounding. It is apparent from the CDF
figure that our approach gives more positioning performance
compared to the conventional EKF since we have less than 8
meters of horizontal positioning error in 99% of cases in this
kind of harsh areas.

C. 3D GNSS simulator SPRING

SPRING is a GNSS simulator developed by the French
Space Agency (CNES) that has the capability of simulating,
via ray-tracing techniques, all paths to be received in a certain
input position at a certain time.

3D GNSS simulator SPRING allows the simulation of the
propagation of the GNSS signals inside a realistic 3D scene
for an in depth analysis of the signal reception status. A ray
tracing method is integrated to simulate the GNSS signal
propagation in a representative and accurate model of the

(a)

(b)

Fig. 5: Positioning performance in urban canyons: 5(a) Example vehicular results in
Toulouse; 5(b) An example of GNSS in presence of NLOS situation.

Fig. 6: CDF of horizontal errors using artificial bias bounds

3D scene. This propagation model, based on launching of
rays for each possible direction starting from the receiving
antenna, takes into account all types of propagations: free-
space propagation, reflection, refraction, diffraction etc. Fi-
nally, a reception channel model and a receiver model enable
the acquisition and tracking of the GNSS signals in order to
calculate pseudoranges, phase and Doppler measurements of
the acquired satellites.

The main steps used for 3D PR bias estimation at each
candidate position are summarized in algorithm 3. It must be
emphasised that PR receiver bias is omitted in 3D simulation
as the receiver is supposed to be synchronized with emitted
satellites.

D. GNSS Measurements correction by bias bounding using a
3D GNSS simulator

We use now the 3D GNSS simulator SPRING to define
upper and lower bias bounds as explained in [32]. Tests were
carried out to assess the level of performance achieved by PR
measurement correction based on bias correction using bounds
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Algorithm 3 : 3D GNSS Simulation using SPRING
Inputs: GPS Time, Satellite ephemeris, 3D city Model

and input position xi

Output: 3D bias b3D(xi)

1: Compute satellite positions xSati
i

2: Determine LOS distance between each satellite and the
input position:
For each satellite Sati, compute PRLOS

i = ‖xi−xSati
i ‖2.

3: Predict 3D received PR measurements:
For each satellite Sati, predict PR3D

i , using the 3D
model, ray-tracing algorithm and the receiver model im-
plemented in SPRING.

4: Compute PR bias:
As all the other ranging errors are not modelled, PR bias
is the difference between predicted PR measurements and
LOS distance: [b3D(xi)]i = PR3D

i − PRLOS
i .

prediction from the 3D GNSS simulator SPRING [34]. We use
now a 3D GNSS simulator to predict upper and lower bias
bounds. We have used the same data recorded in the same
urban canyon environment studied in the previous example
above. For PR bias bounds prediction, we have used the
algorithm described in [32] with a grid of 3×3 points centred
in the true position and spaced by (10−5)◦ in longitude and
latitude, i.e. 1 meter in north and east directions. After the PR
bias bounds estimation using this grid, the CEKF position can
be computed and compared to the conventional EKF position.
Performances will depend on the quality of the PR bias bounds
prediction using the 3D GNSS simulator.

As a way of illustration, the variation of the bias bounds
using the 3D simulator SPRING is drawn in Fig. 7(a) for
PRN 28 for example. Fig. 7(b) provides the CDF of horizontal
positioning errors of both solutions.

The predicted PR bias bounds have a different variation
compared to the true PR bias which means that the 3D esti-
mated mean bias bounds have a higher variation than the true
unknown PR bias variation. The previous CDF figure shows
that the CEKF estimator gives a performance improvement
compared to EKF with bias bounds estimated using a 3D
GNSS simulator especially for high positioning errors.

Taken into account that the 3D simulator SPRING is under
permanent improvement and evolution by CNES, these results
shows the usefulness and the potential of these tools for
positioning enhancement in presence in MP/NLOS biases.

The proposed method based on PR bias bounds is essentially
sensitive to these PR bias correction by mean bias bounds
and then to the bias bounds prediction as shown before.
Then, we propose in the next section to study acceptable
level of PR bias estimation using a 3D simulator to obtain
better positioning accuracy than the conventional algorithm
like LS. This admissible region of inaccuracy will be defined
theoretically in next section and validated in the last section
using real GNSS data.

(a)

(b)

Fig. 7: Positioning performances using 3D bias bounds: 7(a) 3D Bias Bounds, 3D
estimated bias at reference position and True bias for satellite PRN 28; 7(b) CDF of
horizontal errors along the considered trajectory using 3D bias bounds estimation.

