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Abstract

The new generation of satellite instruments enables the acquisition of images with ever-

growing spectral and spatial resolutions. The counterpart is that an increasing amount

of data must be processed and transmitted to the ground. Onboard image compression

becomes thus crucial to preserve transmission channel bandwidth and reduce data trans-

mission time. Recently, convolutional neural networks have shown outstanding results for

lossy image compression compared to traditional compression schemes, however, at the cost

of a high computational complexity. Autoencoder architectures are trained end-to-end,

taking beneĄt from extensive datasets and computing power available on mighty clusters.

Consequently, the potential contributions and feasibility of deep learning techniques for on-

board compression are arousing great interest. In this context, nevertheless, computational

resources are subject to severe limitations: a trade-off between compression performance

and complexity must be established. In this thesis, the main objective is to adapt learned

compression frameworks to onboard compression, simplifying them and training them with

speciĄc images. In a Ąrst step, we propose simplifying these architectures as much as possi-

ble while preserving high performance, particularly maintaining the adaptability to handle

diverse input images. In a second step, we investigate how such architectures can further

be improved by aggregating other functionalities such as denoising. Thus, we intend to in-

corporate denoising, either considering the above mentioned compression architectures for

joint compression and denoising concurrently or as a sequential approach. The sequential

approach consists in using, on the ground, a different architecture to denoise the images

issued from the preceding learned compression framework. By running experiments on

simulated but realistic satellite images, we show that the proposed simpliĄcations to the

learned compression framework result in considerably lower complexity while maintaining

high performance. Concerning learned compression and denoising, the joint and sequential

approaches are beneĄcial and complementary, allowing to surpass the CNES imaging sys-

tem performance, and thus opening the path towards operational compression and denoising

pipelines for satellite images.
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Résumé

La nouvelle génération de satellites permet lŠacquisition dŠimages avec des résolutions spec-

trales et spatiales toujours plus grandes. La contrepartie est quŠune quantité croissante de

données doit être traitée et transmise au sol. La compression embarquée dŠimages devient

donc cruciale pour préserver la bande passante du canal de transmission et réduire le temps

de transmission des données. Récemment, les réseaux de neurones convolutifs ont montré

des résultats exceptionnels pour la compression dŠimages avec perte par rapport aux schémas

de compression traditionnels, au prix dŠune complexité de calcul élevée. Les architectures

basés sur lŠautoencodeur sont entraînés de bout en bout, tirant parti de grandes bases de

données et de la puissance de calcul disponible sur de puissants clusters. Par conséquent,

les contributions potentielles et la faisabilité des techniques dŠapprentissage profond pour la

compression embarqué dŠimages satellitaires suscitent un grand intérêt. Dans ce contexte,

néanmoins, les ressources de calcul sont soumises à de sévères limitations : un compro-

mis entre performances de compression et complexité doit être établi. Dans cette thèse,

lŠobjectif principal est dŠadapter les architectures de compression appris à la compression

embarquée, de les simpliĄer et de les entraîner avec des images spéciĄques. Dans un pre-

mier temps, nous proposons de simpliĄer au maximum ces architectures tout en préservant

des performances élevées, en conservant notamment lŠadaptabilité pour traiter des images

diverses. Dans un deuxième temps, nous étudions comment de telles architectures peuvent

encore être améliorées en agrégeant dŠautres fonctionnalités telles que le débruitage. Ainsi,

nous avons incorporé le débruitage, soit en considérant les architectures de compression

mentionnées ci-dessus pour la compression et le débruitage simultanément, soit en utilisant

une approche séquentielle. LŠapproche séquentielle consiste à utiliser au sol une architecture

différente pour débruiter les images compressées issues de lŠarchitecture de compression ap-

pris précédent. En réalisant des expériences sur des images satellites simulées mais réalistes,

nous montrons que les simpliĄcations proposées pour lŠarchitecture de compression appris

entraînent une complexité considérablement moindre tout en maintenant des performances

élevées. Tant en compression apprise quŠen débruitage appris aussi, les approches conjointes

et séquentielles sont intéressantes et complémentaires, permettant de surpasser les perfor-
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mances du système dŠimagerie du CNES, et ouvrant ainsi la voie à des chaines opérationnels

de compression et de débruitage des images satellites.
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Chapter 1

Introduction

1.1 Context

The new generation of satellite instruments enables the acquisition of images with ever-

growing spectral and spatial resolutions. The counterpart is that an increasing amount of

data must be processed and transmitted to the ground. Satellite image compression be-

comes thus essential to preserve transmission channel bandwidth and reduce data transmis-

sion effort [Huang (2011)]. Traditional lossy image compression frameworks use transform

coding [Goyal (2001)] in association with optimization of a rate-distortion criterion. Con-

cerning computational limitations onboard satellites, the consultative committee for space

data systems standard (CCSDS) 122.0-B-2 compression algorithm was designed, taking into

account a compromise between complexity and performance [B. Book (2017)].

1.2 Purpose of the thesis

The primary aim of the thesis is to measure the potential contributions and the feasibility of

deep learning techniques for onboard satellite compression. Recently, artiĄcial neural net-

works emerged as powerful data-driven tools capable of outperforming model-based methods

in solving many complex problems. In data-driven methods, a learning phase on a suffi-

ciently representative database replaces the extraction of relevant features, which results

from a prior choice in classical methods and usually requires substantial human efforts.

Deep learning-based methods can attain very competitive results when large datasets and

computing power are available for the model training phase. Currently, these two condi-

tions are satisĄed in many applications, which explains the intense interest aroused by these

methods in diverse domains. Within the context of the thesis, we can have access to exten-
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sive databases representative of different landscapes, and the CNES provided the data used

in the thesis. Notably, convolutional neural networks (CNNs) have been successful in many

computer vision applications [Bengio (2009)] such as classiĄcation [J. Hu et al. (2018)],

object detection [Redmon et al. (2016)], segmentation [Kaiser et al. (2017)], compression

artifacts removal [Dong et al. (2015)] and denoising [K. Zhang et al. (2017a)]. Recently,

convolutional neural networks (CNNs) have shown outstanding results for lossy image com-

pression [Ballé et al. (2017), Theis et al. (2017), Rippel and Bourdev (2017), and Ballé

et al. (2018)] when compared to traditional compression schemes in terms of rate-distortion

trade-off, however, at the cost of a high computational complexity.

