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Problem statement

Objective: Time-varying optimization (TVO), i.e., solving

x
opt
t = argmax

x∈Xt

ft(x), ft(x) ∶ Xt ⊂ Rdx ↦ R, t ∈ N

Assumptions: ft(x) is unknown, ft(x) is continuous for
every t, ft(x) is slowly varying over time.

Allowance: The estimation of xoptt for t = 1,2, . . . is carried
out by probing the function N times at each step.
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Previous works

Previous works of TVO and BO:

C. Cruz, J. R. González, and D. A. Pelta. Optimization in
dynamic environments: a survey on problems, methods
and measures. Soft Computing, 15:1427–1448, 2011.

provides review of non-probabilistic approaches for TVO.

I. Bogunovic, J. Scarlett, and V. Cevher. Time-varying
Gaussian process bandit optimization. Artificial
Intelligence and Statistics, pp. 314–323. PMLR, 2016.

introduces algorithms for TV-BO, but does not use sparse,
online approaches.
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F. M. Nyikosa, M. A. Osborne, and S. J. Roberts. Bayesian
optimization for dynamic problems. arXiv preprint
arXiv:1803.03432, 2018.

This paper also presents algorithms for TV-BO, but these
algorithms do not use sparse, online approaches.

Q. Lu, K. D. Polyzos, B. Li, and G. B. Giannakis. Surrogate
modeling for Bayesian optimization beyond a single
Gaussian process. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2023.

uses sparse, online approaches for BO but not in the TVO
setting.
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S. Van Vaerenbergh, M. Lázaro-Gredilla, and I.
Santamarı́a. Kernel recursive least-squares tracker for
time-varying regression. IEEE Transactions on Neural
Networks and Learning Systems, 23(8):1313–1326, 2012.

considers learning a time-varying function instead of TVO.
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Contributions

Our contributions:

1 We use a Bayesian approach for solving the TVO problem
based on online Gaussian processes with forgetting.

2 We study different forgetting mechanisms in this
framework.

3 We propose the use of windows of past data to build the
time-varying acquisition function.
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Applications

Some real-world problems where we need to perform TVO

– robot/drone/self-driving vehicles learning in changing
environments (adaptations needed because of changing
obstacles, shifting weather conditions, or varying traffic. TV-BO
helps optimize paths, control parameters, or sensor placements
in real time)

– smart grids and energy systems (needed for optimization of
energy generation and consumption in real-time to balance
supply and demand)
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Applications (cont’d)

– financial markets (adaptation to changing market conditions;
TV-BO enables dynamic portfolio optimization)

– wireless networks and communications (used to adapt to
changing network traffic, interference patterns, and user
demand, resource allocation)

– healthcare and medical imaging (adaptive radiation therapy,
electrical stimulation of the brain)

– aerospace engineering (flight path optimization, satellite
trajectory control, rocket launch and re-entry optimization, UAV
swarm coordination)
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Gaussian processes

Gaussian processes (GPs) are a model for learning unknown
functions

f ∶ x↦ y

from observed input-outputs (x1, y1), . . . , (xN , yN).
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Gaussian processes

GPs are the generalization of Gaussian distributions to
functions (infinite dimensional):

f ∼ GP (m,k)

where m is the mean function and k is the covariance function.

f(x1) ∼ N(m(x1), k(x1,x1))
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Gaussian processes

GPs are attractive for many reasons:

Bayesian ,

Nonparametric ,

Gaussian ,

Kernel design ,

However, they have drawbacks:

Cost /

Kernel design /
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Bayesian inference

Given some data y, we aim to infer the unknown θ by
computing

p(θ∣y)∝ p(y∣θ) × p(θ)

posterior∝ likelihood × prior

In GPs,

p(f ∣y)∝ p(y∣f) × p(f)

GP posterior∝ likelihood ×GP prior
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Example of GPs

The distribution over plausible functions shrinks as we gather
more data
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Kernels

The covariance between function values is expressed by a
kernel function, e.g., RBF kernel:

Cov(f(x), f(x′)) = k(x,x′;λ) = σ2
f exp(−

(x − x′)2
2ℓ2

)

where λ = [σf , ℓ] are hyperparameters.