V. PERFORMANCES ENHANCEMENT BY GNSS
PSEUDORANGES CORRECTION

A. Simulator Requirements for Performance Improvement

1) Requirement for Accuracy Improvement:

The fundamental question addressed in this sub-section is:
how much accurate the PR bias estimation, by a 3D simulator
or others tools, should be to ensure that the proposed CLS
algorithm give better results in term of accuracy than the
conventional LS. This amounts to find the maximum accept-
able level of uncertainty on the PR bias prediction required to
obtain a performance enhancement compared to conventional
positioning algorithms such as least squares algorithm. The
maximum acceptable level of inaccuracy in PR bias prediction
to achieve better accuracy performance by PR correction
compared to the conventional LS is defined by using the
OMSE of the CLS estimator as:

OMSE[x̂CLS ] = Tr{MSE(x̂CLS)} ≤ OMSE[x̂LS ] = Tr{MSE(x̂LS)}

In case of uncorrelated MP-NLOS bias b, this leads to:

Tr{H+
b E{δbδb

T }H+
b } ≤ Tr{H+

0 E{bb
T }(H+

0 )T } − βb
⇒

∑
k,i

[(H+
b )k,i]

2(E{δbδbT })i] ≤
∑
k,i

[(H+
0 )k,i]

2(E{bbT })i]− βb

(24)

Proof: See Appendix B.

Where βb = Tr{(HT
0 R
−1
b H0)−1}−Tr{(HT

0 R
−1H0)−1}.

In the case of only one faulty measurement in the ranging
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measurement from one satellite j, i.e. b contains only one
non-zero value, this condition can be simplified as:∑
k

[(H+
b )k,j ]

2(E{δbδbT })j ≤
∑
k

[(H+
0 )k,j ]

2(E{bbT })j−βb

If we define the damping coefficient εj =

∑
k

[(H+
0 )k,j ]

2∑
k

[(H+
b )k,j ]2

,

then we have:

(E{δbδbT })j ≤ εj(E{bbT })j − (βb/
∑
k

[(H+
b )k,j ]

2) (25)

This damping coefficient appears because we have aug-
mented the noise covariance matrix Rb using the PR bias pre-
diction c. If we haven’t use this augmentation, i.e. Rb = R,
then the damping coefficient εj will be equal to 1 and βb = 0.
Thus, the condition (25) became:

(E{δbδbT })j ≤ (E{bbT })j (26)

This condition means that the bias bound prediction error
must have a lower variation than the true unknown PR bias
variation to obtain better performance by correcting the PR
measurement. The damping coefficient allows widening the
admissible region of bias estimation inaccuracy since it is
higher than 1, in general.

The condition (24) is a general condition that any position-
ing algorithm based on the PR measurements correction must
verify to ensure lower estimation errors than conventional least
squares algorithm without PR measurement correction. This
condition defines the maximum acceptable level of uncertainty
on the PR bias prediction in terms of positioning accuracy.
Condition (24), obtained in the case of only one faulty ranging
measurement, will be validated using true GNSS data in the
last section of this article.

2) Accuracy Improvement indicator:

We can define the following positioning accuracy enhance-
ment/degradation percentage obtained after PR measurements
correction as:

ρAccuracy =
OMSE[x̂LS ]−OMSE[x̂CLS ]

OMSE[x̂LS ]
(27)

ρAccuracy reflects the accuracy enhancement by PR correc-
tion compared to LS algorithm. If we have a good bias predic-
tion using 3D simulator, i.e. δb decrease, then OMSE[x̂CLS ]
will decrease and hence ρAccuracy increase.

B. Requirement in case of Gaussian Bias Prediction Error
In this sub-section, we consider the particular case of a

Gaussian PR bias prediction error δb. We consider the case
of only one faulty measurement in the ranging measurement
obtained from satellite j. We suppose that the bias prediction
error of the measurement from this satellite δb = (δb)j
follows a Gaussian distribution (δb)j ∼ N (µ, σ2). Since
the MSE matrix is diagonal, we have this relation between
the Root Mean Square Error (RMSE) and the Overall Mean
Square Error (OMSE): RMSE =

√
OMSE. The previous

relation will be verified by simulations in the next section.

