
A simple and robust K-factor computation method
for GNSS integrity needs

Kin Mimouni
TéSA

Toulouse, France
kin.mimouni@tesa.prd.fr

Odile Maliet
Thales Alenia Space

Toulouse, France

Julie Antic
Thales Alenia Space

Toulouse, France

Abstract—The aviation Minimum Operational Performance
Standard defines the SBAS protection levels as the product of
the estimated standard deviation of the positioning error and a
scaling factor called K-factor. The K-factor depends on the time
window of interest and on the correlation between errors in the
time window. The K-factors defined in aviation are difficult to
generalize to other specifications in other domains, such as rail
and maritime applications.

This article presents a simple formula to calculate the K-
factor for any value of integrity risk and time interval. The
resulting K-factor is shown to be mathematically rigorous under
the hypothesis of Gaussian error distribution but without any
assumption on the correlation structure of the successive position
estimates. The Gaussian assumption can be relaxed and replaced
by overbounding with a Gaussian distribution with a very
good approximation. This formula can be used in any GNSS
application where integrity is needed.

Index Terms—K-factor, protection level, integrity risk, GNSS
augmentation, SBAS

I. INTRODUCTION

In GNSS applications, integrity is defined as a measure of
the level of trust a user can place in a position estimate.
The concept of integrity was originally developed in the
field of civil aviation for Safety-of-Life applications, such
as commercial aircraft landing. Nowadays, its generalization
beyond aviation is an area of intensive research since it is the
prerequisite to the operational deployment of the emerging
Safety-of-Life applications such as autonomous transportation
(e.g. train, car, taxi-drone).

Integrity is based on the definition of four specific features:
the alarm limit (AL), the time to alarm (TTA), the integrity
risk (IR) and the protection level (PL). The alarm limit is
the position error (PE) threshold not to be exceeded without
triggering an alert. The TTA is the maximum allowed time
that elapses between when the navigation system is out of
tolerance and when the equipment triggers the alert. The
position estimate is a random variable, distributed according
to a specific cumulative distribution function. Hence we can
compute the probability P that it falls outside of the considered
confidence interval, which is called protection level (PL).

Integrity is compromised when anomalies occur that can
cause unpredictable PE beyond the operational PL for more
than TTA consecutive seconds over a time interval T. The
integrity risk (IR) is then defined as the probability that the
true position lies outside of the PL at any time within a time

interval T , and for TTA consecutive seconds. As an example,
for aviation precision approach operations these parameters
are IR = 10−7 for a duration T = 150 s, with a TTA of 6 s.
The specifications of the Minimum Operational Performance
Standard (MOPS, [1]) define the PL as the product of the
variance standard deviation of the positioning error and a
scaling factor called K-factor. These K-factors can also be
understood as quantiles of the normalized residual errors
distribution, sometimes known as safety index (SFI). The
tuning of the K-factor is critical for user performances: a large
protection level ensures a larger margin on IR but degrades the
availability and continuity of the Satellite Based Augmentation
System (SBAS) for instance.

The statistical study of the behaviour of the positioning
errors is complicated by the fact that successive position
estimates are not independent variables. This is because the
SBAS system provides corrections for satellite orbit determi-
nation, tropospheric and ionospheric delay, which are phys-
ical phenomenon with longer intrinsic time-scales than the
frequency of GNSS measurements (typically one estimate per
second). Furthermore, errors from the user’s environment such
as multipath also affect the correlation of the position errors
in a complicated way.

Taking this time correlation into account, the MOPS sets
K-factor values for every approach covered by SBAS (see [1]
and [2]). For example, K = 5.33 for vertical protection level
in precision approach. This value comes from assuming that all
errors are perfectly correlated in a time window of 360 seconds
and corresponds to the 10−7 quantile of a 1D Gaussian dis-
tribution. However, the MOPS recognizes that this modelling
of the errors’ time correlations is somewhat arbitrary. This
makes it difficult to generalize to other specifications outside
of aviation, like maritime and rail applications.

To tackle this problem, Antic, Maliet & Trilles [3] intro-
duced the Gauss Markov K-factor (GMK), which uses PSD-
overbounding techniques to find a rigorous upper bound for
the K-factor for any specifications. It improves upon the
MOPS standard with a mathematically justified method and
with a finer modelling of the time correlation. We show that
in practice, the GMK method has two main limitations: first,
it often leads to over-conservative K-factors due to the PSD-
overbounding step, and second, it is difficult to generalize to
non-Gaussian tails.



In this paper, we suggest a simple method to determine
the K-factor for any specification of integrity risk and time
window. We provide a ready to use analytical formula for
the K-factor as function of IR and the time window T that
can be applied to any field. Then we prove mathematically
that, under the assumption of Gaussian distribution, the K-
factor in the independent case is a rigorous upper bound of
the optimal K-factor for any correlation structure of the time
series. Furthermore, we show that this result is still valid if we
relax the Gaussian distribution assumption and replace it by a
Gaussian CDF-overbounding assumption, which is commonly
used in the navigation community.

