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Explainability in machine learning

Explainability in machine learning refers to the ability to make a model’s
decisions or predictions understandable to humans.

Why it matters? EXPLAINABLE Al

I I
» Trust and transparency l ) | | l l
» Debugging and improvement:
» Accountability and ethics:
» Fairness and bias detection:

Types of explainability:

» Global explainability

Explain to Explain to Explain to Explain to

> Local exp|a|nab|||ty Justify Control Discover Improve
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The concept of attribution

Attribution refers to identifying the impact or contribution of input
features on a model’s output.

An example: Medical diagnosis model

Al for Disease Prediction

Consider a model that predicts the likelihood of a »oq\,',& OTRE O @ Life;ylefactors
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Suppose the model predicts a 70% probability of e
the disease.

Attribution quantifies how much each feature
contributed to the prediction. For instance:
* High cholesterol might contribute 30%.
e Age could contribute 20%.
* Family history could add 15%.
* Blood pressure might add 5%.

Image taken from the Internet.



Predicting house prices

The model takes in features
o & 1 such as: Square footage,
b -, . R 'Number of bedrooms,
e T - Location (e.g., distance to
| ' city center), Age of the

- 1 Now, suppose the model
_ predicts that a specific
house is worth $500,000.

Attribution answers the
question: How much did
each feature contribute to
this price prediction?

Image taken from the Internet.



Loan approval

Suppose a machine learning model predicts a 70% chance of loan approval for a customer based on:

> lncome
» Credit score
» Employment status

An attribution method provides
values for the contribution of each
feature, e.g.,

»Income: +20% (pushed the
prediction up by 20%)

» Credit Score: +30%

» Employment Status: +20% Image taken from Forbes.com




Approaches

o Gradient based methods (saliency maps, integrated gradients)

o Perturbation-based methods (SHAP - SHapley Additive exPlanations)
o Surrogate models (decision trees)

o Attention mechanisms (transformers in NLP)

o Layer-wise relevance propagation

o Model-specific methods (tree SHAP) Lloyd Shapley
1923-1926



Our workhorse: Gaussian processes

* A Gaussian process (GP) is a probability distribution over a space of

functions.
* A GP is specified by its mean and covariance functions, m(x), k(x,x’).

E(F(x)) =m(x
F~GP(m, k) Sl 0 GO0 o)
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A bit of history

Danie Gerhardus Krige (26 August 1919 — 3 March 2013) - a
South African statistician and mining engineer; was professor at
the University of the Witwatersrand, Republic of South Africa.
In the 1950s, sought a more accurate method to estimate ore
grades by considering the spatial structure and the variability of

samples.
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Georges Francois Paul Marie Matheron (2 December 1930

— 7 August 2000) was a French mathematician and civil

. engineer of mines. His PhD advisor was Paul Lévy. He

established a rigorous mathematical framework for kriging,

8 describing it as the best linear unbiased estimator for
spatially correlated data. Published in Traité de

géostatistique appliquée, Editions Technip 1962
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A bit more history

1777-1855 1903-1987

1894-1964
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A recommendation for fn reading

the theory 43
i that would
-not die /&
how cracked
s the enigma code,
hunted down russian
submarines & emerged

triumphant from two &~
. Sharon Bertsch McGrayne is
centuries of controve rsy the author of highly-praised books

about scientific discoveries and
the scientists who make them.

“If you're not thinking like a Bayesian, perhaps you should be.” 10
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Gaussian process regression

e Gaussian process regression (GPR) is a Bayesian approach to learning
an unknown functional relationship.

Model Yn — F(Xn) -+ En,
En ™ N(0,0’i)

Y1 [ m(xq) ]

Yy = : m = :
Likelihood Y‘F ~ N(m, K) YN _ |m(xy) |
k(x1,%x1) - k(x1,XN)

Goal: Obtain a posterior distribution K =
over possible functions F(xn,x1) -0 k(XN X))
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Gaussian Process Regression

e Gaussian process regression (GPR) exploits GPs by recognizing that
they are conjugate to Gaussian likelihoods.

Prior belief Posterior belief

'~ GP(m, k) F|D ~ GP(m,, k)

Likelihood
y|F ~ N(m,K)

[ k(x,x1) |
k(x) = ;

E(x,xn) |

my(x) = m(x) +k(x) (K+ o) " (y — m)
ky(x,X') = k(x,x') + k(x)" (K + 02I) k(%)
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Attribution Theory

* Feature attributions quantify how much each input variable
contributed to the output result.

F(x) — Z attr; X|F)

N——
New prediction Baseline point Contrlbutlon of feature i
Attributions to a
patient predicted
cancer risk
< .cQ & (4
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Attribution Theory

Consider the Bayesian linear regression model

ylx,w ~ N(w'x,0?)