In the context of satellite image compression, a trade-off between compression perfor-

mance and complexity must be considered due to signiĄcant computational constraints

onboard satellites. For this reason, the main objective of this thesis is to evaluate, both in

terms of performance and complexity, learning-based approaches for embedded compression

of Earth observation images. Thus, the impact of the different design options on the com-

pression performance should be exhaustively studied for various compression rates, and a

comparative complexity study should also be performed.

Moreover, a complementary goal is to integrate other features into the embedded com-

pression solution. There are other challenges related to satellite images, e.g., the semi-

multiplicative noise that affects images in their acquisition and requires proper denoising.

Thus it would be advantageous to take advantage of neural networks to address both com-

pression and denoising, taking for reference a typical satellite imaging system [Delvit et al.

(2019)].

This thesis is co-Ąnanced by the French Space Agency (CNES) and Thales Alenia Space

(TAS) and co-supervised by the European Space Agency (ESA).

1.3 Contributions

• Experimental analysis of different design options for learned satellite image compres-

sion.

• SimpliĄed Laplacian entropy model.

• Joint versus sequential compression and denoising with neural networks.
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1.3.1 Outline of the thesis

This document will be divided into two parts. The Ąrst one will give a background on the

satellite imaging system (see chapter 2) and will deal with the state-of-the-art in image

compression and denoising with neural networks (see chapter 3). The second part gathers

the contributions of the PhD (see chapters 4 and 5).
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Chapter 2 Overview of the satellite imaging system

2.1 Overview of the satellite imaging system

A classical satellite imaging system is composed of three parts: acquisition, onboard com-

pression, and restoration [Latry et al. (2012)]. The acquisition captures the image scene,

onboard compression reduces the image data size to reduce data transmission resources,

and restoration aims to reduce degradations originating from the previous steps. We as-

sume that the transmission does not introduce any degradation on the previously com-

pressed image [Carlavan et al. (2012)]. For Earth observation, the acquisition causes a

blurring effect due to the effects of instrumental optics [S. M. Wong et al. (2020)]. This

undesirable effect can be modeled by the Point Spread Function (PSF) or the Modula-

tion Transfer Function (MTF) in the frequency domain, which is used to characterize the

quality of electro-optical imaging systems and, in particular, those onboard satellites. In a

typical satellite imaging system, noise can be classiĄed into two main categories depending

on the source: instrumental noise and noise arising from the subsequent processing [Latry

et al. (2012)]. Instrumental noise arises from acquisition. Its statistics are well-known and

present a pixel-dependent variance [Masse et al. (2018)]. Unlike instrumental noise, noise

issued from the subsequent processing presents a non-uniform spectral density [Latry et al.

(2012)]. It may be introduced by radiometric corrections and onboard compression [Latry

et al. (2012)]. Image denoising becomes thus necessary to recover a noise-free image from the

received noisy image. It is also needed because otherwise, inverting the MTF by amplifying

the high-frequency values would increase the noise. Once the noise has been adequately

removed, deconvolution takes place to reverse the MTF effect.

Instrumental
Noise

Restitution

NL-
Bayes Deconvolution

Onboard
Satellite

Ground

Denoising

Transform-based
compression

algorithm 

Modulation
transfer function

Figure 2.1: Basic stages of the Pléiades image processing pipeline [Delvit et al. (2019)].

2.2 Modulation transfer function (MTF)

Considering the acquisition sensor as a shift invariant linear system, the relation between

the radiances of the landscape and the image in the spatial domain is formulated as [S. M.
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Wong et al. (2020)]:

In(x, y) = h(x, y) ∗ Ia(x, y) + Ψ(x, y), (2.1)

where Ia(x, y), h(x, y) and Ψ(x, y) represent the landscape image, the point spread func-

tion (PSF) and the instrumental noise respectively; ∗ denotes two-dimensional (2D) con-

volutional operator and (x, y) represents the coordinates. The degradation model in the

frequency domain can be expressed as [S. M. Wong et al. (2020)]:

In(v, w) = H(v, w) · Ia(v, w) + Ψ(v, w), (2.2)

where v and w represent the frequency coordinates, Ψ(v, w) denotes the noise spectrum

and H denotes the optical transfer function, which amplitude spectrum is the modulation

transfer function (MTF). The symbol · denotes the element-wise multiplication operator.

In the acquisition system, when considering an optimized satellite imaging system, the

modulation transfer function (MTF) assumes a relatively low value at Nyquist frequency

to reduce both telescope diameter and aliasing effects, which is called a diffraction-limited

design [Latry et al. (2012)].

2.3 Satellite image compression

2.3.1 Generalities on image compression through wavelet transform
coding

Images are composed of pixels, which are made of combinations of primary colors if the

images are RGB or spectral bands if the images are multispectral. For instance, an RGB

image from a standard digital camera is composed of red, green, and blue channels. In

the context of RGB images, a channel is the intensity image made of just one of these

primary colors. A grayscale image has just one channel. A multispectral image is composed

of several channels or bands, each one containing the amount of radiation measured in a

particular wavelength. A panchromatic image is formed from a wide spectrum band that

includes almost all visible wavelengths, allowing for a greater spatial resolution in a single

band. In this case, the result does not contain any wavelength-speciĄc information [Ose

et al. (2016)].

Images present two types of redundancy: spectral and spatial [Subramanya (2001)]. Image

compression aims to reduce the number of bits required to represent an image. In multispec-

tral and color images, spectral redundancy generally arises from the correlation between the

7



Chapter 2 Overview of the satellite imaging system

different bands. Spatial redundancy is due to the correlation between neighboring pixel val-

ues. Before compression, color images are usually transformed to a luminance-chrominance

representation. The purpose of this transformation is to decorrelate the spectral or color

bands so they can be compressed separately and efficiently [Tretter et al. (2005)]. The

wavelet transform, in its turn, represents data with reduced spatial entropy, making data

more prone to be compressible than its original form [Marcellin and Taubman (2002)]. An

inverse process is required to obtain the reconstructed data from the transformed data.

