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Abstract—Multipath is one of the most challenging propagation
conditions affecting Global Navigation Satellite Systems (GNSS),
which must be mitigated in order to obtain reliable navigation
information. In any case, the random multipath nature makes it
difficult to anticipate and overcome. Therefore, for legacy GNSS
signal performance assessment, modern GNSS signal design and
future GNSS-based applications, robustness to multipath is a
fundamental criterion. Different multipath metrics exist in the
literature, such as the multipath error envelope, usually leading
to analyses only valid for a dedicated receiver/signal combination
and only providing information on the bias. This paper presents
a general criterion to characterize the multipath robustness of a
generic band-limited signal (e.g., GNSS or radar), considering
the joint delay-Doppler and phase estimation. This criterion
is based on the Cramér-Rao bound, which makes it universal,
regardless the receiver architecture and the signal under analysis,
and provides information on the actual achievable performance
in terms of estimated time-delay (i.e., pseudo-range) and Doppler
frequency variances.

Index Terms—GNSS, multipath, delay/Doppler and phase esti-
mation, Cramér-Rao bound, signal analysis, maximum likelihood
estimation.

I. INTRODUCTION

HE use of Global Navigation Satellite Systems (GNSS)
Tsignals spans over a plethora of applications, from its
original navigation purposes [1], [2], to precise time syn-
chronization, remote sensing of the ionosphere for earthquake
forecasting, reflectometry (GNSS-R) [3] or radio occultation,
to name a few. Therefore, there exists a clear interest to have
meaningful tools for the correct characterization of legacy
GNSS signals, but also for the design of new signals for these
purposes or modern applications to come. There are different
signal design and analysis performance criteria depending on
the final application at hand, e.g., positioning accuracy, anti-
jamming capabilities, fast signal re-acquisition or resilience
to multipath. The latter still remains an open issue impacting
several applications, indeed being the limiting factor in several
scenarios due to the environment specific nature of such harsh
propagation conditions. For instance, i) multipath is one of the
main propagation challenges impairing navigation capabilities
in urban environments, ii) diffuse multipath is a fundamental
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problem in near indoor conditions, which is a challenge for
precise time synchronization at the core of next generation 5G
small cells, or iii) it may have a clear impact in ground-based
or low altitude airborne GNSS-R [4], [5], where depending
on the system geometry the direct signal may leak into the
antenna dedicated to the reflected signal [6], [7], directly
degrading the final GNSS-R product. In any case, to assess the
impact of possible multipath conditions into the final system
performance, accurate metrics are required.

From previous GNSS signal design contributions [8]-[11] it
is clear that the de facto metric used to characterize multipath
is the so-called multipath error envelope (MPEE) [12]-[14].
The MPEE estimates the multipath-induced error, considering
a simple two-ray model and a specific receiver architecture, as
a function of the geometrical propagation delay. It is evaluated
by taking the bias on the line-of-sight (LOS) signal delay of
a given estimator in a noise-free environment.

This metric has been widely applied to any multipath
mitigation method that were developed ever since. These
methods can be divided into two main categories: i) correlator-
based algorithms such as Pulse Aperture Correlator (PAC)
[15], Vision Correlator (VC) [16] or High Resolution Cor-
relator (HRC) [17] where the idea is to account for the
multipath by adding a small number of correlators and by
evaluating how the multipath distorts the correlation function;
and ii) more sophisticated algorithms that are estimating the
parameters of the multipath such as the Multipath Mitigation
Technique (MMT) [18], the Multipath Estimating Delay Lock
Loop (MEDLL) [19], [20], Space-Alternating Generalized
Expectation-Maximization (SAGE) [21] or, more recently, the
enhanced Coupled Amplitude Delay Lock Loops (CADLL)
[22], [23]. With MPEE it is then possible to compare these
algorithms with each other and with different GNSS signals
such as in [24], [25] where the size of the MPEE and the
moment it reduces to zero when the path separation gets larger
tell the potential user how well the studied algorithm performs.

In this work, a fundamentally different and more general
approach to multipath error characterization is proposed. A
metric to evaluate the robustness to multipath of any band-
limited signal candidate (e.g., GNSS or radar signals) is
derived by resorting to the Cramér-Rao bound (CRB). Indeed,
the ratio between the single source delay-Doppler CRB [26]
and the corresponding dual source delay-Doppler CRB [27],
considering a generic band-limited signal, provides the exact
loss in delay and Doppler estimation capabilities, which in
turn naturally translates to the final position estimates. One
of the key advantages of this closed-form metric is that it
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only depends on the baseband signal samples, and therefore
does not require to assume any specific receiver architecture,
thus providing a general multipath error performance limit.
Additional advantages can be listed as follows, this ratio is
valid for any signal-to-noise ratio (SNR) level and does not
depend on the amplitude of the multipath, as it is shown in the
derivation of the closed-form. Representative GNSS signals
are compared in terms of the proposed metric to support the
discussion.