The OMSE and the RMSE are functions of the bias prediction
errors as:

OMSE(µ, σ) = Tr{(HT
0 R

−1
b H0)−1}+

∑
k

[(H+
b )k,j ]

2E{δbδbT }j

= Tr{(HT
0 R

−1
b H0)−1}+

∑
k

[(H+
b )k,j ]

2(σ2 + µ2)

(28a)

RMSE(µ, σ) =
√
OMSE(µ, σ)

=

√
Tr{(HT

0 R
−1
b H0)−1}+

∑
k

[(H+
b )k,j ]2(σ2 + µ2)

(28b)

Proof: See Appendix B.

In this case, the condition on the mean µ and the variance
σ2 of this bias estimation error on satellite ”j”, i.e. (δb)j , to
obtain better positioning performance than the LS algorithm
is as follows:

(E{δbδbT })j ≤ εj(E{bbT })j − (βb/
∑
k

[(H+
b )k,j ]

2)

⇒ (σ2 + µ2) ≤ εj(E{bbT })j − (βb/
∑
k

[(H+
b )k,j ]

2)

(29)

It can be easily verified that if the error in the bias prediction
(δb)j increase, i.e. µ and σ are high, OMSE(µ, σ) and
RMSE(µ, σ) increase, meaning that the positioning accuracy
decrease, i.e. ρAccuracy decrease. Relations (28a), (28b) and
(29) obtained in this particular case will be verified using real
GNSS data in the next section.

VI. EXPERIMENTAL RESULTS
The purpose of this section is to investigate on the impact

of PR bias estimation on the GNSS-based localization perfor-
mance in term of positioning accuracy. Theoretical conditions
have been established in the fourth section in (28a), (28b)
and (29). Then, the aim of this section is to validate these
conditions in a simplified case of one faulty ranging measure-
ment. This study seeks to find the maximum acceptable level
of uncertainty on the PR bias prediction required to obtain a
performance enhancement compared to conventional position-
ing algorithms such as the conventional least squares. This
maximum acceptable level of PR bias prediction uncertainty
will define the minimum degree of realism that any 3D GNSS
simulator must achieve to make the proposed method based on
PR measurement correction more efficient than conventional
methods.

The bias prediction error can be defined as: δb = b − c.
As this vector has N values corresponding to the received PR
measurements, the sensibility analysis is difficult to be exe-
cuted by varying these N values together. Since the MP/NLOS
biases of different satellites are uncorrelated and without loss
of generality, we have chosen to study the influence of the
estimation of the bias satellite by satellite along the entire
trajectory. Then, we start by correcting the PR measurements
from all satellites using the true bias estimation using [33],
except for one satellite, which is the satellite under study
(PRN 28 in this case). We consider than that we have only
one unhealthy ranging measurement (from satellite PRN 28)
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and we study the influence of the corresponding bias prediction
error on the localization performance by measurement correc-
tion. To find the maximum acceptable level of bias prediction
error required for performance enhancement, we introduce
an artificial mean and variance such as the bias prediction
error for one satellite vary according a Gaussian distribution
meaning that:

(δb)Satellite=PRN28 ∼ N (µ, σ2); (δb)Satellite 6=PRN28 = 0

The investigation on the influence of the bias prediction
on the proposed algorithms performance will be based on
studying the variation of the mean, termed as shift also in
this paper, and the variance of this Gaussian distribution on
the localization performance. Performance indicators used are
the position accuracy computed via the Root Mean Square
Error and the Overall Mean Square Error:

OMSE =

Npoint∑
i=1

‖Xi
LS−Estimated −Xi

reference‖22
Npoint

where Npoint is the number of samples in the trajectory
tested (the same trajectory as in the previous study in section
3 and represents in this case the number of Monte-Carlo itera-
tions. Since the MSE matrix is diagonal, we have this relation:
RMSE =

√
OMSE that will be verified by simulations.

Finally, we suppose that Rb = R.
The following figure illustrates the RMSE and the OMSE

variation depending on the mean and the standard deviation
of the bias prediction error Gaussian distribution.

(a)

(b)

Fig. 8: Accuracy analysis for LS and CLS: 8(a) OMSE; 8(b) RMSE.

Constant curves, i.e. the flat curves in blue, correspond to
the RMSE and the OMSE obtained using the conventional
Least Squares. It is normal to get constant curves with LS
in 8(a) and 8(b) since this estimator is computed without

bias correction and hence doesn’t depends on the mean µ
and the standard deviation σ of the bias correction term.
The other variable curves in 8(a) and 8(b) correspond to
the variation of the RMSE and the OMSE obtained using
measurement correction. First, it can be easily seen that the
RMSE variation correspond to the root of the OMSE variation.
Second, both curves, i.e. the curves of RMSE and OMSE of
both conventional LS and LS with PR measurement correction,
follow the variation predicted using the theoretical study and
summarized in (28a) and (28b). Both figures show that a bad
bias prediction will lead to higher positioning errors by PR
correction compared to the LS estimator.

