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 A B S T R A C T

Over the past four decades, forests have experienced major disturbances, highlighting the need for Near Real-
Time (NRT) monitoring. Traditional optical-based detection is cloud-sensitive, whereas Synthetic Aperture 
Radar (SAR)-based frameworks enable all-weather observation. Yet, SAR monitoring has mainly focused on 
humid tropical forests, with reduced performance in regions showing strong seasonal backscatter variation, 
such as tropical savannas. Detecting small-scale forest loss also remains difficult due to the spatial resolution 
loss from speckle filtering. This paper presents an unsupervised SAR-based disturbance detection method with 
NRT capabilities, using Bayesian inference. Building on an existing methodology, the approach processes single-
polarization Sentinel-1 SAR time series through Bayesian conjugate analysis. Forest disturbance is framed as a 
changepoint detection problem, where each new observation updates the probability of forest loss using prior 
information and a data model. The algorithm uses a hidden Markov chain to adapt recursively to seasonal 
variation and bypasses spatial filtering, preserving native data resolution and enhancing small-scale forest loss 
detection. Additionally, a methodology accounts for proximity to past disturbances. The method is tested on 
two 2020 reference datasets from the Brazilian Amazon and Cerrado savanna. The first covers small validation 
polygons (0.1–1 ha, excluding selective logging), totaling 2,650 ha in the Amazon and 450 ha in the Cerrado. 
The second includes larger clearings totaling 11,200 ha in the Amazon, and 12,700 ha in the Cerrado. A further 
comparison is conducted with operational NRT forest loss monitoring approaches. Results show substantial 
gains in detecting small-scale disturbances with reduced false alarms. In the Amazon, the method achieves an 
F1-score of 97.3% versus 93.1% for the current leading NRT approach. In the Cerrado, it reaches an F1-score 
of 97.4%, far exceeding the 33.3% of the optical-based method. For larger clearings, performance matches 
existing SAR approaches in the Amazon. While combined optical-SAR monitoring increases true positives, it 
also raises false alarm rates. In the Cerrado, the proposed method clearly outperforms optical monitoring, and 
in both regions it improves timeliness relative to individual operational approaches. 
1. Introduction

Over the past decades, about 17% of moist tropical forests have been 
lost (Vancutsem et al., 2021). From 2001 to 2019, forests emitted an 
average of 8.1 billion metric tonnes of CO2 due to deforestation and 
degradation, while absorbing 16 billion through photosynthesis (Harris 
et al., 2021). Acting as natural carbon sinks, forests remove roughly 
one-third of annual CO2 emissions (Forzieri et al., 2022). Their loss 
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not only accelerates global warming by reducing carbon uptake and 
releasing stored carbon, but also contributes to soil erosion, water cycle 
disruption, and biodiversity decline through habitat destruction (Hoang 
and Kanemoto, 2021). Effective tools for timely disturbance detection 
are therefore essential to enable rapid intervention and support forest 
conservation.
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Earth Observation (EO) data provide effective monitoring of vast 
and often inaccessible forest areas. In recent years, the number, qual-
ity, and accessibility of EO satellites and imagery have greatly in-
creased (Finer et al., 2018). Multiple high-resolution satellite datasets 
for global forest loss monitoring are now freely available, enabling the 
development of many operational Near Real-Time (NRT) disturbance 
detection methods. A pioneer solution in this context is the Global 
Land Analysis and Discovery system (GLAD-L, Hansen et al., 2016), 
which was originally based on Landsat imagery and has recently been 
extended to Sentinel-2 data (GLAD-S2). However, a major limitation 
of optical-based methods is their sensitivity to cloud cover, which 
significantly reduces the availability of usable images (Verbesselt et al., 
2012). Unlike optical imagery, Synthetic Aperture Radar (SAR) data 
are insensitive to cloud cover, enabling consistent and regular time 
series acquisition in tropical regions. An early approach utilizing L-
band SAR data (wavelength, 𝜆 ≈ 24 cm) from ALOS-2/PALSAR-2 is 
JJ-FAST (Watanabe et al., 2018, 2021). This method leverages HH 
and HV polarizations, as well as their ratio, to detect different stages 
of deforestation based on their polarimetric scattering characteristics. 
However, the NRT capabilities of JJ-FAST are constrained by the 
14-day revisit interval of ALOS-2/PALSAR-2.

Since the launch of the European Space Agency’s (ESA) C-band 
Sentinel-1 mission (wavelength 𝜆 ≈ 5.6 cm) in 2014, several SAR-based 
frameworks with enhanced NRT capabilities have been developed, 
some of which are now operational across the tropics. A recent defor-
estation monitoring approach using Sentinel-1 data applies the CuSum 
(Cumulative Sum) algorithm to dual-polarization VV-VH observations 
to detect changes in vegetation cover (Ygorra et al., 2021). While 
computationally efficient, its performance depends heavily on param-
eter tuning tailored to specific regional conditions, which can limit 
its generalizability. Another example of a method leveraging Sentinel-
1 data is DETER-R (Doblas et al., 2020, 2022), which is currently 
operational in the Brazilian Amazon. This approach employs the Adap-
tive Linear Threshold (ALT) algorithm to identify pixels exhibiting 
backscatter values below a dynamically set threshold, indicative of 
potential deforestation. Additionally, TropiSCO (Mermoz et al., 2021; 
Ballère et al., 2021) is a fully Sentinel-1-based method that detects 
forest loss by identifying shadow patterns formed at the boundaries 
between intact forest and cleared areas (Bouvet et al., 2018).

In the tropics, deforestation — defined as the permanent conversion 
of forest to other land uses — results from a variety of drivers with 
distinct characteristics, scales, and management practices. The primary 
driver is agricultural expansion, which ranges from small-scale subsis-
tence farming to large-scale commercial operations. Other contributing 
factors include infrastructure development and urban growth, while 
activities such as timber logging and fires are typically classified as for-
est degradation rather than permanent deforestation (Bourgoin et al., 
2024). Despite the complexity and diversity of deforestation practices, 
most SAR-based forest loss detection methods rely on thresholds to 
identify abrupt changes (Bouvet et al., 2018; Mermoz et al., 2021; Bal-
lère et al., 2021; Doblas et al., 2022; Carstairs et al., 2022). However, 
this approach can fail to accurately detect forest loss in scenarios where 
SAR backscatter varies significantly before and after disturbance due 
to factors such as seasonality, weather conditions, and post-logging 
management activities (Zhao et al., 2019). Threshold-based methods 
generally perform well in dense rainforests where SAR backscatter re-
mains relatively stable. However, in regions with pronounced seasonal 
dynamics, their limited ability to adapt to changing conditions often 
results in higher rates of missed detections and false alarms. An excep-
tion is a deep learning–based method, adapted to seasonal variation, 
that utilizes Sentinel-1 data and weakly supervised learning to automat-
ically generate training labels from existing global forest loss datasets, 
reducing the need for manual annotations (Mullissa et al., 2023). 
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By leveraging a deep neural network and incorporating a Bayesian 
updating approach for probabilistic disturbance detection, the method 
demonstrates improved detection accuracy and earlier alert generation 
compared to optical-based approaches in tropical dry forests. However, 
deep learning approaches are known to introduce high computational 
costs and require region-specific training, limiting their generalizability 
across different ecosystems without retraining. Another methodology 
adapted to seasonal variation is used in the LUCA dataset (Mullissa 
et al., 2024), which provides global information on forest land-use 
changes. This approach employs feature engineering to characterize the 
statistical properties of stable forest areas, facilitating the distinction 
between stable forests and areas undergoing change. Reference labels 
and training samples are collected across diverse forest biomes to train 
a machine learning model that estimates probabilities of forest presence 
and land-use changes. These probabilities are subsequently refined 
within a probabilistic framework to improve accuracy.

To better accommodate the complexity and variability inherent in 
forest loss detection, it is possible to rely on Bayesian approaches, 
which interpret probability as a degree of belief in an event given the 
available evidence. In the context of NRT forest disturbance monitor-
ing, the RAdar for Detecting Deforestation (RADD) approach (Reiche 
et al., 2021), exploits Sentinel-1 data and uses an algorithm based 
on the Bayesian update principle (Reiche et al., 2018b). Specifically, 
the algorithm learns the statistical properties of the Forest (F) and 
Non-Forest (NF) classes in an unsupervised manner, using a two-year 
time series of Sentinel-1 data acquired prior to the monitoring period, 
under the assumption of undisturbed forest. These likelihoods are then 
processed to compute the posterior probability of NF for each Sentinel-1 
acquisition. The time series of NF posteriors is then used to evaluate the 
conditional Probability Density Function (PDF) of deforestation, and 
forest loss is decided if this probability exceeds a user-defined threshold 
for a given number of consecutive acquisitions.

All currently available SAR-based monitoring methods, rely on 
pre-processing steps, such as temporal or spatial filtering, and post-
processing techniques like Minimum Mapping Unit (MMU) filtering 
to manage false alarm rates. Several approaches also incorporate sea-
sonality compensation or removal to address backscatter variabil-
ity (Reiche et al., 2018a,b; Watanabe et al., 2021). While these steps 
improve overall detection performance, spatial filtering in particular 
can substantially degrade spatial resolution, hindering the detection of 
small-scale forest loss (Carstairs et al., 2022).

This work introduces an unsupervised forest loss monitoring tech-
nique based on Bayesian inference with NRT capabilities. Specifically, 
the approach builds upon the Bayesian Online Changepoint Detection 
algorithm first developed in Adams and MacKay (2007), adapting 
it to work with unfiltered Sentinel-1 Radiometrically Terrain Cor-
rected (RTC) data and extending it to incorporate spatial context from 
neighboring pixels when detecting forest loss events. The method is 
evaluated using sample datasets from two Brazilian biomes, covering 
analyzed areas of approximately 13,800 hectares in the Amazon rain-
forest and 13,200 hectares in the Cerrado savanna. These areas were 
selected due to the availability of reliable reference data provided by 
MapBiomas Alerta (MapBiomas, 2024), and their contrasting backscat-
ter patterns, with the Cerrado exhibiting notably stronger seasonal 
variations than dense rainforests. Specifically, validation is performed 
using two reference datasets per biome: one including small-scale 
disturbances (0.1–1 hectares, excluding selective logging), and another 
comprising randomly selected larger clearings obtained through strat-
ified sampling. The results are compared with forest loss alerts from 
GLAD-L (Hansen et al., 2016), RADD (Reiche et al., 2021), and GFW 
(Global Forest Watch) (GFW, 2024).
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2. Research area and data inputs

2.1. Study area

The experimental part of this study focuses on two areas in Brazil: 
the Brazilian Amazon and the Cerrado woodland-savanna. The Brazil-
ian Amazon (also referred to as Amazonia), covering about 40% of 
the country’s landmass, contains the largest continuous tropical rain-
forest in the world and is a deforestation hotspot largely monitored 
by existing operational NRT methods. On its part, the Cerrado is the 
world’s most biodiverse woodland-savanna, and the largest one in 
South America. Spanning over 20% of Brazil’s territory, the Cerrado 
plays a crucial role as a carbon sink, making its preservation criti-
cal (Rodrigues et al., 2022). Over the last two decades, the Cerrado 
has experienced agricultural expansion, including the establishment of 
soy farms and cattle ranching, resulting in the disappearance of its 
vegetation at twice the rate of the Amazon rainforest (Miranda et al., 
2019). The native vegetation of the Cerrado spans a variety of dis-
tinct physiognomies (vegetation communities with different structures, 
heights, spacing, and dominant species), which can be grouped into 
broad vegetation formation categories, including grasslands, savannas, 
and forests. The precipitation patterns and vegetation phenology of the 
Cerrado (de Freitas Bussinguer et al., 2024) cause strong seasonality in 
the C-band SAR backscatter, which represents a challenge for existing 
NRT forest disturbance monitoring methods. As a result, this biome 
remains under-monitored in NRT.

The choice of the study area is further motivated by the availability 
of reliable reference data covering both Amazonia and the Cerrado, as 
well as by Brazil’s significant contribution to global deforestation. In the 
MapBiomas Annual Deforestation Report of 2023 (RAD2023, 2024), it 
is documented that over 6.5 million hectares were deforested in Brazil 
between 2019 and 2022, indicating a 22.3% increase in deforested 
areas in 2022 compared with 2021. The largest forest loss increases 
occurred in Amazonia and in the Cerrado, accounting for approximately 
90% of Brazilian deforestation in 2022. The report’s findings highlight 
agriculture expansion and mining as primary drivers of deforestation, 
notably occurring within protected areas.

While large-scale deforestation accounts for most forest loss, small-
scale disturbances are becoming increasingly frequent and damaging, 
posing growing challenges for monitoring efforts (Slagter et al., 2023). 
Activities such as artisanal mining (Asner et al., 2013), illegal log-
ging (Tacconi et al., 2019), and subsistence agriculture (Kalamandeen 
et al., 2018) collectively contribute to increased forest fragmenta-
tion (Haddad et al., 2015), widespread degradation, biodiversity loss, 
carbon emissions, and ultimately, a loss of ecosystem resilience. In 
the Amazon, a notable shift in deforestation patterns has been ob-
served, with large forest clearings (>50 ha) declining over time, while 
the number of small clearings (<1 ha) increased by 34% between 
2001–2007 and 2008–2014 (Kalamandeen et al., 2018). The study 
found that 94.6% of deforested patches were smaller than 6.25 ha — 
the minimum threshold detected by PRODES, Brazil’s official deforesta-
tion monitoring program (Shimabukuro et al., 2016) — with the vast 
majority (81.1%) being under 1 ha. The increasing prevalence of small 
deforestation parcels in Brazil partly reflects an adaptive strategy by 
larger landowners seeking to evade detection, particularly following the 
implementation of strict monitoring programs (Assunção et al., 2019).