II. DEFINITIONS AND ASSUMPTIONS

We consider a series of GNSS position estimation done
periodically (typically one estimate per second). The collection
of N estimates in the time window of interest will be denoted
Z = (zn)1≤n≤N . Z is a vector of N random variables and
we will assume that it follows a Gaussian distribution, centred
on the true position of the receiver Z∗ = (z∗n)1≤n≤N . The
precise assumptions on the probability distribution of Z are
detailed in the next subsection II-A.

The concept of integrity is specified by the integrity risk IR,
the time window T and the time to alert (TTA). For example,
for aviation precision approach, IR = 10−7, T = 150 s and
TTA = 6 s. The goal of the integrity monitoring is to build
protection volumes Vn around each estimates zn such that the
true position z∗n never exits Vn for more than TTA consecutive
seconds [4]. The probability of such an event during the time
window T has to be maintained below IR.

In order to treat this problem mathematically, we will use an
approximate but conservative definition of integrity. We will
say that integrity is maintained if the true position always lies
in the volume during the entire time window with very high
probability:

P (∀n ∈ J1, NK, z∗n ∈ Vn) ≥ 1− IR (1)

When the period between each zn is smaller than TTA, it
is straightforward to see that the condition (1) implies the
condition of integrity given above (if every real position is in
the corresponding protection volume, there is no exit from the
protection volumes for more than TTA consecutive seconds).

From this remark, we see that enforcing condition (1) on a
subset of position estimates regularly separated in time by at
most TTA is enough to guarantee integrity. So in general, the
number of estimates N one needs to consider in equation (1)
is given by the ceiling of the ratio T/TTA.

A. Positioning errors distribution

In all what follows, we are making the following assump-
tions about the probability distribution of the positioning
estimates Z.

• The dimension of the positioning measurement is denoted
d: for example in case of vertical positioning (for air-
craft), we have d = 1, in maritime positioning d = 2.
In what follows, we will consider the case d = 1 for

simplicity (so that zn ∈ R), however the generalization of
all our results to d ≥ 2 is straightforward and is detailed
in Appendix A.

• The position estimators are unbiased, so that the mean of
the positioning errors is zero. In other words, E(zn) =
z∗n.

• The distribution of the errors follow a multidimensional
Gaussian law. This is a natural but very strong assumption
that allows us to benefit from the numerous properties of
Gaussian distributions. This means that the probability
distribution is completely determined by the correlations
between each measurements summarized in the square
matrix Σij = cov(zi, zj). This assumption is necessary
for the GMK method presented in section III-B. It is
also important for the method of section V but it can be
relaxed to a more realistic assumption.

• The standard deviation at each position estimation is
accurately measured by the system and accessible to the
user. This is also a strong assumption because it requires
the system to have a full understanding of its error
sources. We will also relax this assumption in section
V.

B. Definition of the K-factor and building of the protection
volume

The protection volumes Vn are built through the notion of
K-factor (see [1] appendix J). At each position estimate, we
assume that the system measures accurately the error of zn
(in other words, the system measures the covariance σ2

n =
Σnn = Var(zn). From this, we define the protection volume
as an interval centred on the estimator output with radius equal
to K times the standard deviation:

Vn = [zn −Kσn, zn +Kσn] (2)

The goal of integrity studies is to determine a K-factor such
that the inequality (1) holds, while keeping K small enough
to have reasonable protection volumes (2).

C. Infinity norm of a normalized Gaussian vector

The way the K-factor is built encourages us to work with the
vector of reduced errors X = (xn)1≤n≤N (sometimes known
as safety index or SFI) defined by

xn =
zn − z∗n

σn

Then X follows a Gaussian distribution with zero mean
and covariance matrix C which is linked to the estimates
covariance matrix by the formula:

Cij = cov(xi, xj) =
Σij

σiσj

In particular all diagonal elements Cii are equal to 1, meaning
that each reduced error xi follows a centred normalized normal
distribution when marginalized over all other measurements.



The definition of the protection volume (2) becomes simpler
with the reduced errors:(

∀n ∈ J1, NK, z∗n ∈ [zn −Kσn, zn +Kσn]

)
⇔(

∥X∥∞ = max
1≤n≤N

∥xn∥ ≤ K

)
The condition of integrity (1), that all real positions lie in
the corresponding protection volume, translates to having the
infinity norm of the vector X smaller than the K-factor.
Thus we are interested in computing the probability of large
deviations of a normalized Gaussian random variable with zero
mean.

III. STATE OF THE ART METHODS FOR K-FACTOR
DETERMINATION

A. The MOPS method

The K-factor determination by the MOPS detailed in [2]
is based on the following modelisation of the time correlation
of the reduced errors: it assumes that X(t) and X(t+ δt) are
perfectly correlated if δt is smaller than the reference corre-
lation time T0 = 360 seconds and independent if δt is larger
than 360 seconds. The numerical value of T0 is motivated by
the time scale involved in ionospheric corrections.