The wavelet transform coding thus Ąts well in the context of image compression. Con-

sequently, many image compression algorithms rely on wavelet transform coding such as

JPEG2000 [Marcellin and Taubman (2002)] and the consultative committee for space data

systems standard (CCSDS) 122.0-B-2 [G. Book (2015)]. Wavelet transform allows com-

pressing images while keeping most of their visual quality. Its main concepts and principles

will be presented in the following.

2.3.1.1 Wavelet transform

Wavelets are a family of basis functions. The wavelet transform separates a function or a

signal into distinct frequency packets localized in the time domain [Panda et al. (2000)].

Thus, wavelets are well suited for analyzing non-stationary data. In other words, a function

or a discrete data set, when transformed into a time-scale space using wavelets, shows how it

behaves at different measurement scales. Thus, wavelet transforms provide a multiresolution

framework for image representation. When wavelets have compact support, it is easier to

perform transforms to large data sets with minimal computations [Panda et al. (2000)].

The wavelet transform consists of low-pass and high-pass image data in the vertical or

horizontal direction and then in the other direction, followed by sub-sampling [Marcellin

and Taubman (2002)]. Wavelet transform usually decomposes the original image into a

sequence of new images (usually called wavelet subbands) of decreasing size. This process

creates a set of levels of wavelet decomposition that represent the image viewed at different

scales.

The discrete wavelet transform (DWT) is an implementation of the wavelet transform

using a discrete set of the wavelet scales and translations [Marcellin and Taubman (2002)].

One of the main advantages of the DWT over the continuous counterpart is that the DWT

does not add redundancy if decomposed in a wavelet basis, i.e., it represents the trans-

formed data using only as many coefficients as present in the original data, which makes

DWT particularly suitable to image compression [Braun et al. (2002)]. Both low-pass and
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high-pass Ąltering result in redundant coefficients, as each Ąltering operation returns trans-

formed coefficients that maintain the original input size. Consecutively, the resulting data is

further downsampled by a factor of two [Marcellin and Taubman (2002)]. Downsampling is

performed to ensure that the subspace resolution of the transformed image is not oversam-

pled with respect to the original image. The downsampled data can be reconstructed with

the corresponding inverse wavelet transform. The DWT decomposes each image component

into multiple frequency bands called subbands. For each level, DWT is applied row-wise

and column-wise and results in four sub-bands [Hayat et al. (2009)]:

1 horizontally and vertically low-pass (LL),

2 horizontally low-pass and vertically high-pass (LH),

3 horizontally high-pass anv vertically low-pass (HL),

4 horizontally and vertically high-pass (HH).

R different resolution levels are associated to (R − 1)-level wavelet decomposition. Each

sub-band of the decomposition is identiĄed by its orientation and its corresponding decom-

position level (0, 1, ... R-1). The LL band is further decomposed at each resolution level

(except the lowest LLR−1). The LL0 band is decomposed to originate the LL1, LH1, HL1

and HH1 bands. Consecutively, at the next level, as illustrated in Ągure 2.2a, the LL1 band

is decomposed. This same process is repeated until LLR−1 band is obtained. A level-2

wavelet decomposition of a Pléiades image of Cannes, provided in Ągure 2.2b, is illustrated

in Ągure 2.2c.

(a) (b) (c)

Figure 2.2: DWT; a) Sub-band structure, b) Pléiades image of Cannes, c) Pléiades image
of Cannes at level 3 DWT decomposition.

The 2D transformation can be carried out by separately applying the 1D version horizon-

tally and vertically one after the other. For example, when considering the 1D information
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(pixel row or pixel column) input signal S1, ...Sn, the low-pass sub-band signal L1, ...Ln/2

and high-pass sub-band signal H1, ...Hn/2 for the reversible integer-to-integer Daubechies

(5/3) wavelet transform are expressed by:

Hi = S2i+1 −


1

2
(S2i+2 + S2i)

⌋

, (2.3)

Li = S2i −


1

4
(Hi + Hi−1) +

1

2

⌋

, (2.4)

where ⌊·⌋ is the rounding operator. Now, when considering the irreversible real-to-real

Daubechies (9/7), we deĄne a new set of variables S
′

1, ...S
′

n where the odd numbered vari-

ables (S
′

2n+1) will stand for the Ąrst stage lifting outcomes and the even numbered (S
′

2n)

represents those of second stage lifting. For real-to-real Daubechies (9/7) wavelet transform,

we have [Hayat et al. (2009)]:

S
′

2i+1 = S2i+2 + a(S2i + S2i+2), (2.5)

S
′

2i = S2i + b(S
′

2i−1 + S
′

2i+1), (2.6)

Hi = β
′

(S
′

2i+1 + c(S
′

2i + S
′

2i+2)), (2.7)

Li = β(S
′

2i + d(Hi−1 + Hi)), (2.8)

where a, b, c and d are the Ąrst, second third and fourth stage parameters, and ¶β, β
′♢

represent the scaling parameters. This wavelet is used in the JPEG2000 image compression

standard [Hayat et al. (2009)].

DWT results in better energy compaction that the discrete cosine transform (DCT) with-

out blocking artifacts after coding. Moreover, the DWT decomposes the image into an

L-level dyadic wavelet pyramid [Hayat et al. (2009)]. The resulting wavelet coefficient can

be easily scaled in resolution and the wavelet coefficients smaller than a given threshold can

be discarded to reconstruct an image with a lower level of detail [Hayat et al. (2009)]. The

multi-resolution nature of DWT makes it proper for scalable image coding.

2.3.1.2 Quantization

Quantization is the process of mapping input values from a large set (often a continuous set)

to output values in a (countable) smaller set, often with a Ąnite number of symbols. Round-

ing and truncation are typical examples of quantization processes. Quantization forms the

core of essentially all lossy compression algorithms. Its main drawback is the introduced
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degradation resulting from the discarded information. The challenge is to quantize effi-

ciently and minimize its impact on quality. In an elementary lossy compression method,

each transformed sample (yi) is independently mapped to a corresponding quantized value

(ŷi). This process is known as scalar quantization process which represents the simplest

quantization form [Marcellin and Taubman (2002)]. Each ŷi is associated with an interval

on the real range of values, as follows:

ŷi = qk if yi ∈ Ik, (2.9)

where the intervals Ik are disjoint and cover the real line. In a simple approach, qk might

be selected as the mid-point of the interval Ik. Quantization is also commonly associated

with variable quality when varying the quantization step size. Thus, the uniform scalar

quantization can be expressed as follows [Xing et al. (2015)]:

ŷi = ⌊yi/Qstep⌋, (2.10)

where Qstep is the quantization step size and ⌊·⌋ is the rounding operator. Respectively, the

approximate inverse quantization operator (Q−1) maps each ŷi back to the original corre-

sponding interval, resulting in ỹi [Marcellin and Taubman (2002)]. The inverse quantization

mapping can thus be expressed as:

ỹi = ŷi ×Qstep. (2.11)

There are more sophisticated quantization schemes such as adaptive scalar quantization and

vector quantization. Adaptive scalar quantization has been proposed to minimize quantiza-

tion errors arising from input values which are not uniformly distributed. Vector quantiza-

tion also aims to reduce quantization errors, but on multidimensional inputs.