2.2. Reference data

For validation, a subset of the MapBiomas Alerta dataset is used
(MapBiomas, 2024). MapBiomas is a multi-institutional initiative that 
focuses on mapping land cover in Brazil. It aggregates alerts from 
various operational detection systems and validates them with high-
resolution satellite imagery (RAD2023, 2024). Specifically, it combines 
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data from sources such as DETER, SAD, GLAD, PRODES, and SIRAD-X, 
using imagery with resolutions ranging from 10 to 60 m. Alerts are 
first filtered and then verified through visual assessments using Plan-
etScope imagery (3.7-m resolution). The validated deforestation areas 
are refined to improve spatial precision using a supervised classification 
algorithm (Random Forest) and cross-referenced with public databases, 
such as Indigenous Lands and Conservation Units. Each alert undergoes 
an audit to ensure accuracy before being published weekly on the 
MapBiomas Alerta platform (https://alerta.mapbiomas.org/), with the 
possibility of post-publication revisions as new data becomes available 
to maintain ongoing reliability.

In this study, the baseline for forested areas is derived from Map-
Biomas Alerta, which marks deforestation on previously vegetated 
parcels and provides a temporal window for the deforestation events. 
Both forest and savanna formations are considered, classified according 
to MapBiomas Alerta’s criteria by biome and based on vegetation type 
and canopy height:

• Amazonia. Forests are characterized by high-density, continu-
ous canopies with a height >7 m, including evergreen, semi-
deciduous, and deciduous non-floodable vegetation.

• Cerrado. Forests have a continuous canopy with a height >7 m, 
including riparian, gallery, dry forests, and forested savannas. 
Savannas are defined by a tree and shrub-herbaceous stratum 
with a canopy height between 3 and 6 m.

Forest loss, as defined by MapBiomas Alerta (RAD2023, 2024), refers to 
the complete suppression of native vegetation, excluding selective log-
ging or degradation that does not result in full vegetation loss. The term 
‘‘deforestation’’ is used broadly to include all forms of native vegetation 
suppression, including non-forest areas like savannas. Furthermore, the 
minimum size for a mapped disturbance is set at 0.1 hectares.

For this analysis, MapBiomas alerts (or polygons) from the 2020 
operational year are used, as this period corresponds to the final full 
year of concurrent operation for both Sentinel-1 A and Sentinel-1B 
(Sentinel-1B was decommissioned in December 2021). This ensures 
a 6-day revisit interval and provides a complete year of reference 
polygons for robust testing. The proposed algorithm is applied to an 
area surrounding each reference polygon, defined by a rectangular 
buffer that is, on average, 2.6 times larger than the polygon. Forest loss 
is estimated at the polygon scale. A disturbed polygon is detected when 
a significant portion of its area (i.e., 𝑇𝑝𝑜𝑙𝑦) is identified as forest loss by 
the proposed method. True positives (TP) correspond to polygons la-
beled as forest losses by both the proposed method and the MapBiomas 
dataset for the 2020 monitoring year. Conversely, a false negative 
represents a case where a polygon is missed by the proposed algorithm 
but is present in the MapBiomas dataset for the same monitoring year.

To address potential bias from undetected disturbed areas in the 
MapBiomas dataset, false positives are estimated using a temporal 
approach. Specifically, each MapBiomas Alerta polygon includes two 
key timestamps: one indicating the last time the area was observed 
as vegetated, and another marking the first time it was detected as 
deforested. This temporal window ensures that deforestation occurred 
within a specific timeframe. If a polygon is flagged as deforested in 
a given year, it means the area will be excluded from analysis in the 
following year. Hence, MapBiomas Alerta polygons acquired in 2021 
are used to identify false positives (FP). A false positive is defined as 
a forest loss detected by proposed method in 2020, whereas the loss is 
recorded in the MapBiomas dataset as occurring in 2021. A polygon is 
assigned to the forest loss class if: 
𝐴detected
𝐴polygon

≥ 𝑇𝑝𝑜𝑙𝑦, (1)

where:

https://alerta.mapbiomas.org/
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Fig. 1. Study area highlighting the validation polygons from MapBiomas 
Alerta for Amazonia and the Cerrado. Optical background image from Google 
Earth (©2024 Google).

• 𝐴detected is the area of the polygon where the event is detected;
• 𝐴polygon is the total area of the validation polygon;
• 𝑇𝑝𝑜𝑙𝑦 is the threshold representing the portion of a detected poly-
gon required to determine forest loss.

The following sections define two tailored reference datasets used 
for validation: one representing small-scale clearings and the other 
representing larger clearings, both derived from the MapBiomas Alerta 
data and illustrated in Fig.  1.

2.2.1. Small-scale clearings reference data
To test the effectiveness of the proposed method in detecting small-

scale forest loss, the first reference dataset includes all polygons of 
0.1–1 hectare from the MapBiomas Alerta dataset; the number of 
polygons per biome is provided in Table  1, and histograms of de-
forested polygon sizes are shown in Fig.  2. These polygons represent 
7.65% (2650 hectares) of the total MapBiomas Alerta alerts for the 
Amazon biome and 5.14% (450 hectares) of alerts for the Cerrado. 
The vast majority of these clearings have been converted to small-
scale subsistence agriculture (88.9%), with smaller shares attributed to 
mining (2.9%) and urban expansion (0.3%). The difference in polygon 
counts between the Amazon and Cerrado reference datasets reflects 
both biome size and distinct deforestation patterns. In the Amazon, 
logging and smallholder agriculture result in many small deforested 
areas, whereas in the Cerrado, large-scale agriculture typically produces 
fewer but larger clearings.

2.2.2. Larger-scale clearings reference data
A stratified sampling approach (Robb and Cochran, 1963) is used to 

select large-scale clearings based on the total polygon size distribution 
in the 2020 MapBiomas Alerta dataset (Fig.  3). Deforested polygons are 
classified into three size categories (1–5 hectares, 5–20 hectares, and 
≥20 hectares), with a proportional number selected from each category, 
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Table 1
Number of polygons in the reference datasets for 2020 and 2021, separated by 
biome (Amazon and Cerrado) and by polygon size category (small-scale and 
larger clearings).
 2020 reference dataset
 Size Small-scale dataset Larger-scale dataset
 𝐴0 < 1 ha 1 ≤ 𝐴1 < 5 ha 5 ≤ 𝐴2 < 20 ha 𝐴3 ≥ 20 ha 
 Amazonia 3590 528 346 126  
 Cerrado 629 200 185 115  
 2021 reference dataset
 Amazonia 1657 220 188 92  
 Cerrado 196 127 75 48  

as reported in Table  1. The polygons represent 2.1% (11,200 hectares) 
of the total MapBiomas Alerta alerts in the Amazon and 4.0% (12,700 
hectares) of the alerts in the Cerrado. The vast majority of deforested 
areas were converted to agriculture, ranging from 94.0% in the 1–5 ha 
class up to 99.6% in areas greater than 20 hectares, while mining and 
urban expansion accounted for the rest.

2.3. Operational products for comparison

Forest disturbance results in this study are compared against three 
operational NRT forest monitoring approaches: GLAD-L (Hansen et al., 
2016), RADD (Reiche et al., 2021), and the integrated alerts provided 
by GFW. GLAD-L produces alerts from Landsat imagery with 30-m 
spatial resolution, covering the entire tropics from January 2018 on-
ward, and selected countries from 2015. GLAD-S2 offers alerts at 10-m 
resolution derived from Sentinel-2 optical imagery, limited to primary 
humid tropical forests and available from January 2019 to the present. 
RADD provides 10-m pixel-spacing alerts from Sentinel-1 imagery, 
also restricted to primary humid tropical forests starting in January 
2019. Consequently, neither GLAD-S2 nor RADD operate in the Cerrado 
biome. GFW combines alerts from GLAD-L, GLAD-S2, and RADD, where 
available, by resampling GLAD-L to a 10-m grid for integration. Each 
GFW alert is assigned a confidence level: low confidence (detected once 
by a single method), high confidence (detected multiple times by one 
method), and highest confidence (detected by multiple methods). For 
the purpose of comparison in this study, only GFW alerts labeled as 
high confidence or highest confidence are considered.

2.4. Sentinel-1 input data

This work uses Sentinel-1 A/B C-band (wavelength, 𝜆 ≈ 5.6 cm), 
Interferometric Wide swath (IW), RTC images processed by Cata-
lyst (accessed on: https://planetarycomputer.microsoft.com/catalog), 
with a revisit time of 6 to 12 days. The analysis focuses on cross-
polarization, as previous studies have identified higher contrast in the 
cross-polarized channel between forested and deforested areas (Mer-
moz et al., 2021; Doblas et al., 2020). Additionally, either ascending 
or descending orbits are selected, with the only constraint that each 
single-pixel time series is processed using a single relative orbit. The 
data pre-processing that allows transforming Ground Range Detected 
(GRD) into RTC products can be summarized as:

• Radiometric calibration: conversion of GRD products to calibrated 
intensity using gamma values normalized for the incidence an-
gle (Miranda and Meadows, 2015);

• Radiometric terrain correction (Small, 2011): using the 30 m 
PlanetDEM provided by Planet Observer as the elevation source;

• Orthorectification: to the appropriate UTM projection.

https://planetarycomputer.microsoft.com/catalog
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Fig. 2. Histograms of MapBiomas Alerta deforested polygon sizes under 1 hectare in Amazonia (𝜇𝑠𝑖𝑧𝑒 = 0.715 ha and 𝜎𝑠𝑖𝑧𝑒 = 0.214) and Cerrado (𝜇𝑠𝑖𝑧𝑒 = 0.670 ha 
and 𝜎𝑠𝑖𝑧𝑒 = 0.206) for year 2020.
Fig. 3. Histograms of MapBiomas Alerta deforested polygon sizes in Amazonia and Cerrado for year 2020.
No additional spatial filtering is applied to the original 10-m pixel 
spacing multi-looked GRD products. This results in a ground resolution 
of 20 m in azimuth and 22 m in ground range. This approach is 
intended to demonstrate the proposed method’s ability to retain the 
native spatial resolution of the data and enhance the detection of 
small-scale forest loss.

3. Methodology

3.1. Bayesian online changepoint detection

Bayesian approaches estimate the posterior probability of an event 
using a likelihood function derived from a statistical model of the data, 
and a prior distribution of the model parameters. In other words, the 
probability of a hypothesis — in this case, a forest loss occurrence 
— is updated as more information becomes available and flagged 
when a significant change in the statistical properties of the distri-
bution is detected. The method developed in this work, subsequently 
named BOCD, builds upon the Bayesian Online Changepoint Detection 
algorithm (Adams and MacKay, 2007).

In the following, 𝐱1∶𝑡 = (𝑥1,… , 𝑥𝑡)𝑇 ∈ R𝑡 represents a single-pixel 
Sentinel-1 RTC cross-polarized backscatter time series, organized in 
chronological order. It should be noted that the index 𝑡 is hereafter 
referred to as the ‘‘acquisition time’’. The starting assumption is that 
the time series is partitioned by changepoints, and the samples within 
each partition are independent, identically distributed (i.i.d.) according 
to some distribution. The algorithm aims at splitting the time series 
in a set of connected segments, where the changepoints are the initial 
time instants of each new segment. The number of changepoints and 
their locations are the parameters to be determined. To do so, the 
algorithm estimates the run length, denoted as 𝑟𝑡, which represents the 
number of acquisitions since the last changepoint. The run length is 
considered as a random variable associated with the hidden state of a 
Markov model (Fearnhead and Liu, 2007; Barry and Hartigan, 1993), 
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and its processing is conducted in a message-passing manner (Adams 
and MacKay, 2007) using the observable 𝑥𝑡 measured at each date. At 
each timestamp, the run length value either increments by 1, indicating 
a growth phase, or resets to 0, signaling a changepoint. Changes are 
detected by tracking the Maximum A Posteriori (MAP) estimate of 𝑟𝑡.

Fig.  4 illustrates an example of a time series and its corresponding 
𝑟𝑡 map. In the map, all possible paths of the run length are indicated 
in light gray. The true path corresponding to the time series on the left 
is highlighted in black, with changepoints marked by red lines. Fig. 
5 depicts the hidden infinite-state Markov model on which BOCD is 
based, as 𝑟𝑡 can take arbitrarily large values.