The article is organized as follows: Section II presents
the existing MPEE, a simple alternative and their limits.
Section III provides the theoretical background needed for the
metric, which is derived in Section IV. Section V presents
representative results and the corresponding discussion. A
conclusion on this work is drawn in Section VI.

II. MULTIPATH ERROR ENVELOPE

The effect of multipath on the receiver performance is a
complex problem that has been addressed from several per-
spectives [12], [28]. The first criterion to deal with multipath
is the multipath model itself. A simple approach, widely used
for signal design, is the specular multipath model that assumes
a single multipath impinging on the receiver antenna and
distorting the line-of-sight (LOS) signal of interest. This model
considers a single specular reflection of the LOS signal. For
a given multipath-to-direct ratio (MDR), one can study the
impact of the non-line-of-sight (NLOS) signal on the LOS
signal delay estimation. This study usually does not take into
account the noise (i.e., SNR tends towards infinity). A typical
output of the specular multipath model is the so-called MPEE
that represents the worst case impact of the NLOS over the
LOS signal. These worst cases are obtained when the NLOS
is in-phase (relative phase A¢ = 0) and out-of-phase (A¢ = 7).
It is defined as follows [12, (9.65)]:

(maxag (e (01/po. AT, Ag)) ,minpy (€ (p1/p0, AT, Ap)))

1
where e(-) is the induced bias on the estimation of the LOS
delay, pi/po is the MDR, At is the excess delay of the
multipath with respect to (w.r.t.) the LOS. Even though such
a model is not realistic, it quickly provides an idea of an
estimator behavior for a given signal in presence of multipath,
and is widely used [13], [14], [24]. The MPEE output is the
error (in meters) on the LOS pseudo-range estimation induced
by the NLOS w.r.t. a given excess delay, often converted into
path separation. From a statistical point of view, MPEE can
be seen as the bias envelope of the misspecified estimator
considered. Fig. 1 and Fig. 2 show the MPEE for GPS L1
C/A and Galileo E1B signals with the MMT estimator, which
is an implementation of the dual source maximum likelihood
estimator (MLE) [18] and the MEDLL estimator [19], [20]
which is also known as CLEAN-RELAX estimator.

From these two figures, one can first note that for the
MMT estimator, the MPEE is a flat zero-valued line. Indeed,
when there is no noise, the dual source maximum likelihood
estimator (2S-MLE) is unbiased and, consequently, MPEE will
not provide any information. Concerning the MEDLL, one can
see that the MPEE reaches zero for path separation greater than

—MEDLL (CLEAN-RELAX)
—MMT (2S-MLE)

pseudo-distance error [m]

A
' i

0 50 100 150 200 250 300
path separation [m]

Fig. 1. MPEE applied to MEDLL and MMT estimators for GPS L1 C/A
signal. Front-end filter bandwidth set to 12 MHz, MDR = 0.5, integration
time 77 = 1ms.

—MEDLL (CLEAN-RELAX)
—MMT (2S-MLE)

pseudo-range error [m)]

0 50 100 150 200 250 300
path separation [m]

Fig. 2. MPEE applied to MEDLL and MMT estimators for Galileo E1B
signal. Front-end filter bandwidth set to 12 MHz, MDR = 0.5, integration
time 77 = 4ms.

140m for GPS L1 C/A and 40m for Galileo E1B. After these
values, the estimator can be said unbiased, but there is no way
to say whether its variance in a noisy environment will reach
a lower bound or not.