2.3.1.3 Entropy coder

Compression essentially aims to remove redundancies in the original data. In this context,

wavelet transform targets to transform data to obtain a less redundant representation [Mar-

cellin and Taubman (2002)], as previously seen in 2.3.1.1. From information theory [Mar-

cellin and Taubman (2002)], further compression can be achieved by using entropy coding.

Entropy coding allows representing information in the most compact form losslessly. Note

that entropy coding requires data in an integer form, which can be obtained through the

quantization process. The reverse of this conversion is to be performed during decoding.
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One of the main types of entropy coding creates and assigns a unique preĄx code to each

unique symbol that occurs in the input data [Z.-M. Lu and Guo (2017)]. These entropy

encoders compress data by representing each Ąxed-length input symbol with the corre-

sponding variable-length preĄx codeword. The length of each codeword is approximately

proportional to the negative logarithm of the probability, which comes from ShannonŠs

information theory [Shannon (1948)]. For this, entropy coding exploits the probability dis-

tribution patterns of its input data. Therefore, the most common symbols use the shortest

codes. Three commonly used entropy coding techniques are Huffman coding, arithmetic

coding, and Lempel-Ziv coding. Lempel-Ziv coding is a dictionary based coding, which is

suitable for compression of text data [Khan et al. (2013)].

Currently, arithmetic coding is the most popular entropy coding technique used in many

image compression standards, including JPEG2000. Note that computational complexity

has been an issue of concern in this context. The range coder [Martin (1979)], an entropy

coder similar to the arithmetic coder or Huffman coder, partially addressed this issue. The

compressed Ąles are minimally larger (less than 0.01% in most cases) than an arithmetic

coder, but the operation speed is nearly twice as fast. Arithmetic coding takes advantage of

interval subdivision, where successive input symbols are encoded as intervals on the range

[0,1) based on their probability of occurrence. Arithmetic coding is superior to Huffman

coding since it can assign a fractional number of bits for the codewords of the symbols. In

contrast, Huffman coding only supports an integral number of bits [Huang et al. (2004)].

In the CCSDS standard [G. Book (2015)], Rice coding is a recommendation for lossless

compression of satellite data. The Rice coding is an adaptive entropy coder which uses a

subset of the family of Golomb codes to produce a simpler suboptimal preĄx code, result-

ing in lower computational complexity. Experiments in [Huang et al. (2004)] show that

arithmetic coding is superior to Rice coding in terms of compression ratio performance,

exhibiting a slighter higher complexity. Later in this thesis, we consider arithmetic coding

in our learned-based approaches due to its higher performance.

2.3.2 JPEG2000

In the mid-80s, both the International Telecommunication Union (ITU) and the Inter-

national Organization for Standardization (ISO) worked to establish a joint international

standard for grayscale and color image compression. This effort has been known as Joint

Photographic Experts Group (JPEG) [Christopoulos et al. (2000)]. After evaluating several

different coding schemes, the JPEG members selected a DCT-based method. The image
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is partitioned into rectangular blocks of size 8x8, and each block is transformed separately

with the DCT. The main disadvantage of the image compression schemes based on the

DCT is that the transform does not reveal any information about the space localization of

the frequency components. Because of that, images must be partitioned into blocks that

are transformed separately. At high compression ratios, the approximations performed in

the quantization step can create signiĄcant differences between the neighboring pixels at

the edge of the blocks. Consequently, the DWT emerged as one of the alternatives to the

DCT block-based transform, which later got the JPEG groupŠs approval. Thus, an evolu-

tion of the image compression technology has taken place and an improved standard called

JPEG2000 has been established [Christopoulos et al. (2000)]. The primary motivation was

to Ąnd a more efficient transform and add new features. The JPEG2000 adopted wavelet

transforms. JPEG2000 disposes of many attractive features, which were not present in the

previous image compression standards. They include [Chai and Bouzerdoum (2001)]:

• Excellent coding performance: it exhibits superior rate-distortion and subjective im-

age quality performance, especially at low bit-rates. This is essential in applications

whereby the Ąle size or transmission time is critical.

• Lossless and lossy compression: it supports lossless compression, which is important

to applications such as medical imagery and image archival.

• Region of Interest (ROI) coding: it allows to encode some areas of an image with

higher quality.

• Spatial and signal-to-noise ratio (SNR) scalability: it supports progressive recovery of

images by resolution or quality.

• Good error resilience: bitstream robustness to the presence of bit errors has been

improved.

The JPEG2000 encoder follows a common sequence of operations present in a transform

coding scheme, which consists of transformation, quantization and entropy coding [Chai and

Bouzerdoum (2001)]. The JPEG2000 encoder works as follows. First, the original image

with unsigned data is average (DC) level shifted. Then the channel transformation can be

performed if the original image has multiple channels (e.g., RGB image). JPEG2000 per-

forms DWT transform that is superior to DCT since it localizes the frequency components

in space and does not require the partitioning of images.

Since its beginning, JPEG2000 has been supporting two kinds of biorthogonal transforms:

the reversible integer-to-integer CohenŰDaubechiesŰFeauveau (5/3) and the irreversible real-

to-real CohenŰDaubechiesŰFeauveau (9/7) [Hayat et al. (2009)]. The 2D transformation can
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be carried out separately by applying the 1D version horizontally and then vertically sequen-

tially. The wavelet transform decomposes the tile components into different decomposition

levels, each containing a certain number of subbands Ąlled with transform coefficients. Be-

fore the entropy coding phase, the quantization takes place to reduce the precision of the

components. Then, a bit-plane coding technique with 3 passes is applied to each code-

block, and the produced symbols are coded using an adaptive binary arithmetic coder [Chai

and Bouzerdoum (2001)]. The bit-plane encoding technique used by JPEG2000 is based

on the algorithm proposed in [D. Taubman (2000)] called Embedded Block-based Coding

with Optimized truncation (EBCOT). The EBCOT algorithm allows elevate compression

performance along with attractive features such as SNR scalability, resolution scalability

and random access capability.