The predictions from the model are given by
Fx) —F®@) =w'(x = %) = -, wi(x; — ;)
and the canonical choice for the attribution to the x; feature is

attr;(x) = w;(x; — X;)
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Attribution Theory

Let
w~ N(uX)

Then we can show that
wiX,y~NW,x)

where
1 —1
Z’ — (2‘1 +—2XTX)
o
/ 1 v—1 1 T
u =2 (2‘. u+pX y
And

attr; ()| X,y ~ N (i (x; — %7), Z;; (x; — £7)?)
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Integrated Gradients

In this work, we use the Integrated Gradients definition of attributions:

1 ~ oz
attri(x|F) = (z; — &) / OF(x +8i(-x %)) at

0

The Fundamental Theorem of Line Integrals states the following:

fr VF dx = F(y(1)) — F(y(0))

v [ 0 0
~loxy 7 9xp
and I is a path in R? parameterized by y(¢t),for0 <t < 1.
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Geometric motivation for Integrated Gradients

* Let y:[0,1] = RP be a curve such that y(t) = X + t(x — X).
* From the fundamental theorem of line integrals (Stokes’ theorem):

F(~(1)) — F((0)) = / VF - dx

/ \

F(x) - F(%) — Jliam(f:) dy;
0o 4

/ e

fr i=1
Y X
v =321 — ) f; P a
dx D l
dt = Z attr;(x|F)
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Attributions of GPs are GPs

Theorem: If F is distributed according to a GP,
F ~GP(m,k)
where m € C*(RP) and k € C?(RP xRP), then

attr;(x|F) ~ GP(u;, k;)
where the mean and covariance functions are given by

1) = (2 —513“@)/ om(x _BZ(ZX X>)dt

27,
ki(x,x) = //8 &+ slx 8;@8X+t( ))dtds

X

18



Practical result

* The theorem shows that Integrated Gradients attributions preserve
Gaussianity.

 Since we obtain a GP posterior from GPR, it follows that the
attributions of functions modeled by GPRs are also GPs.

* Thus, we can sensibly discuss the distribution of attr;(x|F) and its
properties.

F|D ~ GP(m,,k

7 TN

attry (x| F)|D ~ GP(u1, k1) attrp(x|EF)|D ~ GP(up, kp)

attr;(x|F)|D ~ GP(u;i, ki)
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Closed-Form Expressions for Attributions

* We can provide closed form expressions and code implementing the
attributions of GPs with squared exponential type kernels.

N o 2~ (s — a4)?
ksp(x,x) = ofexp —Z 573

1=1

* After some derivations, the attributions have the following mean and

variances,
attm E o, A n@

Var(attr;(x)) = B;(x) — >
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Experiment with Simulated Data

The data were generated according to X; ~ U(0,10), X, ~ U(0,10),
NY ~ N(O)l);

F(zy,z3)
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Function learned via GPR
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Breast Cancer Diagnosis

* GPR provides uncertainty in predictions
 More important features (of the 30 features) have more uncertainty.
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Breast Cancer Diagnosis (cont'd)

The variation of attribution of two features across patients
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Predictions using the Taipei Housing Data

X — X before normalization Feature attributions before normalization
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Random Feature GPs

 Random feature GPs use the spectral representation of the kernel function to
approximate the kernel.

sin(v{ x)
cos(v, x)

sin(v,,X)
cos(vip)

* The frequency vectors v, are randomly sampled from the power spectral

density of the kernel.
* This representation yields equations which are more tractable during the training

of a GPR model.
E(F(x)|D) = m(x) + k(x) ' (K + 071)"* (y — m)
~m(x)+ ¢(x) ®(@' @ +0.1)" (y — m)
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Random Feature GPs

 Random feature GPs admit simple to evaluate attributions.
* Since RFGPs approximate GPR, the RFGP attributions should approximate the
GPR attributions. [ (cos(v

vlT (x—%)

V1,i
Tx—%)

(337: - :’Ez)C(X)A_]-@y7 ¢(x) = - ( T € R2Mx1

v (x—X)

E(attr;(x))
Var(attr;(x))

i (sin(v ;%) — sin(v},X))

(wi — %) %02¢(x) " A7 (%),
A=dd' + 21,y

5 M=10 frequencies 4 M=50 frequencies 4 M=100 frequencies
[ [
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& 4 3l Marginalized RFGP
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g%
= 2r 2r
2,
]
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Conclusions

»We developed a bridge between the theory of feature attribution and
GPR.

» By representing attributions as distributions, we can quantify a
model's confidence in its feature attributions.

»When the selected GPR model admits analytically tractable
attributions, we mitigate the need for computationally expensive or
otherwise inaccurate approximations.

»While non-parametric methods like GPR, at face value, offer a non-
interpretable approach to ML, our study of feature attribution may
provide more trust in GPR models.

» Furthermore, these results will extend the theoretical and practical
scope of GPR models to more XAl domains.
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