From here, the determination of the K-factor is a straight-
forward calculation. For a time window of length T , the MOPS
model considers only n0 = ⌈T/T0⌉ independent measure-
ments (one per time window of T0 = 360 s). X denotes the
vector of reduced errors and follows a n0-dimensional centred
Gaussian distribution of correlation matrix In0

(the identity
matrix). Then we have for one-dimensional measurements,
using the independence of the errors:

P(∥X∥∞ ≤ K) =

n0∏
k=1

P(∥xk∥ ≤ K) = F1(K)n0

The probability factorises from the independence property. In
the case d ≥ 2, one has to replace the function F1 by the
corresponding function Fd given in Appendix A. In the one-
dimensional case, we have F1(K) = erf

(
K/

√
2
)

where erf
denotes the error function1. Imposing the integrity condition
(1) and using that in practise IR is very small gives the K-
factor formula:

K = F−1
1

(
(1− IR)

1
n0

)
≈ F−1

1

(
1− IR

n0

)
(3)

where n0 is the ceiling of the ratio T/T0. This is the same
formula as the one given in [2].

As a numerical illustration, we compute the K-factor for
several aviation cases, with requirements described in [2]:

1The error function is defined by the following integral:

erf(x) =
2

√
π

∫ x

0
e−t2dt

It is linked to the normal cumulative distribution function Φ by the relation
erf(x) = 2Φ(x

√
2)− 1.

• for aviation precision approach (PA) and vertical protec-
tion level, we have IR = 10−7 and d = 1 for a time
window of T = 150 s (thus n0 = 1), which gives a
K-factor of KVPA = 5.33

• for PA and horizontal protection level, we have IR =
2×10−9, d = 1 (it covers only the along-track horizontal
direction) and T = 150 s, which gives a K-factor of
KHPA = 6.0

• for en route to non-precision approach (NPA), we have
IR = 5 × 10−8, d = 2 and T = 3600 s (thus n0 = 10),
which gives a K-factor of KNPA = 6.18

B. The GMK method

Recently, a novel method for the K-factor calculation has
been published by [3]. The GMK method consists in com-
paring the reduced errors X(t) to an autoregressive model
of order 1 (AR(1) model) Y (t) of stationary variance σ
and parameter e−∆t/τ . ∆t is the time step of the GNSS
measurements (typically 1 s) and τ is the time constant of the
exponential correlation decay. The parameters of the AR(1)
process Y (t) are chosen in order to impose the following
condition on the power spectral density (PSD):

∀f, SX(f) ≤ SY (f) (4)

where S denotes the PSD of the processes X or Y . If the
inequality is satisfied, we say that Y PSD-overbounds the
process X .

The choice of the AR(1) model is motivated by the fact
that the corresponding K-factor can be upper-bounded by
considering its continuous version, the Ornstein-Uhlenbeck
process. The result is:

P
(
max

t
∥Y (t)∥2 > K

)
≈

1

Γ
(
d
2

) (K2

2

) d
2

e−
K2

2

[
2T

τ

(
1− d

K2

)
+

2

K2

]
where d denotes the dimension of the individual measurement.
The K-factor is obtained by inverting the above formula and
we can conclude that the K-factor of X is upper-bounded by:

KX ≤ σKY (τ) (5)

For more details and proofs, we refer to the publication [3]
and to the references therein.

IV. LIMITS OF THE STATE OF THE ART METHODS

A. Limits of the MOPS model

It is straightforward to see that for the aviation VPA and
HPA K-factor determination, the MOPS values are always
a lower bound of the real K-factor for the condition (1)
under the assumptions of Gaussian distribution of section II-A.
Assuming one measurement per TTA, the vector of reduced
errors X is a centred Gaussian vector of dimension N = 25.
We denote by C its (known or unknown) correlation matrix.



Let us fix KM the MOPS K-factor for aviation VPA or
HPA corresponding the respective specified IR. Then since
(∥X∥∞ ≤ KM ) ⇒ (∥x1∥ ≤ KM ), we have:

P(∥X∥∞ ≤ KM ) ≤ P(∥x1∥ ≤ KM ) = 1− IR (6)

because the MOPS K-factor is computed with a unique one-
dimensional Gaussian (n0 = ⌈T/T0⌉ = 1 for T = 150 s)
and x1 follows a normal distribution of variance 1. This
inequality is in the wrong direction compared to the integrity
condition (1) and expresses the fact that the MOPS K-factor
defines a rigorous protection volume only in the limiting case
where all measurements are perfectly correlated (meaning that
∀i, j, Cij = 1), which is precisely the assumption of the
MOPS. This means that for short time intervals, the MOPS
K-factor value of 5.33 corresponds to the most optimistic case
under the assumptions of section II-A.

A more rigorous approach would be to calculate the number
of effective number of independent samples as defined in [4].
This however requires a prior knowledge of the correlation
matrix and extensive numerical calculations. This motivates
us to turn to different methods in order to compute rigorously
the K-factor.