Covariance functions include strong assumptions about
f(x).
Hyperparameters allow to interpret the data.
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Kernels

ℓ = 0.01 ℓ = 0.1 ℓ = 0.5
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Learning of hyperparameters

The performance of GPs depends a lot on the
hyperparameters. /

Bayesian model selection: choose them by

λ∗ = argmax
λ

p(y∣λ) = argmin
λ
− log p(y∣λ)

The derivatives ∇λ log p(y∣λ) are available so we can apply
gradient descent algorithms. ,
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Learning of hyperparameters
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Computation costs

GPs require the inversion of a N ×N kernel matrix

K =

⎡⎢⎢⎢⎢⎢⎢⎣

k(x1, x1) . . . k(x1, xN)
⋮ ⋱ ⋯

k(xN , x1) . . . k(xN , xN)

⎤⎥⎥⎥⎥⎥⎥⎦

The cost scales cubically with the number of datapoints N .
Several successful approaches exist for reducing this cost,
based on:

inducing points

random-feature expansions
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Computation costs

Inducing points Random features
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Random-feature Gaussian process

When k(x,x′) is a (normalized) stationary kernel,

k(x,x′) = ∫ eiv
⊺(x−x′)p(v)dv

we can sample a set of random Fourier features {vj}Jj=1 ∼ p(v)
from the power spectral density of the kernel to build the map

ϕ(x) = 1√
J
[sin(x⊺v1), cos(x⊺v1), . . . , sin(x⊺vJ), cos(x⊺vJ)]⊺ ∈ R2J

and obtain a low-rank approximation of the kernel matrix

K ≈ σ2Φ⊺Φ

Φ = [ϕ(x1), . . . ,ϕ(xN)] ∈ R2J×N
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Random-feature Gaussian process

For (normalized) RBF kernel

k(x,x′) = exp(−1
2
(x −x′)⊺Λ−1(x −x′))

the power spectral density is

p(v) = N (0,Λ−1)

where

Λ = diag ([ℓ21, . . . , ℓ2d])
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Random-feature Gaussian process

RF-GP is a Bayesian linear regression model with parameters
θ ∈ R2J ,

y = ϕ(x)⊺θ + ϵ

where

p(θ) = N (θ∣0, σ2
θI2J)

p(y∣θ,x) = N (y∣ϕ(x)⊺θ, σ2
obs)

p(θ∣y,X)∝ p(θ)
N

∏
i=1

p(yi∣θ,xi)∝ N (θ∣θ̂, Σ̂)

so

p(y⋆∣y,x⋆) = ∫ p(y⋆∣θ,x⋆)p(θ∣y,X)dθ = N (y⋆∣ŷ(x⋆), σ̂2(x⋆))
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Random-feature Gaussian process

Bayesian update: prediction + update

p(θ∣y1∶t+1,X1∶t+1) =
p(yt+1∣θ,xt+1)p(θ∣y1∶t,X1∶t)

p(yt+1∣y1∶t,X1∶t+1)

is possible in closed-form with constant per-step computation
cost.
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Random-feature Gaussian process

Prediction step. Let Φt = [ϕ(x1) . . .ϕ(xt)] ∈ R2J×t. The
predictive density is

p(yt+1∣Dt,xt+1) = N (yt+1∣ŷt+1, σ̂2
t+1)

ŷt+1 = ϕ(xt+1)⊺θ̂t

σ̂2
t+1 = ϕ(xt+1)⊺Σ̂tϕ(xt+1) + σ2

obs

where Σ̂t = ( 1
σ2

obs
ΦtΦ

⊺
t + 1

σ2
θ

I2J)
−1

and θ̂t = 1
σ2

obs
Σ̂tΦtyt are

the moments of the posterior p(θ∣Dt) = N (θ∣θ̂t, Σ̂t).
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Random-feature Gaussian process

Update step. Upon receiving (xt+1, yt+1), the update
formulae are

θ̂t+1 = θ̂t + σ̂−2t+1Σ̂tϕ(xt+1)(yt+1 − ŷt+1)
Σ̂t+1 = Σ̂t − σ̂−2t+1Σ̂tϕ(xt+1)ϕ(xt+1)⊺Σ̂t
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Time dynamics

We consider a general Markov transition model where,
before receiving the t + 1 datapoint, θt+1 is a linear
combination of the parameter at time t, a drift term, and
random noise.