The top view of the RMSE variation curve in Fig. 9
illustrates a region of acceptable bias prediction error defined
as the region of bias prediction error allowing performance
enhancement compared to conventional algorithms such as the
conventional least squares in this case. Fig. 9 shows this region
of maximum acceptable margin of error in bias prediction error
using a 3D GNSS simulator, hence, the minimum degree of
realism on 3D simulation, using SPRING simulator in this
studied environment, necessary to to ensure better positioning
accuracy by measurement correction.

Equation (29) specifies the condition that this region of
acceptable bias prediction error must verify. This equation
describes a region of acceptable bias prediction error with a
semi oval shape as shown in 9(b) which validates the condition
(29). We can notice that we have a small and limited region
of acceptable PR bias prediction error for this satellite and in
this scenario which means that any tool that aim to predict
the PR bias, such as a 3D GNSS simulator, must have a high
level of realism and accuracy to successively estimate this bias
and obtain better positioning performance than conventional
algorithms.

We compare now the accuracy indicator depending on the
error on PR bias prediction. The variation of the positioning
accuracy enhancement/degradation percentage, expressed in
(27), is shown in Fig. 10 versus the mean µ and the standard
deviation σ of the bias correction term. Correcting PR bias will
induce an accuracy enhancement compared to the conventional
least squares when the error in the bias prediction is confined
in a region of acceptable PR bias estimation error as shown
in Fig. 9. However, this accuracy enhancement/degradation
indicator is optimal when the predicted bias is following the
variation of the true bias.

Finally, the PR measurement correction term must be as
close as possible to the true ranging bias to obtain a positioning
accuracy enhancement compared to conventional PVT estima-
tors; if not this pseudorange measurement correction will lead
to performance degradations.

VII. CONCLUSION

A considerable amount of literature has been published on
the GNSS positioning in harsh environments. These studies
aim generally to mitigate PR biases instead of their construc-
tive use. This research sheds new lights on the constructive use
of signals contaminated by MP and NLOS biases by bounding
these erroneous PR measurements. The key strength of this
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(a)

(b)

Fig. 9: Acceptable bias estimation error region: 9(a) RMSE variation for LS and CLS
with the acceptable level of bias prediction error; 9(b) Top view of the acceptable bias
estimation error region (consistent with (29)).

Fig. 10: Positioning accuracy enhancement/degradation percentage

study is its optimal effectiveness when the PR bias bounds
are well predicted with respect to the true bias. Although
the current study is based on one trajectory tested in an
urban environment in Toulouse, the findings suggest that the
proposed algorithm gives good positioning accuracy in case of
predicted bias bounds following approximately the true bias
variation.

Another aspect has been studied in sections 4 and 5,
which is related to the question of how accurate the PR
bias prediction should be to ensure that PR measurement
correction will give better positioning accuracy than conven-
tional positioning algorithms without measurement correction
such as the conventional LS. This amounts to finding the
maximum acceptable level of uncertainty on the PR bias
prediction required to obtain a performance enhancement by
PR measurements correction. This sensitivity analysis allows
defining a maximum acceptable region of PR bias prediction
error which is equivalent to defining a minimum degree of
realism that any 3D simulator must achieve to ensure that PR

measurements correction will induce accuracy enhancement.
In this matter, it has been shown in this particular example of

urban positioning that 3D GNSS Simulator SPRING achieves
good degree of realism below the required level since PR
measurements correction using this software gives better po-
sitioning accuracy than conventional algorithms. Furthermore,
it is shown in [34] that the level of bias estimation uncertainty
using the simulator SPRING is under the maximum allowed
level. Hence, most of the time, the level of realism on bias
prediction using this simulator allows PR bias correction and
performance enhancement in these kinds of harsh environ-
ments. However, if diffraction and NLOS are present and
accumulated and not accounted for in the simulation at a
certain position or instant of time, the simulation result may
be quite different from reality.

Further work could focus on enhancing the 3D city model-
ing and propagation simulation to reach the required level of
realism, making the proposed method more and more effective.
A natural progression of this work is to analyze the effective-
ness of the proposed algorithm in other environments and with
different 3D city models to make a general conclusion. This
would be a fruitful area for further studies.