3.2. Conjugate Bayesian framework and likelihood modeling

The sequence of backscatter observations, 𝐱1∶𝑡, is considered to be 
divided by changepoints, as detailed in Section 3.1. The primary goal of 
the BOCD algorithm is to deduce the run length of the current segment 
by tracking its posterior distribution, which can be expressed as: 

𝑝(𝑟𝑡|𝐱1∶𝑡) =
𝑝(𝑟𝑡, 𝐱1∶𝑡)

∑𝑡
𝑟𝑡=0

𝑝(𝑟𝑡, 𝐱1∶𝑡)
. (2)

According to the properties of hidden Markov models (Adams and 
MacKay, 2007), it is possible to express the joint distribution in (2) 
as: 

𝑝(𝑟𝑡, 𝐱1∶𝑡) =
𝑡−1
∑

𝑟𝑡−1=0
𝑝(𝑥𝑡|𝐫𝑡−1∶𝑡, 𝐱1∶𝑡−1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
posterior predictive

𝑝(𝑟𝑡|𝑟𝑡−1)
⏟⏞⏟⏞⏟

run length prior
𝑝(𝑟𝑡−1, 𝐱1∶𝑡−1)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

message

, (3)

where 𝐫𝑡−1∶𝑡 = (𝑟𝑡−1, 𝑟𝑡)𝑇  denotes the considered branch of the lattice 
in Fig.  4. The recursive expression in (3) enables the evaluation of 
the joint distribution using a message-passing algorithm, in which 
𝑝(𝑟𝑡−1, 𝐱1∶𝑡−1) is passed from the previous recursion to the current one. 
The other elements of (3) are the conditional prior on the run length, 
𝑝(𝑟 |𝑟 ), representing the probability of transition, and the posterior 
𝑡 𝑡−1



M. Bottani et al. Remote Sensing of Environment 331 (2025) 115037 
Fig. 4. Example of single-pixel backscatter time series with abrupt changes marked with red dashed lines (left), and corresponding 𝑟𝑡 map (right).
Fig. 5. BOCD represented by a hidden infinite-state Markov model. 𝑥𝑡 represents an observation performed at time 𝑡, whereas 𝑟𝑡 indicates the run length and 
represents the hidden state.
predictive distribution 𝑝(𝑥𝑡|𝐫𝑡−1∶𝑡, 𝐱1∶𝑡−1), which is the probability den-
sity of the newly observed datum given the data sequence since the last 
changepoint. For a given run length value 𝑟𝑡−1, the posterior predictive 
is 𝑝(𝑥𝑡|𝐱(𝑟𝑡−1)𝑡−1 ), where 𝐱(𝑟𝑡−1)𝑡−1 = (𝑥𝑡−1−𝑟𝑡−1 ,… , 𝑥𝑡−1)𝑇  denotes the subset of 
measured data for the considered segment.

The transition probability can be selected based on a user-defined 
detection strategy or prior beliefs about the likelihood of the events 
under study. Meanwhile, within a data segment assumed to be i.i.d. 
between two consecutive changepoints, the posterior predictive dis-
tribution is modeled using the likelihood function 𝑝(𝑥𝑡|𝜽) and the 
parameter prior distribution 𝜋𝜼0 (𝜽), which depends on the parameter 
vector 𝜼0: 

𝑝
(

𝑥𝑡
|

|

|

𝐱(𝑟𝑡−1)𝑡−1

)

= ∫ 𝑝(𝑥𝑡|𝜽)𝜋𝜼0
(

𝜽||
|

𝐱(𝑟𝑡−1)𝑡−1

)

𝑑𝜽, (4)

where the posterior distribution of the parameters is given by: 

𝜋𝜼0
(

𝜽 ||
|

𝐱(𝑟𝑡−1)𝑡−1

)

=
𝑝
(

𝐱(𝑟𝑡−1)𝑡−1 |𝜽
)

𝜋𝜼0 (𝜽)

∫ 𝑝
(

𝐱(𝑟𝑡−1)𝑡−1 |𝜽
)

𝜋𝜼0 (𝜽)𝑑𝜽
. (5)

The relationships in Eqs. (2) to (5) illustrate the Bayesian approach, 
treating unknown model parameters as random variables and incor-
porating their prior distributions into decision-making. Nevertheless, 
calculating the parameters posterior generally represents a significant 
computational burden, due to the evaluation of the integral term in 
(5). Prior conjugacy represents a solution to this problem, as it reduces 
the computation to a simple parameter update (Feller, 1968). A prior 
distribution is conjugate to a given likelihood function, if the posterior 
and the prior belong to the same family of probability distributions. In 
particular, a conjugate prior always exists when the likelihood belongs 
to an exponential family (Adams and MacKay, 2007).

The statistical model of Single-Look Complex (SLC) Sentinel-1 data 
follows a complex circular normal distribution (Goodman, 1976), while 
the multi-look intensity, obtained by averaging the squared modulus 
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of multiple SLC realizations, follows a Gamma distribution. The loga-
rithmic reflectivity follows an Exponential-Gamma distribution, with a 
Gaussian-like shape emerging for a high number of looks, e.g., ≥ 20. 
Speckle-filtered Sentinel-1 GRD data can safely be assumed to follow 
a normal distribution (Reiche et al., 2018b), but this assumption typi-
cally breaks down for unfiltered data with fewer looks. Interestingly, 
the statistical analysis of unfiltered RTC Sentinel-1 data, presented 
in Appendix  A, indicates that normality can still be assumed over 
homogeneous vegetated areas, even with fewer looks.

The normal distribution belongs to the exponential family, and 
its conjugate prior is, in this case of unknown mean and variance, 
a normal inverse-gamma probability density, i.e., 𝜽 ∼ (𝜽; 𝜼0). 
According to the conjugacy principle, the parameter posterior is also 
a normal inverse-gamma density function 𝜽|𝐱𝑚 ∼ (𝜽; 𝜼𝑚), with 
𝐱𝑚 = (𝑥0,… , 𝑥𝑚)𝑇 , and 𝜼(𝑚) = (𝛼𝑚, 𝛽𝑚, 𝜇𝑚, 𝜅𝑚), which may be expressed 
as: 
𝛼𝑚 =𝛼0 +

𝑚
2

𝛽𝑚 =𝛽0 +
1
2

𝑚
∑

𝑖=1
(𝑥𝑖 − 𝑥)2 +

𝑚𝜅0
𝜅0 + 𝑚

(𝑥 − 𝜇0)2

2

𝜇𝑚 =
𝜅0𝜇0 + 𝑚𝑥
𝜅0 + 𝑚

𝜅𝑚 =𝜅0 + 𝑚,

(6)

with 𝜼(0) = 𝜼0 and 𝑥 =
∑𝑚

𝑖=0 𝑥𝑖∕(𝑚 + 1). In (6), 𝛼 is the number of 
degrees of freedom, 𝛽 is the precision, 𝜇 corresponds to the location, 
and 𝜅 represents the shape. The posterior predictive can be derived in 
closed form and corresponds to a 𝑡-distribution (Murphy, 2007): 

𝑝(𝑥|𝐱𝑚) = 𝑝𝜼(𝑚)(𝑥) = 𝑡2𝛼𝑚

(

𝑥;𝜇𝑚,
𝛽𝑚(𝜅𝑚 + 1)

𝛼𝑚𝜅𝑚

)

. (7)
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Fig. 6. Posterior run length probability for a study case. 𝑡𝑐(𝑖) represents the 𝑖th time of change, whereas 𝑡𝑑(𝑖) represents the corresponding time of detection.
3.3. Algorithmic design of BOCD

Following the developments presented in Section 3.2, the BOCD 
algorithm can be summarized as follows:

• Observe a new Sentinel-1 backscatter value 𝑥𝑡 at time 𝑡.
• Evaluate the posterior predictive distribution 𝑝(𝑥𝑡|𝐫𝑡−1∶𝑡, 𝐱(𝑟𝑡−1)𝑡−1 ) for 
each possible value of 𝐫𝑡−1∶𝑡.

• Apply the message-passing principle: from the run length poste-
rior probability at 𝑡−1, compute the probability that 𝑟𝑡 is increased 
by 1, or growth probability as: 

𝑝(𝑟𝑡 = 𝑟𝑡−1 + 1, 𝐱1∶𝑡) = 𝑝(𝑟𝑡−1, 𝐱1∶𝑡−1) 𝑝(𝑥𝑡 ∣ 𝐱
(𝑟𝑡−1)
𝑡−1 ) (1 − 𝑝(𝑟𝑡 = 0 ∣ 𝑟𝑡−1)),

(8)

and the probability that 𝑟𝑡 drops to 0, i.e., the probability of a 
changepoint, for all run length values, 𝑟𝑡−1 = 1, 2,…, as: 
𝑝(𝑟𝑡 = 0, 𝐱1∶𝑡) =

∑

𝑟𝑡−1

𝑝(𝑟𝑡−1, 𝐱1∶𝑡−1) 𝑝(𝑥𝑡 ∣ 𝐱
(𝑟𝑡−1)
𝑡−1 ) 𝑝(𝑟𝑡 = 0 ∣ 𝑟𝑡−1). (9)

The computation of growth and changepoint probabilities fol-
lows the evaluation of the transition probability discussed in 
Section 3.5, and the posterior predictive, detailed in Section 3.2. 
The updates of the posterior predictive parameters can be easily 
derived from (6) as: 
𝛼𝑚+1 = 𝛼𝑚 + 1∕2

𝛽𝑚+1 = 𝛽𝑚 +
𝜅𝑚(𝑥𝑖 − 𝜇𝑚)2

2(𝜅𝑚 + 1)

𝜇𝑚+1 =
𝜅𝑚𝜇𝑚 + 𝑥𝑖
𝜅𝑚 + 1

𝜅𝑚+1 = 𝜅𝑚 + 1.

(10)

• The result is a run length posterior probability vector. The de-
tection of forest loss events from the vector is addressed in 
Section 3.4.

3.4. Forest loss detection methodology

The output of the BOCD at time 𝑡 is a vector of posterior run length 
probabilities, whose elements are specified in (2). Changes are detected 
by tracking the position of the most probable run length at time 𝑡, 𝑀𝑡, 
defined as: 
𝑀𝑡 = argmax

𝑟𝑡
𝑝(𝑟𝑡|𝐱1∶𝑡). (11)

In the absence of change, i.e., when the most probable last change-
point remains unchanged, the maximum position satisfies the following 
equation: 
𝑀 = 𝑀 + 1. (12)
𝑡 𝑡−1
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An ideal change, such as the one represented in Fig.  4, corresponds to 
𝑀𝑡 = 0. However, in practice, a change may be detected with some 
temporal delay, and the minimum value does not always reach this 
lower bound. This case is handled by defining a change if: 
𝑀𝑡 < 𝑀𝑡−1 − 𝛥𝑀. (13)

The minimal detectable shift, 𝛥𝑀 > 0, is designed to make the 
process robust against small oscillations in 𝑀𝑡, caused by the inherent 
variability in the input data. Fig.  6 illustrates the evolution of the 
posterior run length probability for a study case where a decrease 
in 𝑀𝑡 to a value satisfying the condition in (13) indicates a change 
that actually occurred at time 𝑡𝑐 = 𝑡 − 𝑀𝑡 and is detected at time 𝑡. 
Furthermore, considering 𝑡𝑐(𝑖−1) as the time instant at which the last 
changepoint was observed, a change is classified as forest loss only if 
the mean backscatter of acquisitions between the last changepoint and 
the current one is greater than the mean backscatter of acquisitions 
between the current changepoint and the detection instant 𝑡𝑑 (𝑖): 

𝑥[𝑡𝑐(𝑖−1)∶𝑡𝑐(𝑖)[[𝑣=10𝑝𝑡] < 𝑥[𝑡𝑐(𝑖)∶𝑡𝑑(𝑖)]. (14)

3.5. Incorporating spatial context in change detection

In Adams and MacKay (2007), the conditional prior on the run 
length 𝑝(𝑟𝑡|𝑟𝑡−1), used in (3), is set to a constant value. In the present 
study, this quantity is modeled using the survival analysis formalism.