B. Limits of the GMK method

The GMK method [3] has two main advantages compared
to the MOPS method. First, it makes a finer modelisation of
the time correlation of the reduced errors, and only assumes
that X is a stationary series. Second, it gives a rigorous upper-
bound of the K-factor over the hypothesis presented in section
II-A. However, it also has some important limitations.

a) K-factor dependency on the shape of the distribution:
One important drawback of the GMK method is the linear
dependence on σ in formula (5). This makes the K-factor
returned by the GMK method very sensitive to the value of σ.
If the shape of the reduced errors PSD is too different from
the AR(1) PSD, a large variance σ is needed for the process
Y to PSD-overbound the process X . This in turn, generates a
large K-factor.

As an illustrative example, we consider the following toy-
model for the reduced error series X(t). We consider that the
positioning errors follow an AR(1) process with time constant
τ = 360 s for long time-scale error sources plus a small white
noise (representing for example some thermal fluctuations at
the user level). The error is dominated by the AR(1) process
with variance σ2

AR(1) = 0.95 and the white noise has variance
σ2
n = 0.05. This makes a process X(t) with a PSD very similar

to the PSD of a pure AR(1) but with a heavier tail (see figure
1). For the numerical example, we take the specifications of
aviation APV: T = 150 s, TTA = 6 s (meaning that we
consider one position estimate per TTA) and IR = 10−7.

For the pure AR(1) process with τ = 360 s, the GMK
method gives a factor K = 5.80, about 10% higher than the
MOPS prescription of 5.33 for aviation APV. However with
the addition of the white noise, the K-factor becomes K =

Fig. 1. Plot of the theoretical PSD of a process X(t) = XAR1(t)+XN (t)
where XAR1 is an AR(1) process of variance 0.95 and time constant τ =
360 s and XN is a white noise of variance 0.05 (in blue continuous). In
yellow dashed line, the PSD of an AR(1) process with the same time constant
and variance normalized to 1. In red dashed line, the AR(1) process which
PSD-overbounds X(t) with parameters σ = 1.65 and τ = 126 s.

9.86 (and an optimal PSD-overbounding with a process Y of
parameters σ = 1.65 and τ = 126 s). This illustrates that a
small deviation from an AR(1) process translates to a large
inflation of the K-factor in the GMK method when doing the
overbounding process.

b) Real-time determination of the K-factor: A question
arisen by the GMK method is how to monitor in real-
time the error correlation and the K-factor computation. In
GNSS augmentation systems, the error correlation and PSD-
overbounding are more naturally done at the pseudo-range
level. However, even if this is done for each line of sight,
it does not translate easily to a PSD-overbounding at position
level. This is because the pseudo-range errors are multiplied
by the geometry matrix which is varying in time as the GNSS
satellites move across the sky and cross the horizon. Even
if the PSD-overbounding is done at pseudo-range level, it is
difficult to derive a general overbounding at position level
independent of the user’s position and has to be done for every
user.

Furthermore, the errors monitored by GNSS augmentation
systems are typically orbit and propagation errors and do not
include user-specific errors such as multipath. These errors
and their time correlation are strongly dependent on the user’s
environment and movement so their effects are difficult to
include in the GMK method.

V. PROPOSED METHOD: THE K-FACTOR IN THE
INDEPENDENT CASE

In this section, we suggest to compute the K-factor by
considering that all measurements are independent, meaning
that we consider N = T/TTA effective independent samples.
This method has the advantage of simplicity: the K-factor
can be computed easily for any integrity risk and any number



KI , d = 1 10−3 10−5 10−7 10−9

1 3.291 4.417 5.327 6.109
10 3.890 4.892 5.731 6.467
25 4.107 5.069 5.884 6.604

150 4.504 5.400 6.174 6.865
3600 5.138 5.944 6.658 7.305

10800 5.341 6.122 6.818 7.451

KI , d = 2 10−3 10−5 10−7 10−9

1 3.717 4.799 5.678 6.438
10 4.292 5.257 6.070 6.786
25 4.500 5.428 6.219 6.920

150 4.882 5.749 6.501 7.174
3600 5.495 6.277 6.972 7.604

10800 5.691 6.450 7.128 7.747

TABLE I
NUMERICAL VALUE OF THE K-FACTOR COMPUTED IN THE INDEPENDENT
CASE BY THE FORMULA (7) FOR DIFFERENT VALUE OF N (= ⌈T/TTA⌉)

AND IR IN THE CASE OF UNIDIMENSIONAL MEASUREMENTS. THE
INDEPENDENT CASE IS AN UPPER-BOUND OF THE K-FACTOR FOR ANY

CORRELATION MATRIX C AND FIXED IR, d,N .

of estimates in the time-window. Moreover, we can prove
mathematically that it is a rigorous upper-bound of the optimal
K-factor, whatever the correlation structure of the successive
measurements. Furthermore, it is also quite robust if certain
assumptions of section II-A are relaxed. On the numerical side,
the K-factor can never be smaller than the one obtained by
the MOPS method but it is often numerically better than the
factor obtained with the GMK method.