2.3.3 Consultative committee for space data systems standard (CCSDS)
122.0-B-2

The consultative committee for space data systems standard (CCSDS) deĄnes a compres-

sion algorithm intended for use onboard satellites. In particular, a trade-off between per-

formance and complexity is established to allow high-speed hardware implementation [G.

Book (2015)]. Moreover, the CCSDS standard supports a memory-efficient implementa-

tion which does not require large intermediate frames for buffering. Thus, the algorithm is

appropriate for both frame-based image formats (two dimensions acquired simultaneously)

and push-broom input formats (i.e., images acquired one line at a time) [G. Book (2015)].

The compressor consists of two functional parts: a DWT module which performs the DWT

decomposition and a Bit-Plane Encoder (BPE) which encodes the transformed data.

The CCSDS standard supports grayscale images with integer-valued pixels with a max-

imum dynamic range of up to 28 bits [G. Book (2015)]. The recommended standard can

provide both lossy and lossless compression. The compressor relies on DWT, which sup-

ports integer and Ćoating point DWT. In order to mitigate the effects of data loss that may

arise from the communication channel, the wavelet-transformed data are partitioned into

different segments [G. Book (2015)]. Each segment is compressed independently thus any

eventual data loss is limited to the affected segment. The partitioning in different segments

also beneĄts from limiting the memory requirements for some applications. The CCSDS

standard differs from the JPEG2000 in many aspects [G. Book (2015)]:

• It speciĄcally targets use onboard satellites;

• It establishes a careful trade-off between compression performance and complexity;
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• It facilitates implementation in both hardware and software which beneĄts from lower

complexity;

• It supports a limited set of options, simplifying its application.

The CCSDS standard Ćoating-point DWT is the same as the one included in the JPEG2000.

However the recommended integer DWT is a 9/7 DWT for CCSDS and 5/3 DWT for

JPEG2000. Empirically, the 9/7 integer DWT resulted in better compression performance

when other parts of the algorithm are Ąxed [G. Book (2015)]. The number of levels of the

wavelet decomposition is Ąxed at three in the CCSDS standard, while it can be up to Ąve

in JPEG2000. In general, the JPEG2000 disposes of functionalities that are not available

under the CCSDS standard. However, beyond the additional computational complexity,

these features also come at the expense of higher overhead that may be signiĄcant, especially

for small images.

The JPEG2000 standard features error-resilient bit-stream and extra tools to improve

performance when transmitting compressed images over noisy channels. The CCSDS stan-

dard provides error containment at the segment level. Considering the JPEG2000, the

entropy coder calculates the resulting reduction in mean squared error (MSE) distortion for

each coding pass and code-block. An additional post-processing operation passes over the

compressed blocks to determine the extent to which each code-blockŠs bit stream should

be truncated to reach a target bit rate or quality metric. The JPEG2000Šs rate control

approach presents two signiĄcant drawbacks [G. Book (2015)]. First, the compressed data

value generated by the JPEG2000 rate control technique may not correspond precisely to

the desired target bit rate, unlike the CCSDS standard. The users may experience an incon-

sistent output rate. Note that this rate control procedure relies on an iterative algorithm

based on Lagrangian multipliers, which results in high implementation complexity [G. Book

(2015)].

The CNES also developed a proprietary compressor controlled by a target quality set-

point per block based on the CCSDS standard 122.0-B-2 [Thiebaut et al. (2016)]. The

CNES has been working on the characterization of compression errors to Ąnd local math-

ematical criteria to describe the strict and subjective image quality requirements imposed

by Ąnal users. Indeed, classical global measures such as peak signal-to-noise ratio (PSNR),

MSE, or Maximum Error, cannot represent a reliable indicator of the actual image qual-

ity on a local perspective because they are computed for the entire image [Thiebaut et al.

(2016)]. The CNES has studied mathematical relationships between image complexity and

the corresponding quality requirement (or targeted error) by considering other measurable
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characteristics in the image (such as its local variance and noise level). The encoding pro-

cedure of the CCSDS standard is modiĄed to leverage the local instrument noise level, an

ROI map, and the local variance in the wavelet domain to achieve the targeted quality.

The reached performances depend on the algorithmŠs parameters. The Ąrst parameter to

be set is the instrumental noise threshold which allows the algorithm to perform a sort of

low-complexity onboard hard-denoising. It prevents the algorithm from coding noise areas

and most of the noise in each block. The second parameter is the local quality target ex-

pressed as the compression MSE. A variance-dependent look-up table can deĄne this one in

the so-called quality-controlled compression mode or as a factor of the local instrumental

noise in the so-called coarse-lossless mode.

2.4 Satellite image denoising

2.4.1 Generalities on image denoising

Denoising is one of the oldest problems in image processing, for which numerous highly

efficient algorithms have been proposed. The denoising algorithms can be categorized as:

local if they rely on a limited context around the pixel to be denoised and non-local if they

parse the whole image to denoise every single pixel [Masse et al. (2018)]. Among them,

non-local Ąlters are particularly efficient because they exploit the similarities in textures or

structures that are often present in images but can be located in distant areas. The simplest

approach is Non-Local Means [Buades et al. (2005a)], which simply performs non-local

averages, that can be pixel- or patch-wise. A more elaborate extension named Non-Local

Bayes [Lebrun et al. (2013)] improves the technique by performing Bayesian estimation

through the estimation of covariance matrices of the patches. Another state-of-the-art te-

chnique is termed block-matching and three-dimensional Ąltering (BM3D) [Dabov et al.

(2007)], which includes a step of collaborative Ąltering in a transformed domain.