An alternative to the often too simplistic MPEE can be
obtained using the Root Mean Square error (RMSE) output
of a considered estimator as it is used in [29]. The multipath
impact with a random relative phase uniformly distributed in
(0,2m) is studied in [18], where the result is linked to the
CRB reached by either a MLE or minimum mean square error
(MMSE) estimator [30]. In this case, the noise is taken into
account by setting a SNR. In Fig. 3 and Fig. 4, the RMSE
for the estimation of the LOS delay is plotted as a function
of the path separation. These figures were obtained with 1000
Monte Carlo simulations, when the LOS and the multipath are
in-phase. The SNR, defined at the output of the matched filter
is defined as follows
pist's

o

SNR gy =

(C/No) Ty 2

where po is the amplitude of the LOS signal, o2 is the
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variance of an additive white gaussian noise, the baseband
signal samples are

o=( . o O

C/Njy is the carrier-to-noise power density ratio and 7; is the
coherent integration time, 75 being the sampling period.

s(nT)
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Fig. 3. RMSE of the MEDLL and MMT estimators for GPS L1 C/A signal.
Front-end filter bandwidth set to 12 MHz, MDR = 0.5, integration time 77 =
1ms, SNRqy¢ = 31dB.
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Fig. 4. RMSE of the MEDLL and MMT estimators for Galileo E1B signal.
Front-end filter bandwidth set to 12 MHz, MDR = 0.5, integration time 77 =
4ms, SNRy¢ = 34dB.

Even though one can find similarities between the MPEE
and the RMSE, they are very different: the former provides
information on the bias of an estimator and the latter provides
information on the bias and the variance. Besides, the RMSE
adds extra information: for instance, in Fig. 3, the RMSE
of both MMT and MEDLL seem lower bounded at Im and
present a variation at around 300m, which corresponds to 1
C/A chip. That bound is reached at 40m for the MMT and
100 for the MEDLL. In Fig. 4, there is also a lower bound at
about 30cm of RMSE and both MMT and MEDLL reach it
at a path separation of 40m. Since these bounds are reached
when the estimators are unbiased, they might be related to the
CRB that characterize efficient estimators.

These two last figures present a strong interest as they
provide information where the MPEE does not. However they
lack of generality: the noise level must be fixed, several of
Monte Carlo simulations need to be run for each point and
one cannot easily tell how this RMSE varies when the relative
phase and the relative amplitude vary.

In short, MPEE is characterizing the bias induced by a
multipath to an estimator/signal set. It is useful a tool to
compare different receiver architectures for the same signal, or
different signals for the same architecture, but does not provide
information anymore when the estimator is unbiased. The
RMSE approach in [18] is fundamentally different: using an
unbiased estimator, like the MLE in the asymptotic region (i.e.,
at high SNR where it is efficient [31]), the multipath impact
is linked to the global achievable estimation accuracy. This
does not depend on the architecture anymore and only relies
on the signal structure, but as it is based on the performance
of a specific estimator, the results can only be obtained after
exhaustive Monte Carlo analysis. If one looks at the following
definition

(RMSE)? = variance + (bias)?, 4)
" ——

CRB MPEE

it is then clear that a relevant complementary tool to MPEE
is necessarily based on the CRB.

In this article, a generalized approach based on the delay-
Doppler CRB is proposed. Where widely used MPEE, based
on a sub-optimal single source criterion, studies the intrinsic
limits of a given architecture, only providing information on
the bias, the CRB approach, based on a dual source criterion
aims at studying the intrinsic limits of a given signal. Ex-
ploiting these bounds provides a meaningful way to complete
and simplify the work in [18] because it does not depend on
a specific estimator and provides a general multipath error
performance.

III. SIGNAL MODEL AND INSIGHTS ON THE CRB
A. Signal Model

Let a transmitter T and a receiver R have uniform linear
motions such that the positions can be described as pr(z) =
pr +vrt and pr(?) = pr+VRrt, where p and v are the position
and velocity vectors, respectively. Under such conditions, the
distance between T and R at instant # can be approximated by
a first order distance-velocity model:

Iprr(DIl = [[pr(1) —pr (2 = T(1)|| = T (1) = d +vt,

f~rebn t=2 b=, 5)

c c
where d is the T-to-R absolute distance when ¢ = 0, v is the T-
to-R radial velocity, 7 is the time-delay due to the propagation
path, (1-b) is the dilatation induced by the Doppler effect, and
¢ is the speed of light in a vacuum. A band-limited signal s(7),
with bandwidth B, is transmitted by T over a carrier frequency
fe (A¢ = c/fe). Notice that this signal model encompasses
any GNSS signal. Using (5), the dual source complex analytic
signal at the output of the receiver’s antenna is:
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xr(t) = dr(t;09, po, dr0) + dr(t; 11, p1, PR 1) + WR(Z), (6)
dr(t;n;, pis $R,i) =
pied PRis((1=by) (1 = 77))el e (170! gmiwemi, (7