A. Computation of the K-factor in the independent case

We consider here the vector of reduced errors X of size
N and assume that all measurements are independent: this
means that X follows a Gaussian distribution of correlation
matrix C = IN (the identity matrix). The calculation is the
same than in the previous section, equation (3): the multiple
integral factorises and we derive an analytic formula for the
K-factor that depends only on N and the integrity risk IR.

The independent K-factor formula : The expression
for the K-factor in the independent case is given in
general by the formula KI = F−1

d

(
(1− IR)

1
N

)
where

the function Fd is given explicitly in Appendix A. In the
most common cases d = 1 and d = 2, they are explicitly:

Kd=1
I =

√
2 erf−1

(
(1− IR)

1
N

)
(7)

Kd=2
I =

√
−2 log

(
1− (1− IR)

1
N

)
where IR is the integrity risk, N the number of position
estimates in the time window and d the dimensionality
of the position estimate.

The table I shows numerical values corresponding to differ-
ent values of N and different level of integrity risk for d = 1
and d = 2. From the discussion in section II, N is given by
the ceiling of the ratio T/TTA.

The main point of the K-factor in the independent case is
that for fixed N the formula (7) gives a rigorous upper-bound
of the optimal K-factor whatever the correlation matrix of
the safety index vector X . In other words, the probability of
having large deviations is maximum in the case where the
correlation matrix is diagonal. The real measurement errors
are correlated in an unknown way, but the correlation has an
effect of decreasing the optimal K-factor associated to the
measurement series. This result is summarized in the following
theorem.

Theorem 1: Let X be a random vector of dimension
N following a Gaussian distribution of zero mean and
normalized correlation matrix C (meaning that for all
diagonal elements are 1) and Y a random vector of same
dimension with correlation matrix IN . Then for all K we
have the following inequality:

P (∥X∥∞ ≤ K) ≥ P (∥Y ∥∞ ≤ K) (8)

In particular, for IR and KI(IR, N) given by formula
(7), we have:

P (∥X∥∞ ≤ KI) ≥ 1− IR

whatever the correlation matrix C.

A proof of this result in the case d = 1 is presented in
Appendix B-A following the method described in [5]. This
result is known in the mathematical community since the
1960s, see for example [6]–[8]. Note that the hypothesis of
Gaussian distribution in section II-A is necessary for the
theorem to hold. In the case d ≥ 2, a similar theorem still
holds but the proof requires a stronger theorem, the Gaussian
Correlation inequality proven in 2014 by [9] (see Appendix A
and B-B).

Beyond the independent K-factor: For a fixed N and
IR, if C denotes the correlation matrix of the estimators and
KC(IR) is the optimal K-factor (the IR quantile of a Gaussian
distribution N (0, C)), theorem 1 gives an upper bound of the
K-factor. On the other hand, equation (6) gives a lower bound
for the optimal K-factor so we have for all C:

√
2 erf−1(1− IR) ≤ KC(IR) ≤

√
2 erf−1

(
(1− IR)

1
N

)
(9)

Both bounds are optimal in the sense that they are reached
for specific correlation matrices (C = IN for the upper bound
and C a matrix of 1’s for the lower bound).

If C can be estimated, one can compute the optimal K-
factor KC(IR) by extensive simulations. However, the nu-
merical improvement is bounded by the left hand side of the
inequality above (for IR = 10−7, N = 25 and d = 1, we can
go from KI = 5.88 to, in the most correlated case, K = 5.33).
Moreover, the difficulty is to make sure that the computed K-
factor is indeed an upper bound of the true K-factor because
of possible errors in the determination of C.



B. Robustness of the independent method

Measurement campaigns have shown that the distribution of
positioning errors typically have a heavier tail than a Gaussian
distribution, contradicting our assumption in section II-A. The
way to deal with non-Gaussian distributions is usually through
CDF-overbounding [10], [11].

In this paragraph, we relax the assumption of the errors
following a Gaussian distribution. Instead, we allow for any
distribution, but we assume that for any measurement n, the
marginal distribution of the error zn − z∗n (marginalizing over
all other measurements) is correctly CDF-overbounded by
a Gaussian distribution with variance σn up to some value
1 − LB with LB very small. In other words, the GNSS
system has some information on the error distribution of each
measurement. This CDF-overbounding defined in [10], [11]
means that for all n, we have:

P (∥xn∥ ≤ k) ≥ P (∥y∥ ≤ k) = F1(k)

where y ∼ N (0, 1) for all k as long as the right-hand side
F1(k) is smaller than 1−LB . This is because for distributions
with a heavier tail than a Gaussian, CDF-overbounding by
a Gaussian on the entire real line is not possible. Note that
the variance σn of the overbounding Gaussian can be very
dependent on the limit LB .