Although the above image denoising methods have demonstrated excellent performance,

they typically present two main disadvantages. First, these methods require multiple man-

ually chosen parameters, which allows for possible improvements. Second, it is difficult to

adapt these algorithms to non-standard noise models, such as the instrumental noise that

affects satellite images during acquisition. Therefore, the satellite image denoising needs to

suit particular noise characteristics.
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2.4.2 Satellite imaging denoising system

In a typical satellite imaging system [Delvit et al. (2019)], the acquired noisy image is

compressed onboard the satellite using a lossy compression algorithm such as the CCSDS

122.0-B-2 standard [B. Book (2017)]. The noisy compressed image is then transmitted

to an Earth station, decompressed on the ground, and denoised. Note that the Pleiades

satellite image denoising process is carried out on the ground segment due to its prohibitive

complexity [Delvit et al. (2019)]. The next-generation satellites may address this complexity

issue since they may dispose of sufficient onboard processing capacity to allow onboard

denoising before compression.

Note that onboard compression introduces compression artifacts, which modify the origi-

nal instrumental noise statistics, especially by the quantization. Denoising-after compression

then requires different approaches such as dequantization strategies, i.e. [Foi et al. (2007) and

Oberlin et al. (2019)]. After decompression, in the CNES satellite imaging system [Delvit

et al. (2019)], the modiĄed instrumental noise is restored by the instrument noise resti-

tution method. The instrument noise restitution method aims to increase the denoising

performance of the subsequent denoising algorithm that assumes Gaussian noise [Delvit et

al. (2019)]. The variance stabilizing transform VST [Anscombe (1948)] is then applied to

the image to transform the instrumental noise into an additive one. These operations in-

crease the performance of the subsequent customized NL-Bayes denoising algorithm [Masse

et al. (2018)], which strongly depends on the noise model. Finally, the inverse VST is

applied [Anscombe (1948)].

2.4.3 Instrumental noise model

The acquired images are affected by an instrumental noise with a pixel-dependent variance

deĄned, in the spatial domain, as [Masse et al. (2018)]:

σ2
n(x, y) = A2 + B · Inf (x, y) (2.12)

where Inf (x, y) is the noise-free image pixel at coordinates (x, y) and (A, B) are known

model parameters. A is the standard deviation of the additive part of the noise and B is

the Poisson noise variance component. It is worth mentioning that A and B parameters are

well known in satellite imagery as well as the MTF. First, the noisy acquired satellite image

is compressed onboard the satellite using the compression algorithm CCSDS 122.0-B-2 [B.

Book (2017)] or other satellite image compression algorithm such as [Thiebaut et al. (2016)].
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2.4.4 Instrument noise restitution

The general idea of the instrument noise restitution technique is to compare each quantized

transformed wavelet coefficient (can be at each level of wavelet decomposition or not) to

the local expected instrumental noise level computed in the transformed domain [Delvit

et al. (2019)]. If the coefficient is equivalent or greater than the local instrumental noise, it

is kept unchanged. If it is lower, it is replaced by the local instrumental noise level. The

pseudo-code of the instrumental noise restitution of transformed coefficients is the following:

Algorithm 1: Instrumental Noise Restitution

Input: wij wavelet coefficients at the decompression step of image with N ×M

pixels;

(A, B) noise model parameters;

k1 and k2: multiplication factors to adjust restitution;

rand: Gaussian white noise process with 0 mean value and unitary variance;

DCij : the DC coefficient corresponding to the coefficient wij (may be at each

wavelet decomposition level);

Result: wij after instrumental noise restitution

for (i, j) ∈ ¶1, N♢ × ¶1, M♢ do

σnoise =
√

A + B ·DCij ;

if ♣wij ♣ < k1 · σnoise then

wij = k2 · σnoise · rand;

else

wij is kept unchanged;

end

end

This instrumental noise restitution technique is widely applicable for transform-based

compression algorithms like DCT and DWT [Delvit et al. (2019)]. It can be performed

both during the decoding process or after the decoding process, the Ąrst being more efficient

because it avoids additional direct and inverse transform stages.

2.4.5 Variance stabilizing transform

Next, to allow the use of a model-based denoising method that assumes an additive noise, a

variance stabilizing transform (VST) [Makitalo and Foi (2012) and Anscombe (1948)] may

also be applied to the noisy image. Anscombe transform [Makitalo and Foi (2012) and
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Anscombe (1948)] is notably appropriate to the linear noise variance model expressed in

Equation 2.12. It is deĄned as:

f(Ir(x, y)) = 2

√

A2

B2
+

In(x, y)

B
+

3

8
, (2.13)

as In. If we take the values of parameters A and B of typical Earth observation missions,

the term 3/8 is largely negligible [Delvit et al. (2019)].

After applying the model-based denoising method, the VST transform must be reversed.

The easiest way is applying f−1(y), but the corresponding estimator is biased. Thus, the

asymptotically unbiased estimator is proposed in [Makitalo and Foi (2012)] and it is deĄned

as:

f−1(y) =
1

4
y2 +

1

4

√

3

2
y−1 − 11

8
y−2 +

5

8

√

3

2
y−3 − 1

8
. (2.14)

In the particular case of satellite images, the exact unbiased inverse of the generalized

Anscombe transform becomes [Mäkitalo and Foi, 2012]:

f−1(y) = B



y

2

2

− A2

B
. (2.15)

Once VST is applied on the image, a traditional model-based denoising method such as

BM3D [Dabov et al. (2007)], NL-Bayes [Lebrun et al. (2013)], and NL-Means [Buades et al.

(2005a)] can be properly used.

2.4.6 NL-Bayes algorithm

NL-Bayes algorithm is a denoising algorithm derived from the NL-Means method [Buades et

al. (2005b)]. The NL-Means method relies on a weighted average of similar patches in a given

neighborhood to denoise each patch. The NL-Bayes improves the denoising performance

by considering a covariance matrix to estimate the variability in a group of similar patches.

These similar patches are employed to build the 3D block of patches that is used in the

Bayesian estimation [Masse et al. (2018)]. In the CNES imaging system [Delvit et al. (2019)],

the NL-Bayes algorithm is chosen due to its simplicity concerning its adjustable parameters,

high denoising performance, and its superiority in terms of computational efficiency when

compared to other similar patch-based methods.

NL-Bayes is a two-step algorithm detailed in algorithms 2 and 3. Each step is composed
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Table 2.1: List of parameters for NL-Bayes and optimal values selected by experts in the
original implementation [Masse et al. (2018)].