where wg(t) is a zero-mean white complex circular Gaussian
noise, w. = 2nf., and for i € {0, 1}, TI[T = [1, b;], and p;
and ¢r; are the amplitude (real number strictly positive) and
phase of the complex coefficients induced by the propagation
characteristics (fading, reflection, etc.), the polarization mis-
matches and the antenna gains. In this study, since a single
specular reflection is considered, signal 0 will refer to the
LOS signal where signal 1 will refer to the single multipath,
also noted NLOS. Under the narrowband signal hypothesis,
the Doppler effect on the band-limited baseband signal s(7)
is usually neglected so that: s((1 —b)(t — 7)) = s(t — 7) [32,
Ch.9]. Therefore, the baseband output of the receiver’s Hilbert
filter containing a direct signal and a single specular reflection
can be approximated by

x(1) £ xp(1)e™ " = d(1:60) +d(1:60) +w(1) . (8)
d(1;0,) £ pie’ P a(t;m) Q)
a(t;me) £ s(t = y)e/@ebitmm) (10)

where fori € {0,1}, 07 = [, pi. ¢i]. i = pr.i—we (1+b)7;.
If we now consider the acquisition of N = N, — Nj+1 samples
at a sampling frequency Fy = 1/T, set equal to the front-end

bandwidth of the receiver Bg, the discrete signal model yields
to the following dual source conditional signal model (CSM),

x=A(g.n)a+w, w~CN(,0:1y), (11)
with, for n € [N, N2],

x! =(..., x(nTy), ...),

A(ng,m) = [a('lo), a('h)] s

al (n;) = ( oy s(nTy — 1;)e I @ebi(Ts=7i) | ) ,

ol = (poe’®, pre!?)

wlo= (..., wnTy), ...).

B. Insights and Extension of the CRB for the Reception of a
Delayed, Dilated and Reflected Signal

The parameters to be estimated are gathered in the following
vector: €l = [O'nz,qOT,an,po,zpo,pl,(pl]. From (11), one can
write x ~ CN (A(179, 1)@, 021y ) and the probability density
function (pdf) is expressed as,

J S 2
o) Ix=A(mg.n ) e |l .

p(x.€) = 12)

(RO',%)N

The corresponding CRB for the estimation of € is defined as

the inverse of the Fisher Information Matrix (FIM) [33],

8% 1n p(x, €)
dede”

From [34, (4.68)], one can find the expression of the CRB
for the estimation of the parameters of interest gathered in

CRB|c = F, (€), Feje(e) = —E

€

13)

the concatenated vector 775 =
observation of the signal:

[ng.n]] based on a single

) oo

2 _ 11
-1 _ T
CRB;! (e) = —3Re{cb (1) © (Ra ® [ L1

2 —Jj(¢1-¢0)
Y an P pop1e
R, =aa” = [ poplej?¢1—¢o) p% ]’ =
a™ (ny) 9" (my) "
—\ _ on, L on
@ (7,) = oatt (0”]) PA(ﬁz) dall ((;h) 5 (16)
on, om

where Py = I - PL = A(AYA)™ A¥ is the orthogonal
projector onto the subspace defined by the set of the column
vectors of matrix A, ® denotes the Hadamard product and ®
denotes the Kronecker product.

If one notes I' = |T'|e/?r such that pje/?t = Tpge/? , the
CRB defined in (14) can be further developed and written as:

2p; el
-1 " 2,1
CRBWE (e) = o2 Re” |F|2‘Dz,2 ”

D

I, 17

Proof. see Appendix A for details on the derivation of sub-
matrices ®; ;, i, j = {1,2}. O

Then, using the block matrix inversion lemma (53) on (17),
the inverse of CRBy; | can be expressed as

o (Ao —Bo — cos(2¢r)Co +sin(2¢r)Do) ,

(18)
where, with superscript R and [ standing for real and imagi-
nary parts, respectively,

-1 _
CRB, | (€) =

Ao = @f, (19)
By = % (<I>§,1 (<I>§,2)7| <I>§1 + (I>§’1 ((I)iz)il cl)é’l), (20)
Co = % (<I>§,1 (‘DQZ)?] oF - @] ((1)5’2)71 ®§,1)’ 21)
Do = % (Qﬁl (@52)—1 ) | + D) ((1)22)_1 (Dgl) . (22
Proof. see Appendix B. O

Note that in (18), the CRB does not depend on |I'|. This
means that in the asymptotic region of operation of the 2S-
MLE, the estimation of both the time delay and the Doppler
frequency of the LOS signal is not affected by the relative
amplitude of the NLOS but only by its relative delay, Doppler
and phase.