Now since X is not a Gaussian vector, we cannot use
theorem 1, however we can use the following inequality2

P
(
max
n

∥xn∥ ≤ k
)
≥ 1−

∑
n

P (∥xn∥ > k) (10)

If we choose K = F−1
1 (1−IR/N) and assume that the CDF-

overbounding condition holds (i.e. LB ≤ IR/N ), we have
P (∥xn∥ > k) ≤ IR/N and so:

P
(
max
n

∥xn∥ ≤ K
)
≥ 1−N

IR
N

= 1− IR (11)

This is precisely the condition of integrity (1). It is met at the
conditions that each error is CDF-overbounded until LB =
IR/N and for a K-factor equal to:

K = F−1
1 (1− IR/N) ≈ F−1

1

(
(1− IR)

1
N

)
= KI(IR, N)

neglecting only terms of order I2R and higher. This means
that the K-factor computed by the independent method can
be extended to the case where the error distribution is non-
Gaussian. The weaker condition is to have a Gaussian CDF-
overbounding of the error distribution to a level of IR/N . Then
KI(IR, N) (7) remains a rigorous upper-bound of the optimal
K-factor up to terms quadratic in IR.

Note that CDF-overbounding also includes the case where
the standard deviation is overestimated in the case of Gaussian
distributions. This is because a Gaussian with a larger standard
deviation always CDF-overbounds a Gaussian with smaller

2It is obtained by applying P (A ∩B) = 1− P
(
Ā ∪ B̄

)
≥ 1− P

(
Ā
)
−

P
(
B̄
)

with A = {X : |x1| ≤ k} and B = {X : |x2| ≤ k} and then
induction over n.

standard deviation for all LB . Thus the K-factor in the
independent method is robust in the case where the σn are
bounded from above instead of being accurately estimated.

C. Numerical comparison with the MOPS and GMK method

Let us highlight the numerical difference between the K-
factor in several cases specified by the MOPS.

• for aviation APV (T = 150 s, TTA = 6 s leading to N =
25 and IR = 10−7) the computation with the independent
method gives KI,VPA = 5.88, corresponding to a 10%
increase of the protection volume compared to the MOPS
value of 5.33.

• for aviation APH (IR = 2 × 10−9, d = 1 and N = 25),
we get KI,HPA = 6.50, which is a 8% increase compared
to the MOPS value of 6.0.

• for en-route to NPA (IR = 5×10−8, d = 2, T = 1 h and
TTA = 10 s so N = 360), the factor in the independent
case is KI,NPA = 6.74, a 9% increase compared to the
MOPS value.

In all cases, the independent K-factor is larger than the
MOPS values because it considers more than one independent
measurement per T0. However the increase is reasonable con-
sidering that the independent K-factor satisfies the integrity
condition (1).

Compared to the GMK method, the K-factor in the indepen-
dent case has the advantage of not having a linear dependence
on one parameter. The independent K-factor grows with the
number of measurements N but the growth is only logarithmic.
Since the independent computation neglects the correlation
completely, we expect the GMK method to perform better for
large correlation time. On the other hand, the GMK method
is limited by the rapid growth of the K-factor with σ: it
is adapted only for PSD profiles close to the shape of an
AR(1) process. To illustrate, we go back to the toy-model
of figure 1 for which the GMK method gives a K-factor
of 5.80 (in a pure AR(1) case) and 9.86 (AR(1) plus white
noise). The independent K-factor is 5.88 in both cases, slightly
higher than the AR(1) case, but significantly smaller than the
perturbed AR(1) case. In practise, the independent K-factor
is often smaller than the GMK factor, and moreover is easier
to implement.

VI. CONCLUSION

In conclusion, we have presented the formula (7) (and
(13) in the general case) for K-factor computations based
on a majoration by the independent case. The formula is
simple, analytic, and depends only on the specifications of
the integrity risk IR, the number of measurements N in
the time window of interest and the dimension d of the
protection volume. It requires no additional assumption on
the correlation structure of the successive position estimators
which is difficult to measure in practice and can vary wildly
in different environments and conditions.

Theorem 1 (and 2 in the general case) ensures that the
resulting K-factor satisfies mathematically the simplified in-
tegrity condition (1) under the assumptions of section II-A.



Section V-B shows that the integrity condition still holds
with weaker assumptions, namely that the estimator error is
correctly CDF-overbounded by a Gaussian distribution up to
the IR/N quantile.

Compared to previously existing methods, the independent
calculation has the advantage of being mathematically justified
by theorems 1 and 2. Because the proposed method is simple,
there is no need to estimate and overbound the correlation
of the time series, which makes the method less sensitive to
mismodelling of the error time series. Moreover, this approach
is robust to deviations from the Gaussian assumption. The ob-
tained numerical values are larger than the ones obtained with
the MOPS method – it is the price to pay for mathematical
rigor – but often tighter than the ones obtained with the GMK
method. Because of its simplicity, mathematical validity and
robustness, we recommend to use the independent K-factor
formula for new integrity services like ARAIM and SBAS
extension beyond aviation.