Parameter Optimal value
Description

Step 1 Step 2 Step 1 Step 2

w1 w2 5 5 Patch size
k1 k2 27 25 Search area dimensions
N1 N2 74 30 Number of similar patches
β1 β2 1.0 1.6 Noise attenuation

τ2 2.5 Similarity threshold

of the same three parts (designated here as (a), (b), and (c)) [Masse et al. (2018)]. First in

(a), the N most similar patches are localized and gathered in a 3D block. Consecutively in

(b), the 1st- and 2nd-order statistics of the 3D block are computed, and Bayesian estimation

is performed for each of its patches. Lastly, in (c), aggregation and weighting are performed,

considering that the patches of the 3D blocks may overlap and lead to a variable number

of denoising estimations per pixel. The second step takes beneĄt of the Ąrst stepŠs result

to improve its search of similar blocks. This procedure allows to obtain improved denoising

since better mean vector, and covariance matrix estimations are performed with application

of Bayes theory [Masse et al. (2018)].

A total of nine parameters are used for NL-Bayes parametrization: four for the Ąrst step,

and Ąve for the second. These parameters are used to adjust the patch size (w1 and w2),

the search area dimensions (k1 and k2), the noise attenuation (β1 and β2), the number of

similar patches selected for composing a 3D block (N1 and N2), and the minimum threshold

to determine similar patches during the second stage (τ2). These parameters are expressed

in Table 2.1. [Masse et al. (2018)] introduced optimizations to the NL-Bayes algorithm

to signiĄcantly reduce the required computation time. The computation time arises from

both the number of overestimations, i.e., the number of operations necessary to estimate a

denoised pixel, and the spatial extent of the search area while maintaining its high denoising

performance. The authors thus identiĄed two techniques: reducing the overestimations with

a masking technique and modifying the search area window shape.
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Algorithm 2: NL-Bayes algorithm: 1st step.

Input: In (noisy image);

Input: Set of parameters: w1, k1, N1, β1;

Result: Ib denoised intermediate image

for all pixel i ∈ In do

p ← patch of size w1
2 centered on i;

SAp
n ← search area of size k1

2 centered on p;

for all patch q ∈ SAp
n do

Compute s(p, q) (the similarity measure between patch p and q);

end

Find the N1 most similar patches and gather them into a 3D block BPn
n;

Compute the statistics of BPn
n: µp and Σp;

for all patch q ∈ BPn
n do

q̂ = µp + (Σp − β1I) Σp
−1 (q − µp) (Bayes estimation);

Aggregate q̂ in Ib;

Increment weighting buffer;

Weight Ib with weighting buffer;

end

Weight Ib with weighting buffer;

end
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Algorithm 3: NL-Bayes algorithm: 2nd step.

Input: In (noisy image);

Input: Ib (denoised intermediate image from the 1st step);

Input: Set of parameters: w2, k2, N2, β2, τ2;

Result: Înf (denoised Ąnal image)

for all pixel i ∈ In do

pn ← patch of size w2
2 centered on i in In;

pb ← patch of size w2
2 centered on i in Ib;

SAp
b ← search area of size k1

2 centered on p;

for all patch q ∈ SAp
b do

Compute s(pb, q) (the similarity measure between patch pb and q);

end

Find at most N2 most similar patches satisfying s(pb, q) ≤ τ2and gather them

into a 3D block BPp
b;

Compute the statistics of BPp
b: µpb and Σp

b;

for all patch q ∈ BPp
n do

q̂ = µpb + Σp
b
(

Σp
b − β2I

−1 (

q − µpb


(Bayes estimation);

Aggregate q̂ in Înf ;

Increment weighting buffer;

end

Weight Înf with weighting buffer;

end

2.5 Deconvolution

Once the noise has been sufficiently removed, deconvolution takes place to reverse the MTF

effect. An important element in this part is the knowledge of the MTF. However, the

estimation of the MTF is often not straightforward since the image acquisition system

consists of many components, each with properties that may not be precisely characterized

or exhibit changing characteristics. When the MTF is well-known, deconvolution consists

in multiplying the image Fourier transform by a function close to MTF inverse. MTF is

close to zero at Nyquist, and 1/MTF could take very large values, which would mean an

oscillating deconvolution Ąlter inducing ringing artefacts around transients [Delvit et al.

(2019)]. Attention is necessary when performing deconvolution to denoised images. Such
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a Ąlter can also dramatically increase the remaining noise. Wiener-Tikhonov technique

provides an adequate deconvolution Ąlter [Tihonov (1963)], which can be deĄned as [Oh

and Choi (2014)]:

W (v, w) =
H∗(v, w)

♣H(v, w)♣2 + Sn(v,w)
Sf (v,w)

, (2.16)

where H∗(v, w) represents the conjugate complex of MTF and Sn(v, w)/Sf (v, w) stands

for the ratio of the power spectrum of the noise and the undistorted image. Generally,

Sn(v, w)/Sf (v, w) can be approximated by an inverse SNR [Oh and Choi (2014)].

2.6 Dataset of simulated images

The satellite images considered in this thesis are based on the Pléiades, which are high-

resolution optical satellites developed by the French Space Agency (CNES) [Latry et al.

(2012)]. Note that the image acquisition parameters are well known, e.g., the MTF response

and noise model parameters (A, B). Consequently, precise models can be used to simulate

realistic images. This becomes particularly interesting when the objective is to design and

test the different processes carried out in a satellite image processing system separately.

The Pléiades satellites acquire images in both panchromatic and multispectral (Blue,

Green, Red and Near Infra Red). We decided to consider only panchromatic images in the

scope of this thesis since they effectively encapsulates the shape, structure, and texture of

landscape objects in a single channel [Latry et al. (2012)]. The panchromatic acquisition is

based upon Time Delay Integration (TDI) detectors with a maximum of 20 integration stages

to satisfy the minimum SNR requirements. The multispectral mode depends on a classical

charge-coupled device (CCD) detector [Latry et al. (2012)]. In the frame of this thesis,

simulated images are used to beneĄt from an ideal reference and the intermediary images

resulting from the different processes carried out. Those simulated Pléiades images are

initially obtained from an airborne in a 10cm spatial resolution, but they are downsampled

to 70cm.