Considering 𝑇  as the time at which a change occurs in a time series, 
the survival function is defined as the probability that the time of 
failure exceeds 𝑇 , 𝑆(𝑡) = 𝑝(𝑡 > 𝑇 ) (Cox, 2001). Such a function can 
be parameterized as: 
𝑆(𝑡) = 𝑒− ∫ 𝑡

0 ℎ(𝑢)𝑑𝑢 with 𝑆(0) = 1, 𝑆(+∞) = 0, (15)

where ℎ(𝑡) is the instantaneous hazard rate, defined as (Cox, 2001): 

ℎ(𝑡) = lim
𝛥𝑡→0

𝑝(𝑡 ≤ 𝑇 ≤ 𝑡 + 𝛥𝑡|𝑇 ≥ 𝑡)
𝛥𝑡

=
𝑆′(𝑡)
𝑆(𝑡)

≥ 0, (16)

with 𝑝(𝑡 ≤ 𝑇 ≤ 𝑡 + 𝛥𝑡|𝑇 ≥ 𝑡) the conditional probability that the event 
occurs between time 𝑡 and 𝑡+𝛥𝑡, given that the event has not occurred 
before time 𝑡, and 𝛥𝑡 a small time interval. In the framework of a time 
series represented as a hidden infinite-state Markov model (as shown 
in Fig.  5), the survival probability can be rewritten as follows: 
𝑆(𝑡) = 𝑆(𝑡 − 1)𝑝(𝑟𝑡 = 𝑟𝑡−1 + 1|𝑟𝑡−1) = 𝑆(𝑡 − 1)𝑒− ∫ 𝑡

𝑡−1 ℎ(𝑢)𝑑𝑢. (17)

This study further exploits the survival formalism to incorporate 
contextual information into the decision process, recognizing that in 
forest loss monitoring, the probability of an event is not directly related 
to time. Instead, the probability of deforestation increases with spatial 
proximity to previous deforestation — a pattern demonstrated for 
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Fig. 7. Time varying instantaneous failure probability.
the Amazon (Doblas et al., 2022) and also observed in the Cerrado, 
though with regionally varying intensity (Trigueiro et al., 2020). The 
instantaneous hazard rate is modeled as a time-varying function that 
accounts for recent forest loss events in the eight neighboring pixels of 
the pixel of interest. The selected instantaneous hazard rate is inspired 
by the Gompertz-Makeham model (Stevenson, 2007) and modified to 
implicitly modulate the probability of transition according to the spatial 
context: 
ℎ(𝑡) = 𝑐 +𝑁𝑙𝑎𝑒

𝑏(𝑡−𝑡𝑙 ), (18)

where 𝑁𝑙 represents the number of deforested neighbors, 𝑡𝑙 corresponds 
to the date of the last detected forest loss in the neighborhood, 𝑎 and 
𝑏 are negative constants, and 𝑐 is a baseline constant rate used when 
no forest loss has been observed in the surroundings of the considered 
location, i.e., 𝑁𝑙 = 0.

The instantaneous survival probability 𝑃𝑆 (𝑡) and the instantaneous 
failure probability 𝑃𝐹 (𝑡) are defined as: 
𝑃𝑆 (𝑡) = 𝑝(𝑟𝑡 = 𝑟𝑡−1 + 1) 𝑃𝐹 (𝑡) = 𝑝(𝑟𝑡 = 0) = 1 − 𝑃𝑆 (𝑡). (19)

Fig.  7 illustrates an example of the instantaneous failure probability 
in the case of a single deforested neighbor at a specific time (Fig. 
7(a)). In a typical scenario, where survival is largely favored, the failure 
probability is found to be a quasi-linear function of 𝑁𝑙, as: 

𝑃𝐹 (𝑡,𝑁𝑙) = 1−𝑃𝑆 (𝑡,𝑁𝑙) ≈ 1−𝑃𝑁𝑙
𝑆 (𝑡, 1) ≈ 1− (1−𝑃𝐹 (𝑡, 1))𝑁𝑙 ≈ 𝑁𝑙𝑃𝐹 (𝑡, 1).

(20)

Following a detailed explanation of the BOCD algorithm for forest 
loss monitoring, Fig.  8 illustrates its working principle.

3.6. Parameter setting and susceptibility trade-off in BOCD

Susceptibility can be adapted to detect more or fewer changepoints 
by modifying some key parameters. The 𝛥𝑀 threshold presented in 
Section 3.4, should be large enough to avoid random oscillations of 𝑀𝑡
causing false alarms, yet small enough to allow for delayed detections. 
Another parameter is the constant term of the instantaneous hazard 
rate, 𝑐, introduced in  (18), which represents the knowledge of how 
rare a forest loss event is. A higher value of 𝑐 increases the algorithm’s 
responsiveness to detect forest loss events. The other parameters in-
fluencing the instantaneous hazard rate are 𝑎, which represents the 
immediate increase in hazard rate due to a forest loss event in the 
neighborhood, and 𝑏, which controls the rate at which the algorithm 
forgets this event.

Furthermore, susceptibility can be adjusted by modifying the priors, 
𝜼 , which represent the initial parameters of the posterior predictive 
0
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distribution. In the case of the 𝑡-distribution, the parameter 𝛼 represents 
the degrees of freedom. A higher 𝛼 value corresponds to lighter tails 
in the 𝑡 distribution, making BOCD more conservative in detecting 
changes. Conversely, lowering 𝛼 increases the probability of larger 
drops in 𝑀𝑡 and, consequently, susceptibility to changes. Another 
tunable prior is 𝜅, which controls the spread of the distribution. A 
larger value reduces susceptibility to changes, whereas a smaller one 
accommodates more variability in the data. The relationships in (6) 
indicate that the influence of the initial values on 𝛼 and 𝜅 remains 
unchanged over time, as these parameters grow linearly with 𝑛. Con-
versely, with a sufficiently large number of observations, 𝜇 and 𝛽
converge to the sample estimates of the mean and variance of 𝑥𝑡, 
respectively. Consequently, variations in 𝜇 and 𝛽 have minimal impact 
on forest loss detection.

To test the method’s capabilities, four configurations with varying 
levels of responsiveness to changes are considered. The configurations 
share a set of fixed parameters: 𝛥𝑀 = 10, 𝑐 = 0.001, 𝜇0 = 𝑥1, and 
𝛽0 = 0.01, but differ in the values assigned to the most influential priors, 
𝛼0 and 𝜅0:

• Configuration 1 (C1, most conservative): 𝛼0 = 1, 𝜅0 = 0.01;
• Configuration 2 (C2): 𝛼0 = 1, 𝜅0 = 0.005;
• Configuration 3 (C3): 𝛼0 = 0.1 𝜅0 = 0.01;
• Configuration 4 (C4, most responsive): 𝛼0 = 0.1, 𝜅0 = 0.005.

3.7. Assessment of detection timeliness

In the context of NRT forest disturbance monitoring, both spatial 
precision and the timeliness of detections are fundamental. Timely 
detection of changes is crucial for initiating mitigation efforts, such 
as actions to prevent further deforestation. Therefore, when evaluating 
the performance of a forest disturbance detection method with NRT 
capabilities, both the date of detection and detection delay should be 
taken into account. In this context, ‘‘detection delay’’ refers to the time 
interval between the occurrence and detection of a forest loss event. It 
depends on the revisit time of the satellite constellation providing the 
input imagery and the confirmation procedure adopted by the different 
methods. According to Doblas et al. (2023), RADD needs approximately 
3.1 Sentinel-1 acquisitions to confirm an alert, while GLAD-L/S2’s 
detection delay is defined as the interval between the first anomaly 
detection and the fourth cloud-free optical observation showing the 
same anomaly. However, determining the detection delay of an optical 
method is challenging, as it strongly depends on cloud coverage. The 
determination of the detection delay of BOCD for a single event, i.e., a 
single pixel, is described in Section 3.4. At the polygon level, the mean 
detection delay is computed by averaging the individual delays of all 
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Fig. 8. Synopsis of the BOCD forest loss detection method at time 𝑡 and for a given image pixel.
pixels within the polygon. At the dataset level, the global detection 
delay is computed as the mode of all polygon-level mean delays, in 
order to reduce the influence of outliers.

This study compares the detection dates estimated by the considered 
NRT methods with those estimated by BOCD. The objective is to 
assess the proposed method’s detection timeliness relative to existing 
approaches, and to identify which method most closely matches the 
MapBiomas Alerta information, given that the true deforestation date 
is typically unknown. Each polygon in the MapBiomas Alerta dataset 
has two timestamps: the last date the parcel was observed as vege-
tated (‘‘before date’’) and the first date it was observed as deforested 
(‘‘after date’’). These timestamps define a time range within which 
deforestation is assumed to have occurred. For BOCD, RADD, GLAD-
L, and GFW, the detection date is first checked to determine whether 
it falls within (i.e., > ‘‘before date’’) or after (i.e., ≥ ‘‘after date’’) 
the temporal window provided by MapBiomas Alerta. Secondly, the 
9 
detection dates of existing methods and those estimated by BOCD 
are compared with the ‘‘after date’’ provided by MapBiomas Alerta, 
considering only a subset of reference polygons where both approaches 
detected deforestation in at least 75% or 50% of the polygon area.

4. Results

4.1. Validation of NRT forest loss monitoring methods

4.1.1. Small-scale clearings
In the Amazon (Fig.  9(a)), BOCD demonstrates superior detection 

performance compared to other methods, particularly in configurations 
C2 to C4. The only exception occurs when compared to GFW in the 
most conservative configuration (C1). Nonetheless, GFW suffers from 
the highest rate of false alarms among considered methods. Notably, 
BOCD C4 achieves nearly 19% more true detections than GFW, the 
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Fig. 9. Normalized true positives vs. false positives for deforested polygons in the 0.1–1 ha range, across the Amazon and Cerrado. Colors indicate different 𝑇poly
values (1), and labels ‘C1’–‘C4’ refer to different BOCD configurations.
best-performing existing method, at 𝑇poly = 75%. RADD demonstrates 
significantly better detection performance compared to GLAD-L. As 
expected, BOCD C4 achieves the highest number of true detections, 
although with a higher false alarm rate compared to other BOCD 
configurations, especially at very low 𝑇poly. Nevertheless, all BOCD 
configurations remain robust to false alarms relative to other methods, 
even at lower 𝑇poly values. At 𝑇poly = 10%, BOCD C4 exhibits almost 
2.5 times fewer false alarms compared with GFW, while the extreme 
conservativeness of BOCD C1 results in 7 times fewer false alarms than 
GFW at the same threshold, although at the cost of lower detections. 
Appendix  B presents additional results, including the confusion matrix 
(Table  B.6) and spatial accuracy metrics — precision, sensitivity, and 
F1-score (Table  B.8) — as well as forest loss detection maps (Figs.  B.16
and B.17). To summarize, BOCD C4 achieves an F1-score of 87.4% 
compared to GFW’s 74.1% at 𝑇poly = 75%. At a lower 𝑇poly of 10%, 
BOCD C4 further improves to 97.3%, surpassing GFW’s 93.1%. All other 
NRT methods yield F1-scores lower than that of GFW.

In the Cerrado biome (Fig.  9(b)), the results consistently demon-
strate a substantial improvement over GLAD-L — the only available 
alerts in this biome — in terms of true detections, while maintaining 
a relatively low false alarm rate. It is noted that, to the authors’ 
knowledge, GLAD-L detects changes exclusively within forested areas. 
This limits its performance in the Cerrado biome, where much of the 
disturbance involves the suppression of savanna-like vegetation rather 
than forested areas. Within the selected MapBiomas Alerta dataset 
for the Cerrado, forests account for only 37.5% (236 polygons) of 
the overall dataset, while savannas account for the remaining 62.5% 
(393 polygons). The confusion matrix (Table  B.7) and spatial accuracy 
metrics (Table  B.9) are provided in Appendix  B. In the Cerrado, BOCD 
C4 achieves an F1-score of 58.5%, significantly outperforming GLAD-L 
at 𝑇poly = 75%. At a low 𝑇poly (i.e., 10%), BOCD C4 achieves an F1-score 
of 97.4%, surpassing GLAD-L’s 33.3%.

4.1.2. Larger-scale clearings
Validation over larger-scale clearings (≥1 ha) has been performed 

only for the BOCD C3 configuration. In the Amazon, BOCD shows 
performance comparable to RADD at 𝑇poly = 75%, with progressively 
improved true positive detections as 𝑇poly decreases (Table  2). GFW 
achieves significantly higher true positives than BOCD at high 𝑇poly; 
however, it also exhibits substantially higher false alarm rates, reaching 
up to +50% at low 𝑇 . Overall, BOCD proves to be the most robust 
poly
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Table 2
Confusion matrix for deforested polygons ≥1 ha over Amazonia. 𝑇𝑝𝑜𝑙𝑦 defined 
in (1); ‘small’ refers to small-scale polygons (0.1–1 ha) reported for compari-
son, and ‘large’ to categories 𝐴1–𝐴3 combined.
 True positive [%]
 𝑇𝑝𝑜𝑙𝑦 BOCD C3 - small BOCD C3 - large RADD GLAD-L GFW 
 75% 76.3 32.2 33.3 11.6 68.3  
 50% 90.2 65.3 62.2 24.9 86.0  
 30% 95.9 79.9 76.9 32.7 91.5  
 10% 97.2 95.9 90.3 40.0 96.1  
 False positive [%]
 75% 0 0 0 0 0.4  
 50% 0.1 0 0 0.8 4.0  
 30% 0.3 0 0.4 1.2 16.0  
 10% 5.43 0.8 2.8 3.4 52.6  

approach against false alarms among the evaluated methods. In the 
Cerrado, BOCD greatly outperforms GLAD-L regarding true positive 
detections (Table  3). A trend inversion is observed when analyzing 
larger deforested parcels, as BOCD performance is approximately twice 
as good in the Cerrado compared to the Amazon at 𝑇poly = 75%, 
contrary to what was observed for smaller deforestation areas.

For the interested reader, confusion matrices showing the detection 
performance of BOCD C3 over large clearings divided by size categories 
(𝐴1–𝐴3) are provided in Appendix  B for both the Amazon (Table  B.10) 
and Cerrado (Table  B.11) biomes.

4.2. Comparison of temporal accuracy of forest loss monitoring methods

At the dataset level, and for the BOCD C3 configuration, the mode 
detection delay consistently equals 3 acquisitions across both biomes 
and for both polygon sizes.