APPENDIX A
GENERALISATION TO HIGHER DIMENSIONS

In the main text, we have treated the measurements as one-
dimensional but GNSS position measurements are often of
higher dimension. All of the presented results easily generalise
to higher d with small modifications.

A. Definition of the protection volume

If Z = (zn)1≤n≤N is the series of position estimators
during the time window of interest with zn ∈ Rd, it follows
by assumption a Gaussian distribution centred on the true
positions and with a square covariance matrix Σ of dimension
Nd. The “error” σ2

n of the estimator n is defined as the largest
eigenvalue of the covariance matrix cov(zn, zn) of dimension
d × d (see [1] appendix J). From this, the protection volume
Vn definition (2) is replaced by a ball (for the usual Euclidean
norm) centred on the estimator output zn and of radius Kσn:

Vn = B(zn,Kσn) =
{
z ∈ Rd : ∥z − zn∥2 ≤ Kσn

}
Then the condition of integrity (the true position is always in
the protection volume for the whole time window) translates
to the vector X as:(

∀n ∈ J1, NK, z∗n ∈ Vn

)
⇔
(

max
1≤n≤N

∥xn∥2 ≤ K

)
This is some sort of infinity norm of the vector X that we will
denote as ∥X∥∞. The reduced errors X are normalized in the
sense that the covariance matrix cov(xn, xn) has eigenvalues
as most 1.

Now that we have defined the protection volume, we want
to determine an upper-bound to the K-factor in order to ensure
the integrity condition P(∥X∥∞ ≤ K) ≥ 1 − IR. As in
the d = 1 case, such an upper-bound is given by the case
where all estimators are independent and furthermore spatially
homogeneous. The theorem 1 is restated as:

Theorem 2: Let X = (xn)1≤n≤N be a random vector
of dimension Nd following a Gaussian distribution of
zero mean and normalized covariance matrix in the sense
that for all n, the matrix cov(xn, xn) has eigenvalues as
most 1. Let Y = (yn)1≤n≤N be a random vector of
same dimension with covariance cov(yn, yn) = Id for
all n and cov(yn, ym) = 0 if n ̸= m (all estimators are
independent and spatially homogeneous). Then for all K
we have the following inequality:

P (∥X∥∞ ≤ K) ≥ P (∥Y ∥∞ ≤ K) (12)

where ∥X∥∞ = max(∥xn∥2). In particular, for IR and
KI(IR, N) given by formula (7), we have:

P (∥X∥∞ ≤ KI) ≥ 1− IR

whatever the covariance matrix of X .

B. Explicit independent K-factor formula

The K-factor in the independent case is easy to calculate.
We have P(∥X∥∞ ≤ K) =

∏
P(∥xn∥ ≤ K) = Fd(K)N

where the function Fd is given explicitly by the expression:

Fd(K) =

∫
∥x∥≤K

1

(2π)
d
2

e−
1
2∥x∥

2

ddx

It is the CDF of the Euclidean norm of a Gaussian random
vector in dimension d of zero mean and correlation matrix Id.
Then, the K-factor in the independent case is given by

KI(IR, N) = F−1
d

(
(1− IR)

1
N

)
(13)

For small d, the explicit forms are F1(K) = erf
(
K/

√
2
)

and
F2(K) = 1 − e−

K2

2 with the independent K-factor formula
given in equation (7). For d ≥ 3, the function Fd can be
expressed as a combination of polynomials, exponential and
error function but cannot be analytically inverted:

F3(K) = erf

(
K√
2

)
−
√

2

π
Ke−

K2

2

To finish, the lower and upper bounds of equation (9) gener-
alise in dimension d to:

√
2 erf−1(1− IR) ≤ K(IR, C) ≤ F−1

d

(
(1− IR)

1
N

)
C. CDF-overbounding

For d ≥ 2, there is no universal definition of CDF-
overbounding. However, all the developments of section V-B
hold by replacing the overbounding condition by the following
condition: for all k such as Fd(k) ≤ 1− LB we have:

P (∥xn∥ ≤ k) ≥ Fd(k)

meaning that the first 1−LB fraction of the error distribution
is “less spread out” than a Gaussian distribution.



APPENDIX B
PROOF OF THE THEOREM

A. d = 1 case

In this section, we will sketch the proof of theorem 1 in
the case d = 1. The theorem comes from the following result
proven by Kathri in 1967. Let Y = (Y1, Y2) be a random
Gaussian vector of dimension n = n1 + n2 (with Yi of size
ni) of zero mean and covariance matrix

Σ =

(
Σ11 Σ12

ΣT
12 Σ22

)
with the partition corresponding to Y1 and Y2. Let C1 and C2

be two symmetric convex subsets of Rn1 and Rn2 respectively.
If rank(Σ12) = 1, we have the following inequality:

P (Y1 ∈ C1 and Y2 ∈ C2) ≥ P (Y1 ∈ C1)P (Y2 ∈ C2) (14)

Then theorem 1 follows from applying the above result with
n1 = 1, n2 = n− 1, C1 = {|y1| ≤ K}, C2 = {∀i ≥ 2, |yi| ≤
K} and then induction on n. With this partitioning, Σ12 has
size 1× (n− 1) and has thus rank at most 1 so (14) applies.