Equation (18) being a two-by-two matrix, it is easy to
evaluate its inverse and then extract a closed-form of CRBj¢:

CRBT0|E(€)
0'2 [Acp - Bq) - COS(2¢[‘)C¢. + sin(2¢r)D¢]2,2

n

- ;%2) det (Ap — Bo — cos(2¢r)Co + sin(2¢r)De)

(23)

where det(-) is the determinant of the matrix in argument.
Similarly, a closed-form expression of the CRB for the estima-
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tion of the LOS Doppler parameter by can be easily obtained
by taking the other diagonal term of the inverse matrix:

CRBb0|e(6)
0'% [Acp - Bo - COS(Z(]ﬁr)qu + Sin(2¢r)D¢] 1,1
" 2p2 det (Ag — Bo - cos(2¢r) Co + sin(26r) Do)
As a side note, the derived CRB presented in (23) and (24)

are just alternative formulations of the CRB that were already
derived in [27].

(24)

IV. A CRITERION BASED ON CRAMER-RAO BOUNDS:
CLEAN-TO-COMPOSITE BOUND RATIO

A. Definition for the time-delay

The case without signal reflection is equivalent to a well
known standard single source scenario. The corresponding
closed-form CRB was derived in [26]. The resulting CRBs
are recalled here:

CRB (25)

w0l60.0% T 5 2
where Agpy,=o is the matrix A defined in (19) where all
the NLOS components are set to zero: 17; = 0. This way the
interference terms are eliminated and the result is exactly the
closed-form bound from [26, (17a)].

Then, by simply dividing the CRB in a single source context
(25) by the corresponding CRB in a dual source source context
(23), a generalized closed-form formulation of a Clean-to-
Composite Bound Ratio (CCBR) for the time-delay estimation
is obtained, which is expressed with the baseband signal
samples (i.e., valid for any band-limited signal):

BTO\GO,@Z’,

. CR
CCBRT (AT, b(), b], ¢[‘) = —CRB |
T0|€

B [AE,I] 1.1 det (Ap — Bgp — cos(2¢r)Co + sin(2¢r)De)
- [Ao — Bo — c0s(2¢r)Co + 5in(2¢r) Do) 5

(26)
where the dependency on At = 11 — 19 was shown in [27].
First, notice that the CCBR; does not depend on the SNR
of the LOS and the NLOS. Besides, as previously noticed, this
ratio does not depend on the relative amplitude of the reflected
signal either but it depends on the relative phase between the
LOS and the NLOS signals. Actually, the CCBR is w-periodic
w.r.t. ¢r which reduces its study to the interval (0, ) as shown
in the next section.

B. Statistics of the Clean-to-Composite Bound Ratio

The m-periodicity of the CCBR; can be used to easily obtain
the maximum and minimum values for each scenario defined
by the set of parameters of interest (A7, by, by). Indeed, by
implementing the different matrices required to compute this
ratio, it is quite direct to obtain these values. If one sets a pdf
to the relative phase ¢r, it is then also possible to obtain an
average value of the CCBR . For instance, one can assume the
relative phase to be a random variable uniformly distributed
over (0, ), then the average can be numerically obtained as:

1 s

Eg {CCBR,} (At by, by) = + / CCBR, (AT, by, by, ¢)d¢
T Jo

@7)

C. Definition for the Doppler frequency

Similarly, it is possible to construct a CCBR;, that can be
defined as the ratio between the CRB for the estimation of the
LOS Doppler parameter bg in a single source context,

Oy [ -1
2 |l =0 ’
2'00 2,2

and the corresponding CRB in a dual source context (24):

CRBbo 60,02

CRBy, e

[A(_I)I]Q’2 det (Ap — Bgp — cos(2¢r)Co + sin(2¢r)Do)
B [Ae — Bo — cos(2¢r)Co +sin(2¢r)Do]; ;

CCBRy, (AT, b, by, ¢r) =

(29)

Again, this CCBR does not depend on the SNR nor the
relative amplitude. It is also m-periodic w.r.t. ¢r.