The comparison of detection dates between methods is limited to 
the Amazon, as GLAD-L detections in the Cerrado are insufficient for 
a meaningful comparison. The resulting density curves of detection 
dates for small-scale clearings (0.1–1 ha) are shown in Fig.  10, while 
results for larger clearings (≥1 ha) are presented in Fig.  11. For larger 
clearings, GLAD-L is not reported due to an insufficient number of 
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Fig. 10. Detection timeliness and delay analysis (0.1–1 ha, Amazonia). Density curves of detection dates relative to MapBiomas Alerta (𝑡𝑀𝐵𝑎𝑓𝑡𝑒𝑟
) for 𝑇𝑝𝑜𝑙𝑦 = 75%

and 𝑇𝑝𝑜𝑙𝑦 = 50% (1) (left). Monthly number of detections for 𝑇𝑝𝑜𝑙𝑦 = 75% (middle). Monthly median detection delay relative to MapBiomas Alerta for 𝑇𝑝𝑜𝑙𝑦 = 75%
(right).
Table 3
Confusion matrix for deforested polygons ≥1 ha over Cerrado. 𝑇𝑝𝑜𝑙𝑦 defined in 
(1); ‘small’ refers to small-scale polygons (0.1–1 ha) reported for comparison, 
and ‘large’ to categories 𝐴1–𝐴3 combined.
 True positive [%]
 𝑇𝑝𝑜𝑙𝑦 BOCD C3 - small BOCD C3 - large GLAD-L 
 75% 39.9 64.2 1.6  
 50% 71.1 73.8 6.4  
 30% 86.7 86.6 12.2  
 10% 95.2 94.4 30.0  
 False positive [%]
 75% 0 0 0.4  
 50% 0 0 0.4  
 30% 0.5 0 0.4  
 10% 3.6 2.4 2.4  

detected polygons. Similar findings are observed for both clearing sizes, 
with BOCD detecting disturbances, on average, two months earlier 
than the individual systems RADD and GLAD-L. When compared with 
GFW, however, the median difference in detection dates is reduced to 
approximately three days. Moreover, in most cases, BOCD can identify 
disturbances before the parcels are officially recorded as deforested in 
MapBiomas Alerta.
11 
4.3. Spatial and temporal detection patterns across biomes

Detection examples from different methods across several Map-
Biomas Alerta polygons (0.1–1 ha) in Amazonia reveal that existing 
methods, especially GLAD-L and GFW, generate detections extending 
well beyond the boundaries of the reference polygons (Fig.  12). Al-
though, in this work, false alarms are quantified temporally rather than 
spatially, this over-detection still provides a visual indication of BOCD’s 
finer detection capabilities. Specifically, incorporating spatial context, 
as discussed in Section 3.5, refines the probability of deforestation 
without compromising spatial accuracy (Table  4).

The results, presented in Table  5, highlight strong seasonal vari-
ability in the Sentinel-1 time series over the Cerrado, with seasonality 
increasing as canopy closure and vegetation density decrease, i.e., sea-
sonality is higher in savannas than in forests. Examples of BOCD 
detections over seasonality-affected time series in Fig.  13 show the 
robustness of BOCD in detecting disturbances despite seasonal effects. 
Further examples in Fig.  14 illustrate the spatial precision of BOCD 
detections over savanna formations, even at very low 𝑇𝑝𝑜𝑙𝑦. Lowering 
𝑇poly, although not a user-tunable parameter, serves to highlight the 
resilience of BOCD to false alarms while still maintaining acceptable 
spatial precision in the detections.
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Fig. 11. Density curves of detection dates (≥1 ha, Amazonia) relative to MapBiomas Alerta (𝑡𝑀𝐵𝑎𝑓𝑡𝑒𝑟
) at two overlap thresholds 𝑇𝑝𝑜𝑙𝑦 (1).
Fig. 12. Examples of BOCD C3, GLAD-L, RADD and GFW’s detections (0.1–1 ha, light gray) of MapBiomas Alerta polygons (orange) over Amazonia (𝑇𝑝𝑜𝑙𝑦 = 75%, 
(1)). Optical background image from ©Google Earth (taken in 2024).
For the interested reader, maps of BOCD C3 detections over the 
MapBiomas Alerta small-clearings reference dataset (0.1–1 ha) for 
Amazonia and the Cerrado are included in Appendix  B.

5. Discussion

5.1. BOCD as a forest loss detector

The analysis of small clearings (0.1–1 ha, excluding selective log-
ging) in the Amazon biome (see Section 4.1.1) highlights BOCD’s 
superior ability to detect small-scale forest loss compared to existing 
methods. Moreover, BOCD demonstrates considerably lower false alarm 
rates than the top-performing NRT method, GFW, even at very low 
12 
𝑇poly values and less conservative configurations. The choice of priors in 
BOCD notably influenced detection rates, especially when transitioning 
from the most conservative configuration (C1) to less conservative 
ones. In contrast, adjustments to priors among the less conservative 
configurations had a less pronounced impact. While BOCD C2 and 
C3 are optimized for intermediate susceptibility, BOCD C4 is more 
prone to flagging changes. Given the comparable performance of BOCD 
C3 and C4 in terms of true detections and false alarms, adjusting 
the degrees of freedom, 𝛼, of the 𝑡-posterior predictive distribution 
proved to be the most effective method for enhancing responsiveness 
to changes. BOCD C2, which features a lower shape parameter, 𝜅, for 
the 𝑡-distribution, exhibited slightly reduced performance in detecting 
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Fig. 13. Examples of single-pixel backscatter time series showing deforestation events and posterior run length probabilities (brighter colors indicate higher 
probabilities). BOCD detection dates are in red; MapBiomas Alerta pre- and post-change dates in orange. Blue lines show smoothed time series for illustration 
only. For interpretation of the color references in this figure legend, please refer to the web version of the article.

Fig. 14. Spatial distribution of BOCD C3 detections in the Cerrado (0.1–1 ha) highlighting the original land cover, and examples of BOCD detections (light gray) 
over savanna formations for varying 𝑇𝑝𝑜𝑙𝑦 (1). Optical background image from ©Google Earth (taken in 2024).
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Table 4
Confusion matrix comparing BOCD C3 with and without spatial context (𝐻) 
for deforested polygons in the 0.1–1 ha range in Amazonia and Cerrado. 𝑇𝑝𝑜𝑙𝑦
defined in (1).
 𝑇𝑝𝑜𝑙𝑦 True positive [%] False positive [%]
 BOCD C3 BOCD C3 - No 𝐻 BOCD C3 BOCD C3 - No 𝐻 
 
Amazonia

75% 76.30 48.55 0 0  
 50% 90.17 64.20 0.12 0.12  
 30% 95.93 89.11 0.30 0.36  
 10% 97.16 94.29 5.43 5.55  
 
Cerrado

75% 39.90 33.07 0 0  
 50% 71.07 66.93 0 0  
 30% 86.65 82.51 0.51 1.02  
 10% 95.23 90.46 3.57 4.59  

Table 5
Seasonal variability metrics by vegetation type in the Cerrado, based on the 
MapBiomas Alerta 2020 dataset prior to deforestation. Sentinel-1 time series 
over 4 years were smoothed to reduce speckle and highlight seasonal patterns.
 Variability metric Forests Savannas 
 Mean seasonal peak-to-peak amplitude [dB] 7.37 7.42  
 Mean root-mean-square amplitude [dB] 1.57 1.65  

forest loss compared to BOCD C3. However, it was less affected by false 
alarms, especially at lower 𝑇poly values.

In the Cerrado biome, BOCD demonstrates significantly improved 
performance in detecting small clearings compared to GLAD-L. Un-
like in the Amazon biome, adjusting the priors does not have as 
significant an impact in the Cerrado. At 𝑇poly = 10% (Fig.  9(b)), an 
unexpectedly lower false alarm rate is observed for BOCD C3 compared 
to BOCD C2, contrasting with the findings in the Amazon biome. 
This observation illustrates that varying the values of BOCD priors 
can influence susceptibility in different ways. Although the parameter 
adjustments in Section 3.6 guide optimization of change detection 
responsiveness, their effects can vary by dataset and should be carefully 
considered. Ultimately, it is important to note that user preferences 
play a crucial role in system optimization. For example, some users 
may prioritize minimizing false alarms, even at the cost of occasional 
omissions, especially when the method is used to inform deforestation 
deterrent actions. Others, however, may prioritize detecting all forest 
disturbances, regardless of the false alarms.

The evaluation of larger clearings demonstrates that BOCD signif-
icantly outperforms GLAD-L in the Cerrado. In the Amazon, BOCD 
delivers performance comparable to RADD but registers fewer true 
positive detections than GFW, which, however, exhibits a higher false 
alarm rate. A reversed trend emerges for larger deforested parcels 
compared to smaller ones, with BOCD performing roughly twice as 
well in the Cerrado compared to the Amazon at 𝑇poly = 75%. This 
fact can be explained by the different deforestation practices in the two 
biomes. In the Cerrado, large clearings are typically associated with the 
establishment of soybean plantations, which require completely cleared 
soils (RAD2023, 2024). In contrast, in the Amazon, large clearings are 
often intended for pasture, and previous studies (Balling et al., 2023) 
have shown that deforestation of extensive parcels often results in 
substantial amounts of debris and fallen trees being left on the ground. 
This debris can remain throughout the dry season and is only burned 
prior to the onset of the rainy season, due to the greater difficulty 
of clearing dense forest biomass. As a result, the presence of residual 
vegetation delays or even prevents the detection of deforestation with 
C-band SAR data, an effect that is particularly pronounced for larger 
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parcels, thus explaining the observed trends. The performance of GFW 
highlights the potential of optical data to overcome this problem and 
more effectively detect larger disturbances.

5.2. BOCD adaptability to seasonality

The performance of BOCD in the Cerrado, which is affected by 
strong seasonality as shown in Section 4.3, demonstrates the iterative 
adaptability of the method. At each new observation, BOCD adapts 
to the current data statistics through the parameter update described 
in (6). A change is detected when variations fall outside the modeled 
statistics, even after adaptation, and persist for several consecutive 
observations, resulting in a significant drop in the most probable run 
length. This temporal persistence requirement makes BOCD resilient 
to single outliers, such as those caused by rain cells, which typically 
affect only one acquisition and do not suffice to trigger a false alarm. 
As shown in Fig.  13, sudden and short-lived drops in reflectivity do not 
lead to false detections.

The results obtained in the Cerrado highlight BOCD’s superior de-
tection capabilities compared to optical-based monitoring. For com-
pleteness, it is noted that no comparison was made with the LUCA 
dataset because its forest loss products are not publicly available, and 
its accuracy metrics are reported at the continental rather than biome 
level (Mullissa et al., 2024).

5.3. Spatial detection accuracy

Section 4.3 demonstrates the tendency of existing NRT forest loss 
monitoring methods to over-detect small-scale forest loss, particularly 
in optical-based approaches such as GLAD-L and GFW. In contrast, 
BOCD exhibits finer detection capabilities, demonstrating its potential 
in identifying small clearings. This capability is attributed to the use 
of unfiltered Sentinel-1 RTC data (≈ 20 m). To the authors’ knowledge, 
all existing SAR-based forest loss monitoring methods, including RADD, 
employ spatial filtering to reduce speckle-related data variability. How-
ever, spatial filtering reduces spatial resolution, which may lead to 
over-detection and omission of finer disturbances.

The incorporation of spatial context into the change detection pro-
cess, as described in Section 3.5, involves adjusting the probability 
of deforestation for pixels directly adjacent to a confirmed distur-
bance. This approach leverages spatial information within a single 
sensor’s data without artificially boosting confidence through cross-
sensor validation. Cross-sensor integration using spatial neighborhood 
rules across multiple satellite datasets can increase false alarms by 
aggregating errors from each sensor (Reiche et al., 2024), as observed 
in the integrated GFW alerts. In contrast, the use of spatial context 
in BOCD reduces false detections rather than amplifying them. The 
results presented in Section 4.3 show a notable increase in true positive 
detections within the Amazon — particularly at high 𝑇poly values — 
when spatial context is considered. In the Cerrado, the improvement 
in true detections is more modest but still significant. Additionally, the 
inclusion of spatial context leads to a slight reduction in false alarms 
across both biomes.

5.4. Temporal detection accuracy

The temporal results in Section 4.2 show that, in most cases, BOCD 
detects disturbances before the parcels are officially recorded as de-
forested in MapBiomas Alerta. Compared with the individual methods 
RADD and GLAD-L, BOCD detects both small- and large-scale distur-
bances, on average, two months earlier. The results shown in Fig.  10 
indicate that BOCD’s timeliness is not affected by seasonal variations. 
As a SAR-based method, BOCD generally remains unaffected by rainy 
season conditions. Fig.  10(c) shows that the median detection delay 
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of BOCD is comparable to that of GFW, mainly because most clearings 
occur during the dry season. During this time, GFW likely benefits from 
reduced cloud cover, enabling faster detection using optical imagery. 
However, as an integrated approach, GFW’s timeliness comes at the cost 
of increased false alarms.