Letting θ0 ∼ p0(θ0). For t = 0,1, . . . , the parameter vector
evolves as

θt+1 = a1θt + a2mt + a3ut

where θt ∼ p(θt∣Dt), mt is a time-varying vector, and ut is
a noise process.
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Time dynamics

We can employ popular “forgetting” mechanisms

B2P: θt+1 =
√
λ θt +

√
1 − λ ut, ut ∼ N (0, σ2

θI2J), λ ∈ [0,1]

UI: θt+1 = θt +
√

1

γ
− 1ut, ut ∼ N (0, Σ̂t), γ ∈ (0,1]
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Time dynamics

“Back to Prior” forgetting
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Time dynamics

“Uncertainty Injection” forgetting
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Bayesian optimization

(Time-invariant) Bayesian optimization solves

x∗ = argmax
x∈X

f(x)

using a probabilistic surrogate p(f ∣D) and an acquisition
function α(x;D).
BO sequentially acquires points that are “useful” by
repeatedly doing:

1 xt+1 = argmaxx∈X α(x;Dt)

2 Dt+1 ← Dt ∪ (xt+1, yt+1)
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Bayesian optimization

D = {X,y} Fit GP
Choose next

input

xnew, ynew

Update: D ← D ∪ (xnew, ynew)
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Bayesian optimization

Vanilla BO with UCB acquisition function

34 / 43



Bayesian optimization

Time-invariant BO on a time-varying function
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Bayesian optimization

TVBO with UI

36 / 43



Bayesian optimization with dynamic RF-GP

The model

θt ∼ p(θt∣Dt)
θt+1 = a1θt + a2mt + a3ut

yt+1 = ϕ⊺(x)θt+1 + ϵobs

For instance, the GP-UCB acquisition function with B2P
forgetting is

αUCB
t+1 (x) =

√
λϕ(x)⊺θ̂t

+βt+1
√

λϕ(x)⊺Σ̂tϕ(x) + (1 − λ)σ2
θϕ(x)⊺ϕ(x)
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Bayesian optimization with dynamic RF-GP

Setting a1 =
√
λ, a2 = 1 −

√
λ, and a3 =

√
1 − λ with

λ ∈ (0,1), we get

αUCB
t+1 (x) =

√
λϕ(x)⊺θ̂t + (1 −

√
λ)ϕ(x)⊺mt

+βt+1
√

λϕ(x)⊺Σ̂tϕ(x) + (1 − λ)ϕ(x)⊺Ctϕ(x).
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Time-varying BO with windows of data

We propose to use a sliding window of w samples Dw
t = {(xτ , yτ )}tτ=t−w+1 to

compute the parameters {mt,Ct},

mt = (Φw
t (Φw

t )⊺ +
σ2

obs

σ2
θ

I2J)
−1

Φw
t yw

t ,

Ct =
⎛
⎝

1

σ2
obs

Φw
t (Φw

t )⊺ +
1

σ2
θ

I2J
⎞
⎠

−1

,

where Φw
t and yw

t are built using Dw
t .

Note that:

when w = 1Ô⇒mt = 0 and Ct = σ2
θI2J Ô⇒ we recover BO with prior

forgetting.

when w = tÔ⇒mt = θ̂t and Ct = Σ̂t Ô⇒ we recover time-invariant BO.
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Time-varying BO with windows of data

TVBO with “Back 2 Window”
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Toy problem

Let x ∈ [0,1]

ft(x) = sin[2π(x + 0.15 − 0.01t)]

where t goes from t = 1 to t = 85.

We compare the average regret,

R̄T =
1

T

T

∑
t=1
∣f∗t − ft(x̂t)∣

where f∗t =maxx ft(x) = 1 for all t.

Goal: study window size w and
forgetting strength λ.

The optimal value of w increased as λ

decreased: when we allow the current
model to forget more and more (smaller
λ), it is beneficial that the forgetting
factor carries an increasing amount of
past data (bigger w). However, for all λ,
increasing w eventually hampers
performance.
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Localization example

Target Position x ∈ R2. The network has
L = 3 sensors. We observed M

measurements at every sensor,

zm,l ∼ N (A log (∥ x − sl ∥) , σ2
z) ,

where l = 1,2,3, m = 1, . . . ,M , and A is
a constant.

Goal: track target over time by estimating
the MAP of the sequence of posterior
distributions,

xmap,t = argmax
x

π̄(x∣Zt),

where Zt are measurements obtained at
t = 0, . . . , T .
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Conclusions

We have presented a framework for time-varying optimization based on dynamic
random-feature Gaussian processes.

Random-feature Gaussian processes have several advantages such as
scalability and capacity for online learning. Moreover, time dynamics can be
injected by considering a Markov transition model.

Combining random-feature Gaussian processes with a general Markov time
evolution, we have proposed a framework for time-varying Bayesian optimization
and studied the resulting time-varying acquisition function.

More specifically, we proposed a novel time-varying Bayesian optimization
algorithm that uses windows of past data to build the additional exploration and
exploitation terms. The time-invariant setting, as well as time-varying Bayesian
optimization with prior forgetting, are special cases.
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