Let us now move to the proof of (14). Since rank(Σ12) =
1, there exists two vectors a1 ∈ Rn1 and a2 ∈ Rn2 such
that Σ12 = a1a

T
2 . We introduce a new normal random vector

Ỹ = (Y1, Y2, Z) of dimension n + 1 with zero mean and
covariance matrix:

Σ̃ =

Σ11 Σ12 a1
ΣT

12 Σ22 a2
aT1 aT2 1


Then the distribution of (Y1, Y2) conditional on Z = z is a
multivariate normal of mean µ̄ and covariance Σ where µ̄ =
(za1, za2)

T and

Σ = Σ−
(
a1
a2

)(
a1
a2

)T

=

(
Σ11 − a1a

T
1 0

0 Σ22 − a2a
T
2

)
and therefore Y1 and Y2 are conditionally independent given
Z (note that this is only possible because Σ12 = a1a

T
2 thus

Σ12 must have rank at most 1).

Now we define the two functions of z:

gi(z) = P (Yi ∈ Ci|Z = z) =

∫
Ci−zai

fi(y)dy

for i = 1, 2, where fi denotes the Gaussian density function
of covariance Σii − aia

T
i . We use Anderson’s theorem (1955)

[12] to show that the two functions gi are symmetric and non-
increasing functions of |z|, meaning that:

|z1| ≤ |z2| ⇒ gi(z1) ≥ gi(z2) (15)

More precisely, Anderson’s theorem states that for f : Rn →
R a nonnegative symmetric unimodal function (unimodal
means here that for all real c, the set {x ∈ Rn : f(x) ≥ c} is
convex), K a symmetric convex subset of Rn, then for every
y ∈ Rn the function

h : t 7→
∫
K+ty

f(x)dx

is a symmetric unimodal function of t. For a proof, we refer to
[5], [12]. It is straightforward to check that the hypothesis of
Anderson’s theorem are verified for the functions gi and that
a symmetric and unimodal function of R satisfies the property
(15).

From the property (15), we can write:

∀z1, z2, (g1(z1)− g1(z2)) (g2(z1)− g2(z2)) ≥ 0

and thus taking the expectation with respect to z1 then z2, we
see that cov(g1(Z), g2(Z)) ≥ 0. But we have that:

E [g1(Z)] = E [P (Y1 ∈ C1|Z)] = P (Y1 ∈ C1)

and similarly E [g1(Z)] = P (Y1 ∈ C1) whereas

E [g1(Z)g2(Z)] = E [P (Y1 ∈ C1|Z)P (Y2 ∈ C2|Z)]

= E [P (Y1 ∈ C1 and Y2 ∈ C2|Z)]

= P (Y1 ∈ C1 and Y2 ∈ C2)

by the conditional independence of Y1, Y2 given Z. So the
positive correlation cov(g1(Z), g2(Z)) ≥ 0 gives us exactly
equation (14) which concludes the proof.

B. d ≥ 2 case
If d ≥ 2, the proof presented above fails because the

condition rank(Σ12) = 1 can no longer be insured. The result
remains true and is a consequence of the following stronger
and more recent theorem:

Theorem 3 (Gaussian Correlation Inequality): Let X
be a Gaussian vector of dimension n of zero mean. Then
for all convex sets E,F ⊂ Rn that are symmetric about
the origin, we have the inequality

P (X ∈ E ∩ F ) ≥ P (X ∈ E)P (X ∈ F )

For a proof of this theorem which is beyond the scope of this
paper, we refer to the articles [9], [13].

Now let X , Y two Gaussian vectors of RNd verifying
the conditions of theorem 2. For a fixed K we define the
sets En =

{
X ∈ RNd : ∥xn∥2 ≤ K

}
which are symmetric

about the origin and convex. By successive applications of the
Gaussian Correlation Inequality, we get

P (∥X∥∞ ≤ K) = P

(
X ∈

N⋂
n=1

En

)

≥
N∏

n=1

P (X ∈ En) =

N∏
n=1

P (∥xn∥2 ≤ K)

Then for all n we have P (∥xn∥2 ≤ K) ≥ P (∥yn∥2 ≤ K).
This is straightforward to see because the covariance matrix
cov(xn, xn) has eigenvalues at most one and yn ∼ N (0, Id).
This finishes the proof:

P (∥X∥∞ ≤ K) ≥
N∏

n=1

P (∥xn∥2 ≤ K)

≥
N∏

n=1

P (∥yn∥2 ≤ K) = P (∥Y ∥∞ ≤ K)
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