5.5. Potential sources of omissions and false alarms

The potential sources of omissions and false alarms within the 
BOCD method are primarily due to limitations in the backscatter signals 
and environmental factors that influence the radar data. Particularly, 
omissions can occur when the backscatter signal processed by BOCD 
does not show sufficient signs of change. Another factor contributing 
to omissions is heavy rainfall immediately following deforestation. The 
moisture can saturate the C-band backscatter, masking the effects of 
forest clearing. Additionally, residual biomass left on the ground after 
deforestation, especially in the cross-polarized channel, which is more 
sensitive to volume scattering, can also cause omissions (Picard et al., 
2004). This behavior is expected to be consistent across both analyzed 
biomes.

False alarms, on the other hand, may arise when the algorithm mis-
takenly attributes changes in backscatter to deforestation. One of the 
primary causes of false alarms is seasonality (Magagi et al., 2022). Al-
though the algorithm adapts to seasonal fluctuations through a hidden 
Markov model, strong seasonal changes in backscatter can still trigger 
false detections. Another major contributor is short-term flooding or 
variations in the water table (Mermoz et al., 2021). In flood-prone 
regions, such as parts of the Amazon floodplain, fluctuations in water 
levels can cause abrupt changes in backscatter, which may be misin-
terpreted as deforestation. Additionally, forest degradation and canopy 
disturbances, especially in dense rainforests like the Amazon, can lead 
to false alarms (Hoekman and Quiñones, 2000). Events such as selective 
logging, natural treefall, or edge effects can alter backscatter without 
actual deforestation, and when these changes are coupled with soil 
visibility, they may be incorrectly classified as forest loss.

5.6. Future work

Building on the findings of this study, several promising directions 
for future research emerge. First, by avoiding data stack filtering, the 
proposed method shows the capability to detect small-scale forest loss, 
highlighting the need to assess its effectiveness in detecting selective 
logging — particularly in regions with well-established reference data. 
Second, the adaptability of the Bayesian approach to seasonal trends 
opens the door to making the method operational and to evaluating 
deforestation monitoring performance in regions with pronounced sea-
sonality. Third, the stronger performance of GFW compared to BOCD in 
detecting larger-scale clearings underscores the potential of extending 
BOCD to a multi-source framework, such as integrating Sentinel-1 and 
Sentinel-2 data. Exploring these directions would not only enhance the 
versatility of the proposed method but also offer valuable insights for 
addressing forest loss across diverse landscapes by leveraging multiple 
data sources.

6. Conclusions

This paper presented an unsupervised, SAR-based forest disturbance 
detection method with NRT capabilities, grounded in Bayesian infer-
ence. Building on the methodology proposed in Adams and MacKay 
(2007), the BOCD approach was adapted to process single-polarization 
Sentinel-1 SAR data through Bayesian conjugate analysis. Further-
more, a strategy was developed to incorporate proximity to previously 
observed disturbances, using a survival analysis framework.
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The method was tested on two subsets of the 2020 MapBiomas 
Alerta reference dataset: one comprising small-scale clearings (0.1–1 
ha) and the other comprising larger-scale clearings. The results demon-
strated the method’s efficacy in detecting small-scale disturbances, 
made possible by preserving the spatial resolution of the measurements 
through the avoidance of spatial filtering. The adaptability of the 
Bayesian framework enabled the method to account for variations and 
trends in the data, showing strong potential for monitoring both dense 
rainforests and seasonally dynamic regions such as the Cerrado. When 
detecting small-scale disturbances, BOCD outperformed existing oper-
ational NRT methods by achieving higher true detection rates in both 
biomes while maintaining low false alarm rates. In the case of larger 
clearings, BOCD performed comparably to RADD but achieved lower 
detection rates than GFW, which integrates three alerting systems. 
However, GFW’s increased detection rate came at the cost of higher 
false alarms, likely due to the aggregation of false detections from mul-
tiple sensors. Furthermore, a timeliness analysis showed that BOCD’s 
performance aligned with that of GFW and significantly surpassed that 
of GLAD-L and RADD individually.

Overall, the BOCD method showed strong potential as an advance-
ment in forest loss monitoring, offering a versatile and robust approach 
for NRT detection across diverse ecosystems and supporting more 
precise and timely forest conservation efforts.
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Appendix A. Statistical model of Sentinel-1 unfiltered RTC data

To establish the statistical model for the Sentinel-1 data and sub-
sequently determine the posterior probability and posterior predictive 
distributions required by the BOCD algorithm, various candidate den-
sity functions are fitted to both the backscatter intensity, 𝐼 , and the 
logarithmic intensity, 𝐼𝑑𝐵 , data. The fits are performed using non-
disturbed vegetated data samples, each consisting of approximately 300 
by 300 Sentinel-1 RTC pixels, extracted from several areas within the 
study region. For illustrative purposes, histograms from two areas in the 
Amazon region and two areas in the Cerrado region are shown in Fig. 
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Fig. A.15. PDF fits of 𝐼 and 𝐼𝑑𝐵 , Sentinel-1 RTC data (≈300 × 300 pixels) over different reference sites. p indicates the p-value. 
A.15. The analysis results indicate that the 𝐼 data best fits a log-normal 
distribution, meaning that the 𝐼𝑑𝐵 statistics are well represented by a 
normal distribution.

The quality of the PDF fits is assessed using the Kolmogorov–
Smirnov (KS) test (Chakravarti et al., 1967), which compares a dataset’s 
empirical distribution to a theoretical distribution. This test evaluates 
the statistical significance of the null hypothesis, which asserts that the 
sample data aligns with the distribution PDF. The KS statistic quantifies 
the difference between observed and expected cumulative distributions, 
whereas the 𝑝-value indicates the likelihood of this difference occurring 
if the null hypothesis is true. A 𝑝-value below a set significance level 
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(typically 0.05) suggests a notable discrepancy, while a higher value 
indicates no strong evidence to reject the hypothesis. As presented in 
Fig.  A.15, the 𝑝-values corresponding to the KS test for different fits 
indicate statistical significance, thereby supporting the hypothesis that 
the data samples are generated from the considered distributions. The 
choice adopted within this work is to use log-scale Sentinel-1 data and 
assume a normal likelihood.

Appendix B. Supplementary results
Table B.6
Confusion matrix for deforested polygons in the 0.1–1 ha range over Amazonia. 𝑇poly defined in 
(1). Labels ‘C1’–‘C4’ refer to different BOCD configurations.
 True positive [%]
 𝑇𝑝𝑜𝑙𝑦 BOCD C1 BOCD C2 BOCD C3 BOCD C4 GLAD-L RADD GFW 
 75% 53.3 72.3 76.3 77.6 11.3 37.6 59.0  
 50% 74.8 88.0 90.2 90.7 20.4 64.9 77.6  
 30% 84.6 94.6 95.9 96.1 27.7 77.5 87.3  
 10% 87.2 96.0 97.2 97.3 33.7 85.8 92.6  
 False positive [%]
 75% 0 0 0 0 0.4 0.2 0.7  
 50% 0.1 0.1 0.1 0.1 0.7 0.5 1.6  
 30% 0.2 0.3 0.3 0.3 1.4 1.5 5.4  
 10% 1.9 4.5 5.4 5.7 3.7 5.6 13.6  
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Table B.7
Confusion matrix for deforested polygons in the 0.1–1 ha range over Cerrado. 𝑇poly defined in 
(1). Labels ‘C1’–‘C4’ refer to different BOCD configurations.
 True positive [%]
 𝑇𝑝𝑜𝑙𝑦 BOCD C1 BOCD C2 BOCD C3 BOCD C4 GLAD-L 
 75% 38.2 39.1 39.9 41.3 1.0  
 50% 67.7 70.3 71.1 72.3 3.7  
 30% 83.9 85.1 86.7 87.3 9.7  
 10% 92.7 93.2 95.2 95.7 20.0  
 False positive [%]
 75% 0 0 0 0 0  
 50% 0 0 0 0 0  
 30% 0.5 0.5 0.5 0.5 0  
 10% 3.6 4.1 3.6 4.6 0.5  
Table B.8
Spatial accuracy metrics for deforested polygons in the 0.1–1 ha range over Amazonia. 𝑇poly
defined in (1). Labels ‘C1’–‘C4’ refer to different BOCD configurations. 𝑝: precision, 𝑠: sensitivity, 
𝐹1: F1-score, 𝑇𝑃 : true positive, 𝐹𝑃 : false positive, 𝐹𝑁 : false negative. Metrics expressed as 
percentages.
 𝑇𝑝𝑜𝑙𝑦 BOCD C1 BOCD C2 BOCD C3 BOCD C4 GLAD-L RADD GFW 
 
𝑝 = 𝑇𝑃

𝑇𝑃+𝐹𝑃

75% 100 100 100 100 99.4 99.8 98.5  
 50% 99.9 99.9 99.9 99.9 98.5 99.7 99.1  
 30% 99.9 99.8 99.8 99.8 97.7 99.1 97.2  
 10% 99.0 97.9 97.5 97.4 95.3 95.2 93.6  
 
𝑠 = 𝑇𝑃

𝑇𝑃+𝐹𝑁

75% 53.3 72.3 76.3 77.6 11.3 37.6 59.0  
 50% 74.8 88.0 90.2 90.7 20.4 65.0 77.6  
 30% 84.6 94.6 95.9 96.1 27.7 77.5 87.3  
 10% 87.2 96.0 97.2 97.3 33.6 85.8 92.6  
 
𝐹1 =

2 𝑝 𝑠
𝑝+𝑠

75% 69.6 83.9 86.6 87.4 20.2 54.6 74.1  
 50% 85.6 93.6 94.8 95.1 33.8 78.6 87.1  
 30% 91.6 97.2 97.8 97.9 43.2 87.0 92.0  
 10% 92.7 96.9 97.3 97.3 49.7 90.5 93.1  
Table B.9
Spatial accuracy metrics for deforested polygons in the 0.1–1 ha range over Cerrado. 𝑇poly defined 
in (1). Labels ‘C1’–‘C4’ refer to different BOCD configurations. 𝑝: precision, 𝑠: sensitivity, 𝐹1: F1-
score, 𝑇𝑃 : true positive, 𝐹𝑃 : false positive, 𝐹𝑁 : false negative. Metrics expressed as percentages.
 𝑇𝑝𝑜𝑙𝑦 BOCD C1 BOCD C2 BOCD C3 BOCD C4 GLAD-L 
 
𝑝 = 𝑇𝑃

𝑇𝑃+𝐹𝑃

75% 100 100 100 100 100  
 50% 100 100 100 100 100  
 30% 99.8 99.8 99.8 99.8 100  
 10% 98.8 98.7 98.8 99.2 99.2  
 
𝑠 = 𝑇𝑃

𝑇𝑃+𝐹𝑁

75% 38.2 39.1 39.9 41.3 1.0  
 50% 67.7 70.3 71.1 72.3 3.7  
 30% 83.9 85.1 86.6 87.3 9.7  
 10% 92.7 93.2 95.2 95.7 20.0  
 
𝐹1 =

2 𝑝 𝑠
𝑝+𝑠

75% 55.2 56.2 57.0 58.5 19.0  
 50% 80.8 82.5 83.1 83.9 7.1  
 30% 91.2 91.8 92.8 93.1 17.7  
 10% 95.7 95.8 97.0 97.4 33.3  
Table B.10
Confusion matrix for deforested polygons ≥1 ha over Amazonia. 𝑇𝑝𝑜𝑙𝑦 defined in (1). 𝐴1 − 𝐴3 are the size categories defined in 
Table  1. ‘TOT’ indicates the performance for categories 𝐴1 − 𝐴3 jointly.
 True positive [%]
 𝑇𝑝𝑜𝑙𝑦 BOCD C3 RADD GLAD-L GFW

 TOT 𝐴1 𝐴2 𝐴3 TOT 𝐴1 𝐴2 𝐴3 TOT 𝐴1 𝐴2 𝐴3 TOT 𝐴1 𝐴2 𝐴3  
 75% 32.2 39.2 25.7 20.6 33.3 36.6 29.2 31.0 11.6 10.8 12.4 12.7 68.3 69.9 66.2 67.5 
 50% 65.3 73.3 59.0 49.2 62.2 68.2 58.1 48.4 24.9 24.8 23.4 29.4 86.0 86.7 85.8 83.3 
 30% 79.9 86.9 73.7 67.5 76.9 77.8 66.4 58.9 32.7 33.6 31.9 32.9 91.5 91.9 88.5 84.9 
 10% 95.9 97.2 94.5 94.4 90.3 93.7 92.1 91.9 40.0 43.8 41.7 43.7 96.1 97.8 96.3 95.4 
 False positive [%]
 75% 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0.8 0.4 0  
 50% 0 0 0 0 0 0 0 0 0.8 0.8 1.2 0 4.0 4.2 8.6 3.2  
 30% 0 0 0 0 0.4 0.5 1.1 0 1.2 1.2 1.2 1.2 16.0 15.9 16.0 16.3 
 10% 0.8 1.4 0.5 0 2.8 2.7 2.7 3.3 3.4 3.6 3.2 3.3 52.6 52.7 52.6 52.2 
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Table B.11
Confusion matrix for deforested polygons ≥1 ha over Cerrado. 𝑇𝑝𝑜𝑙𝑦 defined in (1). 𝐴1−𝐴3 are the 
size categories defined in Table  1. ‘TOT’ indicates the performance for categories 𝐴1 −𝐴3 jointly.
 True positive [%]
 𝑇𝑝𝑜𝑙𝑦 BOCD C3 GLAD-L

 TOT 𝐴1 𝐴2 𝐴3 TOT 𝐴1 𝐴2 𝐴3  
 75% 64.2 63.5 68.1 59.1 1.6 1.5 2.2 1.7  
 50% 73.8 74.5 76.2 68.7 6.4 6.5 6.5 6.1  
 30% 86.6 88.5 89.7 78.3 12.2 12.0 12.4 12.2 
 10% 94.4 97.5 93.5 90.4 30.0 30.0 29.7 30.4 
 False positive [%]
 75% 0 0 0 0 0.4 0.8 0 0  
 50% 0 0 0 0 0.4 0.8 0 0  
 30% 0 0 0 0 0.4 0.8 0 0  
 10% 2.4 0.8 2.7 6.25 2.4 2.4 2.7 2.1  
Fig. B.16. Map of BOCD C3 detections over the MapBiomas Alerta small-clearings reference dataset (0.1–1 ha) in Amazonia. Reference polygons in orange; BOCD 
detections in light gray. Optical background: Google Earth (© 2024 Google).
Fig. B.17. Map of BOCD C3 detections over the MapBiomas Alerta small-clearings reference dataset (0.1–1 ha) in the Cerrado. Reference polygons in orange; 
BOCD detections in light gray. Optical background: Google Earth (© 2024 Google).
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Data availability

Both the Sentinel-1 input data and the MapBiomas Alerta reference 
dataset are freely accessible online.