V. RESULTS AND DISCUSSIONS
A. Averaged CCBR,

The resulting CCBR, with respect to the path separation
starts from 0 when the LOS and NLOS signals are perfectly
superimposed, in this case both sources are extremely hard
to separate and estimating them both properly would imply
a very large variance. Then the CCBR; tends towards unity
when the path separation gets large, and it may present local
minima in its transition region. Considering a GPS L1 C/A
signal, averaged CCBR; results are presented in Fig. 5 for
different receivers’ RF front-ends. As defined in Section III,
the sampling frequency is assumed equal to the front-end
bandwidth: Bg = 1 MHz denotes then a low cost receiver and
Br = 8 MHz corresponds to higher quality one. In this figure,
the relative phase is assumed uniformly distributed in (0, )
and, the Doppler frequencies of both signals are arbitrarily set
to 0 Hz to obtain the following figures. One can see the effect
of the RF front-end bandwidth Bg: when it gets larger, the
main signal is less affected by the multipath. It is interesting
to see how the averaged CCBR. oscillates when the path
separation is below 300 meters (i.e., 1 L1 C/A chip), especially
for Bg = 8 MHz, where a peak at about 300 meters suggests a
strong sensitivity to multipath of the C/A code for this specific
path separation. In other words, for Binary Phase Shift Keying
(BPSK(1)) modulations, the LOS signal time-delay estimation
is particularly affected when the reflected signal appears at
around 1 L1 C/A chip. A discussion regarding this behaviour
is proposed in Section V-E.

B. Min-Max Analysis: CCBR, Envelope

In Fig. 6 and Fig. 7, the GPS L1 C/A signal is compared
to a Galileo E1B signal at Bg = 24 MHz. In these figures,
the envelope between the minimum and maximum values of
the CCBR; is displayed. These values can easily be obtained
numerically by evaluating the ratio for each value of relative
phase. A first interesting remark concerning this display is that
the min and max curves occasionally meet at specific path
separations, for which the CCBR; does not depend on the
relative phase. In Fig. 7, one can see that the Galileo signal
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Fig. 5. Averaged CCBR, for the GPS L1 C/A PRN 1 signal with Bg =
1,2,4,8 MHz, and ¢r uniformly distributed in (0, 7).

might oscillate more within the 300 meters but the CCBR;
remains above 0.9, while the C/A signal, Fig. 6, presents a
depression at around 300m which goes down to 0.75.
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Fig. 6. CCBR; envelope for a GPS L1 C/A signal with Bg =24 MHz.

Fig. 8 and Fig. 9 are two other examples of CCBR,
envelopes for GPS L5-I and Galileo E5 signals when their
entire bandwidth is sampled. These figures focus on the first
50 meters of path separation since the corresponding CCBR;
are close to 1 for larger path separation. In Fig. 8, the CCBR,
can vary a lot in the range of path separation between 10
and 20 meters (CCBR; is in a 0.4 wide range), then for path
separation larger than 30 meters, the multipath does not affect
the estimation of the LOS time delay anymore (CCBR, larger
than 0.9. For the ES signal, Fig. 9, the shape of the envelope
is less smooth, but overall thinner. For a path separation of
10 meters, it presents a large range of possible CCBR; values
(between 0.6 and 1) but then the CCBR, goes above 0.9 at
around 20 meters and flattens out. As a conclusive remark for
these two figures, the ES signal is slightly more resilient than
the LS signal when path separation increases since it is almost
not affected anymore above 20 meters.
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Fig. 7. CCBR envelope for a Galileo E1B signal with Bg =24 MHz.
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Fig. 8. CCBR; envelope for a GPS L5-I signal with Bg =24 MHz.
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Fig. 9. CCBR envelope for a Galileo ES signal with Bg = 60 MHz.

C. Performance Considerations

From the results presented in Fig. 6 and Fig. 7, it is then
possible to obtain the average RMSE of a given scenario,
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assuming a uniformly distributed relative phase ¢r over (0, 7).
The single source CRB in [26], recalled in (25), is typically
shown as a function of the output SNR, defined in (2). Then,
for a specific SNRy, (i.e., a given receiver operation point), it
is simple to use the CCBR; to obtain an evaluation of the best
achievable accuracy for the time-delay estimation in presence
of a single multipath using (27), this is not a bound anymore
but it can provide an order of magnitude of the averaged
bound:

_ CRB 95,02
~ Eg4.{CCBR,}

Note that the result will consequently be averaged over the
possible phase differences.
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Fig. 10. Averaged CRB ¢ in presence of a single multipath as an application
of the averaged CCBR; on GPS L1 C/A (continuous lines) and Galileo
E1B (dashed lines) signals, sampled at Bg = 24 MHz for three different
representative SNRoy;.

Fig. 10 coherently completes the example proposed in [18,
Fig. 5], in which the bounds are replaced by a ML-based
estimator, and the results are obtained taking the RMSE
of several Monte