APPENDIX A: ML ESTIMATOR AND DERIVATION OF THE
MSE OF THE ML AND LS ESTIMATORS

By definition, the maximum likelihood (ML) estimator is
the estimator minimizing the likelihood function:

x̂ML = argmin
x

J(y|x,b)

The likelihood function can be expressed as:

J(y|x,b) = ‖y −H0x− b‖2R−1

= ‖ΠH0

R−1(y −H0x− b)‖2R−1 + ‖ΠH⊥0
R−1(y −H0x− b)‖2R−1

= ‖ΠH0

R−1(y − b)−H0x‖2R−1 + ‖ΠH⊥0
R−1(y − b)‖2R−1

This yields the following expression for the ML estimator:

x̂ML = argmin
x
‖ΠH0

R−1(y − b)−H0x‖2R−1

= argmin
x
‖H0(H+

0 (y − b)− x)‖2R−1

where H+
0 = (HT

0 R
−1H0)−1HT

0 R
−1 is the pseudo-inverse

of H0 weighted by the inverse of the measurements covariance
matrix R. This last expression gives the final expression of the
ML estimator, given in (7) :

x̂ML = H+
0 (y − b) ⇐⇒ H0x̂ML = ΠH0

R−1(y − b)

The MSE of this ML estimator is defined as:

MSE[x̂ML] = E[δxMLδx
T
ML] = E[(H+

0 v)(H+
0 v)T ]

= E[H+
0 vv

T (H+
0 )T ] = H+

0 E[vvT ](H+
0 )T

As E{vvT } = R, then this yields:

MSE[x̂ML] = H+
0 R(H+

0 )T

= (HT
0 R

−1H0)−1HT
0 R

−1RR−1H0(HT
0 R

−1H0)−1

= (HT
0 R

−1H0)−1
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This proves relation (9). Using the same derivation, we can
prove the MSE derivation of the LS estimator given in (12):

MSE[x̂LS ] = E[δxLSδx
T
LS ] = E[(H+

0 (v + b))(H+
0 (v + b))T ]

= E[H+
0 vv

T (H+
0 )T ] + E[H+

0 bb
T (H+

0 )T ]

= (HT
0 R

−1H0)−1 + H+
0 E[bbT ](H+

0 )T

APPENDIX B: PR BIAS PREDICTION UNCERTAINTY

Proof of Relation (24)

We start from the accuracy requirement from V-A1:

OMSE[x̂CLS ] ≤ OMSE[x̂LS ]

The expressions of the OMSE of CLS and LS estimators are
given in (18) and (13) and are recalled below:{
OMSE[x̂LS ] = Tr{(HT

0 R−1H0)−1}+Tr{H+
0 E{bbT }(H+

0 )T }
OMSE[x̂CLS ] = Tr{(HT

0 R−1
b H0)−1}+Tr{H+

b E{δbδb
T }(H+

b )T }

If we note the following term βb = Tr{(HT
0 R
−1
b H0)−1} −

Tr{(HT
0 R
−1H0)−1}, the accuracy requirement expressed at

the beginning of this appendix can be written as:

Tr{H+
b E{δbδb

T }H+
b } ≤ Tr{H+

0 E{bbT }(H+
0 )T } − βb

Now, the OMSE of both LS and CLS estimators, can be
expressed using the trace operator proprieties as:
OMSE[x̂LS ] =

∑
k,i

[(H+
0 )k,i]

2(E{bbT })i] + Tr{(HT
0 R−1H0)−1}

OMSE[x̂CLS ] =
∑
k,i

[(H+
b )k,i]

2(E{δbδbT })i] + Tr{(HT
0 R−1

b H0)−1}

Proof of Relation (28a)

The OMSE of the CLS estimator is given by:

OMSE[x̂CLS ] =
∑
k,i

[(H+
b )k,i]

2(E{δbδbT })i]+Tr{(HT
0 R−1

b H0)
−1}

In case of only one ranging measurement error from satellite
j and when correcting the ranging errors from all received
satellites except satellite j, i.e. (δb)j 6= 0 and (δb)i 6=j = 0,
the sum present in the previous expression can be simplified:∑

k,i

[(H+
b )k,i]

2(E{δbδbT })i] =
∑
k

[(H+
b )k,j ]

2E{δbδbT }j

As (δb)j ∼ N (µ, σ2), then E{δbδbT }j = σ2 + µ2, which
proves relation (28a).
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