References

Adams, R.P., MacKay, D.J., 2007. Bayesian online changepoint detection. arXiv:0710.
3742. URL https://doi.org/10.48550/arXiv.0710.3742.

Asner, G.P., Llactayo, W., Tupayachi, R., Luna, E.R., 2013. Elevated rates of gold mining 
in the amazon revealed through high-resolution monitoring. Proc. Natl. Acad. Sci. 
110 (46), 18454–18459, URL https://doi.org/10.1073/pnas.1318271110.

Assunção, J., Gandour, C., Rocha, R., Rocha, R., 2019. The effect of rural credit 
on deforestation: Evidence from the Brazilian amazon. Econ. J. 130, URL https:
//doi.org/10.1093/ej/uez060.

Ballère, M., Bouvet, A., Mermoz, S., Toan, T.L., Koleck, T., Bedeau, C., André, M., 
Forestier, E., Frison, P.-L., Lardeux, C., 2021. SAR data for tropical forest distur-
bance alerts in French Guiana: Benefit over optical imagery. Remote Sens. Environ. 
252, 112159, URL https://doi.org/10.1016/j.rse.2020.112159.

Balling, J., Herold, M., Reiche, J., 2023. How textural features can improve SAR-based 
tropical forest disturbance mapping. Int. J. Appl. Earth Obs. Geoinf. 124, 103492, 
URL https://doi.org/10.1016/j.jag.2023.103492.

Barry, D., Hartigan, J.A., 1993. A Bayesian analysis for change point problems. J. 
Amer. Statist. Assoc. 88 (421), 309–319, URL https://doi.org/10.1080/01621459.
1993.10594323.

Bourgoin, C., Ceccherini, G., Girardello, M., Vancutsem, C., Avitabile, V., Beck, P.S.A., 
Beuchle, R., Blanc, L., Duveiller, G., Migliavacca, M., Vieilledent, G., Cescatti, A., 
Achard, F., 2024. Human degradation of tropical moist forests is greater than 
previously estimated. Nature 631, 570–576, URL https://10.1038/s41586-024-
07629-0.

Bouvet, A., Mermoz, S., Ballère, M., Koleck, T., Toan, T.L., 2018. Use of the SAR 
shadowing effect for deforestation detection with sentinel-1 time series. Remote. 
Sens. 10 (8), URL https://doi.org/10.3390/rs10081250.

Carstairs, H., Mitchard, E.T.A., McNicol, I., Aquino, C., Chezeaux, E., Ebanega, M.O., 
Dikongo, A.M., Disney, M., 2022. Sentinel-1 shadows used to quantify canopy loss 
from selective logging in gabon. Remote. Sens. 14 (17), URL https://doi.org/10.
3390/rs14174233.

Chakravarti, I., Laha, R., Roy, J., 1967. Handbook of Methods of Applied Statistics, 
Volume I. Wiley, pp. 392–394.

Cox, D.R., 2001. Renewal theory. Handbook of Statist. 19, URL https://doi.org/10.
1016/S0169-7161(01)19015-2.

de Freitas Bussinguer, J., de Mello Baptista, G.M., Sano, E.E., Leal, F., 2024. Un-
derstanding the spatio-temporal behavior of sentinel-1 SAR vegetation indices 
over the Brazilian Savanna. IEEE Trans. Geosci. Remote Sens. 62, 1–18, URL 
https://doi.org/10.1109/TGRS.2024.3381468.

Doblas, J., Lima, L., Mermoz, S., Bouvet, A., Reiche, J., Watanabe, M., Anna, S.S., 
Shimabukuro, Y., 2023. Inter-comparison of optical and SAR-based forest distur-
bance warning systems in the amazon shows the potential of combined SAR-optical 
monitoring. Int. J. Remote Sens. 44 (1), 59–77, URL https://doi.org/10.1080/
01431161.2022.2157684.

Doblas, J., Reis, M.S., Belluzzo, A.P., Quadros, C.B., Moraes, D.R.V., Almeida, C.A., 
Maurano, L.E.P., Carvalho, A.F.A., Sant’Anna, S.J.S., Shimabukuro, Y.E., 2022. 
DETER-r: An operational near-real time tropical forest disturbance warning system 
based on sentinel-1 time series analysis. Remote. Sens. 14 (15), URL https://doi.
org/10.3390/rs14153658.

Doblas, J., Shimabukuro, Y., Sant’Anna, S., Carneiro, A., Aragão, L., Almeida, C., 2020. 
Optimizing near real-time detection of deforestation on tropical rainforests using 
sentinel-1 data. Remote. Sens. 12 (23), URL https://doi.org/10.3390/rs12233922.

Fearnhead, P., Liu, Z., 2007. On-line inference for multiple changepoint problems. J. 
R. Stat. Soc. Ser. B Stat. Methodol. 69 (4), 589–605, URL https://doi.org/10.1111/
j.1467-9868.2007.00601.x.

Feller, W., 1968. An Introduction to Probability Theory and its Applications: Volume 
I. Wiley.

Finer, M., Novoa, S., Weisse, M.J., Petersen, R., Mascaro, J., Souto, T., Stearns, F., 
Martinez, R.G., 2018. Combating deforestation: From satellite to intervention. 
Science 360, 1303–1305, URL https://doi.org/10.1126/science.aat1203.

Forzieri, G., Dakos, V., McDowell, N.G., Ramdane, A., Cescatti, A., 2022. Emerging 
signals of declining forest resilience under climate change. Nature 608, 534–539, 
URL https://doi.org/10.1038/s41586-022-04959-9.

GFW, 2024. World resources institute - global forest watch. https://www.
globalforestwatch.org/. (Accessed 26 November 2024).

Goodman, J.W., 1976. Some fundamental properties of speckle∗. J. Opt. Soc. Am. 66 
(11), 1145–1150, URL https://doi.org/10.1364/JOSA.66.001145.

Haddad, N., Brudvig, L., Clobert, J., Davies, K., Gonzalez, A., Holt, R., Lovejoy, T., 
Sexton, J., Austin, M., Collins, C., Cook, W., Damschen, E., Ewers, R., Foster, B., 
Jenkins, C., King, A., Laurance, W., Levey, D., Margules, C., Melbourne, B., 
Nicholls, A., Orrock, J., Song, D., Townshend, J., 2015. Habitat fragmentation and 
its lasting impact on earth’s ecosystems. Sci. Adv. 1, URL https://doi.org/10.1126/
sciadv.1500052.
19 
Hansen, M.C., Krylov, A., Tyukavina, A., Potapov, P.V., Turubanova, S., Zutta, B., Ifo, S., 
Margono, B., Stolle, F., Moore, R., 2016. Humid tropical forest disturbance alerts 
using landsat data. Environ. Res. Lett. 11 (3), 034008, URL https://doi.org/10.
1088/1748-9326/11/3/034008.

Harris, N.L., Gibbs, D.A., Baccini, A., Birdsey, R.A., de Bruin, S., Farina, M., Fatoy-
inbo, L., Hansen, M.C., Herold, M., Houghton, R.A., Potapov, P.V., Suarez, D.R., 
Roman-Cuesta, R.M., Saatchi, S.S., Slay, C.M., Turubanova, S.A., Tyukavina, A., 
2021. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Chang. 
11, 234–240, URL https://doi.org/10.1038/s41558-020-00976-6.

Hoang, N.T., Kanemoto, K., 2021. Mapping the deforestation footprint of nations 
reveals growing threat to tropical forests. Nat. Ecol. Evol. 5, 845–853, URL https:
//doi.org/10.1038/s41559-021-01417-z.

Hoekman, D., Quiñones, M., 2000. Land cover type and biomass classification using 
AirSAR data for evaluation of monitoring scenarios in the Colombian amazon. IEEE 
Trans. Geosci. Remote Sens. 38, 685–696, URL https://doi.org/10.1109/36.841998.

Kalamandeen, M., Gloor, M., Mitchard, E., Quincey, D., Ziv, G., Spracklen, D., 
Spracklen, B., Adami, M., Aragão, L., Galbraith, D., 2018. Pervasive rise of small-
scale deforestation in amazonia. Sci. Rep. 8, URL https://doi.org/10.1038/s41598-
018-19358-2.

Magagi, R., et al., 2022. Potential of L-and C-bands polarimetric SAR data for 
monitoring soil moisture over forested sites. Remote. Sens. 14, 5317, URL https:
//doi.org/10.3390/rs14215317.

MapBiomas, 2024. MapBiomas alerta - deforestation alert validation and refinement 
system with high-resolution images. https://alerta.mapbiomas.org/en. (Accessed 26 
November 2024).

Mermoz, S., Bouvet, A., Koleck, T., Ballère, M., Toan, T.L., 2021. Continuous detection 
of forest loss in Vietnam, Laos, and Cambodia using sentinel-1 data. Remote. Sens. 
13 (23), URL https://doi.org/10.3390/rs13234877.

Miranda, J., Börner, J.J., Kalkuhl, M., Soares-Filho, B.S., 2019. Land speculation and 
conservation policy leakage in Brazil. Environ. Res. Lett. 14, URL https://doi.org/
10.1088/1748-9326/ab003a.

Miranda, N., Meadows, P.J., 2015. Radiometric Calibration of S-1 Level-1 Products 
Generated by the S-1 IPF. Technical Note ESA-EOPG-CSCOP-TN-0002, ESA, URL 
https://sentinel.esa.int/documents/247904/685163/S1-Radiometric-Calibration-
V1.0.pdf.

Mullissa, A., Reiche, J., Herold, M., 2023. Deep learning and automatic reference 
label harvesting for sentinel-1 SAR-based rapid tropical dry forest disturbance 
mapping. Remote Sens. Environ. 298, 113799, URL https://doi.org/10.1016/j.rse.
2023.113799.

Mullissa, A., Saatchi, S., Silva, R., Erickson, T., Provost, N., Osborn, F., Ashary, A., 
Moon, V., Melling, D., 2024. LUCA: A sentinel-1 SAR-based global forest land use 
change alert. Remote. Sens. 16, 2151, URL https://doi.org/10.3390/rs16122151.

Murphy, K.P., 2007. Conjugate Bayesian Analysis of the Gaussian Distribution. Tech-
nical Report, The University of British Columbia, URL https://www.cs.ubc.ca/
~murphyk/Papers/bayesGauss.pdf.

Picard, G., Toan, T.L., Quegan, S., Caraglio, Y., Castel, T., 2004. Radiative transfer 
modeling of cross-polarized backscatter from a pine forest using the discrete 
ordinate and eigenvalue method. IEEE Trans. Geosci. Remote Sens. 42, 1720–1730, 
URL https://doi.org/10.1109/TGRS.2004.831229.

RAD2023, 2024. RADD2023 :Annual Deforestation Report of Brazil 2023. Technical 
Report, São Paulo, Brazil, p. 154, URL https://doi.org/10.1088/1748-9326/ac5193.

Reiche, J., Balling, J., Pickens, A., Masolele, R., Berger, A., Weisse, M., Mannarino, D., 
Gou, Y., Slagter, B., Donchyts, G., Carter, S., 2024. Integrating satellite-based forest 
disturbance alerts improves detection timeliness and confidence. Environ. Res. Lett. 
19, URL https://doi.org/10.1088/1748-9326/ad2d82.

Reiche, J., Hamunyela, E., Verbesselt, J., Hoekman, D., Herold, M., 2018a. Improving 
near-real time deforestation monitoring in tropical dry forests by combining dense 
sentinel-1 time series with landsat and ALOS-2 PALSAR-2. Remote Sens. Environ. 
204 (5), 147–161, URL https://doi.org/10.1016/j.rse.2017.10.034.

Reiche, J., Mullissa, A., Slagter, B., Gou, Y., Tsendbazar, N.-E., Odongo-Braun, C., 
Vollrath, A., Weisse, M.J., Stolle, F., Pickens, A., Donchyts, G., Clinton, N., 
Gorelick, N., Herold, M., 2021. Forest disturbance alerts for the congo basin using 
sentinel-1. Environ. Res. Lett. 16 (2), 024005, URL https://doi.org/10.1088/1748-
9326/abd0a8.

Reiche, J., Verhoeven, R., Verbesselt, J., Hamunyela, E., Wielaard, N., Herold, M., 
2018b. Characterizing tropical forest cover loss using dense sentinel-1 data and 
active fire alerts. Remote. Sens. 10, 777, URL https://doi.org/10.3390/rs10050777.

Robb, R., Cochran, G., 1963. Sampling techniques (john wiley & sons, 2nd 
edition). Proc. Edinb. Math. Soc. 102532, URL https://doi.org/10.1017/
S0013091500025724.

Rodrigues, A.D.A., Macedo, M., Silvério, D., Maracahipes, L., Coe, M., Brando, P., 
Shimbo, J.Z., Rajão, R., Filho, B., Bustamante, M., 2022. Cerrado deforestation 
threatens regional climate and water availability for agriculture and ecosystems. 
Global Change Biol. 28, URL https://doi.org/10.1111/gcb.16386.

Shimabukuro, Y., Santos, J., Formaggio, A., Duarte, V., Rudorff, B., 2016. The Brazilian 
Amazon Monitoring Program: PRODES and DETER Projects. pp. 153–169, URL 
https://doi.org/10.1201/b13040-9.

Slagter, B., Reiche, J., Marcos, D., Mullissa, A., Lossou, E., Peña-Claros, M., Herold, M., 
2023. Monitoring direct drivers of small-scale tropical forest disturbance in near 
real-time with sentinel-1 and -2 data. Remote Sens. Environ. 295, 113655, URL 
https://doi.org/10.1016/j.rse.2023.113655.

http://arxiv.org/abs/0710.3742
http://arxiv.org/abs/0710.3742
http://arxiv.org/abs/0710.3742
https://doi.org/10.48550/arXiv.0710.3742
https://doi.org/10.1073/pnas.1318271110
https://doi.org/10.1093/ej/uez060
https://doi.org/10.1093/ej/uez060
https://doi.org/10.1093/ej/uez060
https://doi.org/10.1016/j.rse.2020.112159
https://doi.org/10.1016/j.jag.2023.103492
https://doi.org/10.1080/01621459.1993.10594323
https://doi.org/10.1080/01621459.1993.10594323
https://doi.org/10.1080/01621459.1993.10594323
https://10.1038/s41586-024-07629-0
https://10.1038/s41586-024-07629-0
https://10.1038/s41586-024-07629-0
https://doi.org/10.3390/rs10081250
https://doi.org/10.3390/rs14174233
https://doi.org/10.3390/rs14174233
https://doi.org/10.3390/rs14174233
http://refhub.elsevier.com/S0034-4257(25)00441-9/sb10
http://refhub.elsevier.com/S0034-4257(25)00441-9/sb10
http://refhub.elsevier.com/S0034-4257(25)00441-9/sb10
https://doi.org/10.1016/S0169-7161(01)19015-2
https://doi.org/10.1016/S0169-7161(01)19015-2
https://doi.org/10.1016/S0169-7161(01)19015-2
https://doi.org/10.1109/TGRS.2024.3381468
https://doi.org/10.1080/01431161.2022.2157684
https://doi.org/10.1080/01431161.2022.2157684
https://doi.org/10.1080/01431161.2022.2157684
https://doi.org/10.3390/rs14153658
https://doi.org/10.3390/rs14153658
https://doi.org/10.3390/rs14153658
https://doi.org/10.3390/rs12233922
https://doi.org/10.1111/j.1467-9868.2007.00601.x
https://doi.org/10.1111/j.1467-9868.2007.00601.x
https://doi.org/10.1111/j.1467-9868.2007.00601.x
http://refhub.elsevier.com/S0034-4257(25)00441-9/sb17
http://refhub.elsevier.com/S0034-4257(25)00441-9/sb17
http://refhub.elsevier.com/S0034-4257(25)00441-9/sb17
https://doi.org/10.1126/science.aat1203
https://doi.org/10.1038/s41586-022-04959-9
https://www.globalforestwatch.org/
https://www.globalforestwatch.org/
https://www.globalforestwatch.org/
https://doi.org/10.1364/JOSA.66.001145
https://doi.org/10.1126/sciadv.1500052
https://doi.org/10.1126/sciadv.1500052
https://doi.org/10.1126/sciadv.1500052
https://doi.org/10.1088/1748-9326/11/3/034008
https://doi.org/10.1088/1748-9326/11/3/034008
https://doi.org/10.1088/1748-9326/11/3/034008
https://doi.org/10.1038/s41558-020-00976-6
https://doi.org/10.1038/s41559-021-01417-z
https://doi.org/10.1038/s41559-021-01417-z
https://doi.org/10.1038/s41559-021-01417-z
https://doi.org/10.1109/36.841998
https://doi.org/10.1038/s41598-018-19358-2
https://doi.org/10.1038/s41598-018-19358-2
https://doi.org/10.1038/s41598-018-19358-2
https://doi.org/10.3390/rs14215317
https://doi.org/10.3390/rs14215317
https://doi.org/10.3390/rs14215317
https://alerta.mapbiomas.org/en
https://doi.org/10.3390/rs13234877
https://doi.org/10.1088/1748-9326/ab003a
https://doi.org/10.1088/1748-9326/ab003a
https://doi.org/10.1088/1748-9326/ab003a
https://sentinel.esa.int/documents/247904/685163/S1-Radiometric-Calibration-V1.0.pdf
https://sentinel.esa.int/documents/247904/685163/S1-Radiometric-Calibration-V1.0.pdf
https://sentinel.esa.int/documents/247904/685163/S1-Radiometric-Calibration-V1.0.pdf
https://doi.org/10.1016/j.rse.2023.113799
https://doi.org/10.1016/j.rse.2023.113799
https://doi.org/10.1016/j.rse.2023.113799
https://doi.org/10.3390/rs16122151
https://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf
https://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf
https://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf
https://doi.org/10.1109/TGRS.2004.831229
https://doi.org/10.1088/1748-9326/ac5193
https://doi.org/10.1088/1748-9326/ad2d82
https://doi.org/10.1016/j.rse.2017.10.034
https://doi.org/10.1088/1748-9326/abd0a8
https://doi.org/10.1088/1748-9326/abd0a8
https://doi.org/10.1088/1748-9326/abd0a8
https://doi.org/10.3390/rs10050777
https://doi.org/10.1017/S0013091500025724
https://doi.org/10.1017/S0013091500025724
https://doi.org/10.1017/S0013091500025724
https://doi.org/10.1111/gcb.16386
https://doi.org/10.1201/b13040-9
https://doi.org/10.1016/j.rse.2023.113655


M. Bottani et al. Remote Sensing of Environment 331 (2025) 115037 
Small, D., 2011. Flattening Gamma: Radiometric terrain correction for SAR imagery. 
IEEE Trans. Geosci. Remote Sens. 49, 3081–3093, URL https://doi.org/10.1109/
TGRS.2011.2120616.

Stevenson, M., 2007. An Introduction to Survival Analysis. Technical Report, Epi-
Centre, IVABS, Massey University, URL http://www.biecek.pl/statystykaMedyczna/
Stevenson_survival_analysis_195.721.pdf.

Tacconi, L., Rodrigues, R., Maryudi, A., 2019. Law enforcement and deforestation: 
Lessons for Indonesia from Brazil. For. Policy Econ. 108, 101943, URL https:
//doi.org/10.1016/j.forpol.2019.05.029.

Trigueiro, W.R., Nabout, J.C., Tessarolo, G., 2020. Uncovering the spatial variability 
of recent deforestation drivers in the Brazilian Cerrado. J. Environ. Manag. 275, 
111243, URL https://doi.org/10.1016/j.jenvman.2020.111243.

Vancutsem, C., Achard, F., Pekel, J.-F., Vieilledent, G., Carboni, S., Simonetti, D., 
Gallego, J., Aragão, L.E., Nasi, R., 2021. Long-term (1990–2019) monitoring of 
forest cover changes in the humid tropics. Sci. Adv. 7, URL https://doi.org/10.
1126/sciadv.abe1603.

Verbesselt, J., Zeileis, A., Herold, M., 2012. Near real-time disturbance detection 
using satellite image time series. Remote Sens. Environ. 123, 98–108, URL https:
//doi.org/10.1016/j.rse.2012.02.022.
20 
Watanabe, M., Koyama, C.N., Hayashi, M., Nagatani, I., Shimada, M., 2018. Early-stage 
deforestation detection in the tropics with L-band SAR. IEEE J. Sel. Top. Appl. 
Earth Obs. Remote. Sens. 11, 2127–2133, URL https://doi.org/10.1109/JSTARS.
2018.2810857.

Watanabe, M., Koyama, C.N., Hayashi, M., Nagatani, I., Tadono, T., Shimada, M., 
2021. Refined algorithm for forest early warning system with ALOS-2/PALSAR-2 
scansar data in tropical forest regions. Remote Sens. Environ. 265, 112643, URL 
https://doi.org/10.1016/j.rse.2021.112643.

Ygorra, B., Frappart, F., Wigneron, J.-P., Moisy, C., Catry, T., Baup, F., Hamunyela, E., 
Riazanoff, S., 2021. Monitoring loss of tropical forest cover from sentinel-1 time-
series: A cusum-based approach. Int. J. Appl. Earth Obs. Geoinf. 103, 102532, URL 
https://doi.org/10.1016/j.jag.2021.102532.

Zhao, K., Wulder, M.A., Hu, T., Bright, R., Wu, Q., Qin, H., Li, Y., Toman, E., Mallick, B., 
Zhang, X., Brown, M., 2019. Detecting change-point, trend, and seasonality in 
satellite time series data to track abrupt changes and nonlinear dynamics: A 
Bayesian ensemble algorithm. Remote Sens. Environ. 232, 111181, URL https:
//doi.org/10.1016/j.rse.2019.04.034.

https://doi.org/10.1109/TGRS.2011.2120616
https://doi.org/10.1109/TGRS.2011.2120616
https://doi.org/10.1109/TGRS.2011.2120616
http://www.biecek.pl/statystykaMedyczna/Stevenson_survival_analysis_195.721.pdf
http://www.biecek.pl/statystykaMedyczna/Stevenson_survival_analysis_195.721.pdf
http://www.biecek.pl/statystykaMedyczna/Stevenson_survival_analysis_195.721.pdf
https://doi.org/10.1016/j.forpol.2019.05.029
https://doi.org/10.1016/j.forpol.2019.05.029
https://doi.org/10.1016/j.forpol.2019.05.029
https://doi.org/10.1016/j.jenvman.2020.111243
https://doi.org/10.1126/sciadv.abe1603
https://doi.org/10.1126/sciadv.abe1603
https://doi.org/10.1126/sciadv.abe1603
https://doi.org/10.1016/j.rse.2012.02.022
https://doi.org/10.1016/j.rse.2012.02.022
https://doi.org/10.1016/j.rse.2012.02.022
https://doi.org/10.1109/JSTARS.2018.2810857
https://doi.org/10.1109/JSTARS.2018.2810857
https://doi.org/10.1109/JSTARS.2018.2810857
https://doi.org/10.1016/j.rse.2021.112643
https://doi.org/10.1016/j.jag.2021.102532
https://doi.org/10.1016/j.rse.2019.04.034
https://doi.org/10.1016/j.rse.2019.04.034
https://doi.org/10.1016/j.rse.2019.04.034

	Novel unsupervised Bayesian method for Near Real-Time forest loss detection using Sentinel-1 SAR time series: Assessment over sampled deforestation events in Amazonia and the Cerrado
	Introduction
	Research Area and Data Inputs
	Study Area
	Reference Data
	Small-Scale Clearings Reference Data
	Larger-Scale Clearings Reference Data

	Operational Products for Comparison
	Sentinel-1 Input Data

	Methodology
	Bayesian Online Changepoint Detection
	Conjugate Bayesian Framework and Likelihood Modeling
	Algorithmic Design of BOCD
	Forest Loss Detection Methodology
	Incorporating Spatial Context in Change Detection
	Parameter Setting and Susceptibility Trade-Off in BOCD
	Assessment of Detection Timeliness

	Results
	Validation of NRT Forest Loss Monitoring Methods
	Small-Scale Clearings
	Larger-Scale Clearings

	Comparison of Temporal Accuracy of Forest Loss Monitoring Methods
	Spatial and Temporal Detection Patterns Across Biomes

	Discussion
	BOCD as a Forest Loss Detector
	BOCD Adaptability to Seasonality
	Spatial Detection Accuracy
	Temporal Detection Accuracy
	Potential Sources of Omissions and False Alarms
	Future Work

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Statistical Model of Sentinel-1 Unfiltered RTC Data
	Appendix B. Supplementary Results
	Data availability
	References