Our image dataset is composed of 128 pairs of noise-free (Inf ) and noisy (In) 12-bit

simulated Pléiades panchromatic images (of size 586 × 586) covering various landscapes,

provided by the CNES. The instrumental noise is simulated according to [Delvit et al.

(2019)]. For training and testing purposes, this dataset is splitted into a training dataset

(116 images) and a test dataset (16 images). As an illustration, we can see images that

compose the test dataset in Ągure 2.3. Note that in chapter 5, we also consider the same
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Table 2.2: Noise model parameters (A, B).

A B

1.423699 0.067198

landscapes but simulated for low average luminance to obtain a different scenario.

Figure 2.3: Simulated 12-bit Pléiades images.
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Neural networks (DNNs) are particularly relevant for this thesis. DNNs were fast used

for machine learning, then image processing: restoration, segmentation, denoising, and

compression. Now, DNNs represent the state-of-the-art for many image processing tasks.

Convolutional neural networks (CNNs) are particularly suited for image processing. This

chapter introduces DNNs, then focuses on compression and denoising.

3.1 Generalities on neural networks

Neural networks (NNs) are highly inspired by neuroscience. ArtiĄcial neural networks rep-

resent an attempt of imitating the biological neural network of a brain to solve numerous

problems. The research on NNs goes back to 1940s and an important milestone was the

introduction of perceptrons by [Rosenblatt (1958)], which represent the basic unit of NNs.

Individual neurons compose layers and sequences of layers form neural networks.

The perceptron was initially proposed to represent a mathematical model of the real

neuron, which receives electrical impulses from its dendrites. When this speciĄc neuron is

polarized enough, it will propagate a signal to the other adjacent neurons. The perceptron

takes an input, say x. Each input (xl) may not have the same signiĄcance to produce

a desired output. Hence the concept of weights (wl) is introduced, and they express the

relevance of each input to output. Thus, the weighted contributions of each input is summed

in a linear combination, and a bias term b is added as follows [Goodfellow et al. (2016)]:

y = σ

(

∑

l

xlwl + b



. (3.1)

The aggregated signal will be passed through a non-linear activation function (σ(·)) to

determine the stimulated neuronal response. The primary role of the activation function is

to transform the weighted sum of the inputs into an output value to be fed to the next hidden

layer or as output of the network. Thus, if the aggregated signal is strong enough according

to a given threshold, then the neuron is activated, and a high value is passed forward to the
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next layer or the network outputs. Otherwise, a low value or even no value is passed forward.

When we consider only the linear combination expressed in Equation 3.1, its capacity to

approximate complex models is rather limited. Thus, most real-world problems require non-

linear operators because of their extended approximation capacities [Hinton et al. (2012)].

In practice, non-linearity is introduced by activation functions. Generally, each output of a

layer has the same activation, but they may also consider different input formats, e.g., the

generalized divisive normalization which will be introduced later. The choice of activation

function may vary according to the application. We introduce three commonly adopted

activation functions, namely sigmoid, tanh, and ReLU, which are illustrated in Ągure 3.1.
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Figure 3.1: Three element-wise activation functions: sigmoid, tanh, and ReLU.

The sigmoid function has Ćoat output value that ranges between 0 and 1, according to:

σ(x) =
1

1 + e−x
. (3.2)

The sigmoid function can be employed at the output of a neural network for classiĄcation

purposes, e.g., constraining the output value between 0 and 1 and then converting it to a

discrete class label (0 or 1) by using a threshold such as 0.5.

Analogously to the sigmoid function, the hyperbolic tangent (tanh) constrains its output

between -1 and 1, as deĄned in:

σ(x) =
ex − e−x

ex + e−x
. (3.3)
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The rectiĄed linear unit (ReLU) is deĄned as:

σ(x) =







0 when x ≤ 0,

x when x > 0.
(3.4)

[Glorot et al. (2011)] show that ReLU is more promising and presents more practical advan-

tages for classiĄcation when compared to sigmoid and tanh. It is easier to implement and

compute since only a single comparison with 0 is required. While in the sigmoid and tanh,

the exponential function is harder to be computed. The ReLU also makes optimization

easier since it is close to being linear, with two linear functions, making the gradient large

and consistent. The SoftPlus is a smooth approximation of ReLU function and it is deĄned

as:

σ(x) = log(1 + ex). (3.5)

The NN can dispose of multiple neurons and layers. The layers are designated as dense or

fully connected layers when each neuron output is connected with all inputs. A multilayer

perceptron (MLP) stands for a NN composed of at least two dense layers. Figure 3.2 displays

an MLP consisting of four dense layers. The neuronsŠ outputs are represented by yli, where

l stands for the layer index, and i is the output index. The three layers between the input

and output layers are hidden layers since they are not accessible from outside the network.

The dimensionality of these hidden layers deĄnes the networkŠs width. The number of layers

deĄnes the network depth. Note that the name Şdeep learningŤ arise from this terminology.

When compared to the network with a single dense layer, MLP presents a stronger learning

capability [LeCun et al. (2015)]. In practice, MLPs with several hidden layers are more

Ćexible and easier to train than a single dense layer [Goodfellow et al. (2016)].

Input Hidden layer 1 Hidden layer 2 Hidden layer 3

Output

Figure 3.2: Example of an MLP with three hidden layers and one output layer.
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3.2 Main neural architectures

3.2.1 Feedforward neural networks (FNNs) x recurrent neural networks
(RNNs)

In the so-called feedforward neural networks (FNNs), information propagates in only one

direction from the input nodes, through the hidden nodes (if any) towards the output

nodes [Goodfellow et al. (2016)]. There are no feedback connections in which outputs of the

model are provided back into itself. The network is thus associated with a directed acyclic

graph.

Recurrent neural networks (RNNs) [Rumelhart et al. (1988)] are a family of neural net-

works designed for processing sequential data. Note that when dealing with sequential data,

there is a temporal interaction among elements within the sequence. For example, a human

reader can easily infer the next content of a small text fragment by only reading its begin-

ning. RNNs should be able to effectively assimilate information contained in the sequential

data and take into account the inĆuence of old samples on the most recent ones. To attain

this, they dispose of computational nodes featuring cycles that represent the inĆuence of the

past value of a variable on its present value. Therefore, each output member is produced as

a function of the previous output members. Note that unfolding this graph results in sharing

parameters across the network structure. When unfolding, the computational graph is not

acyclic anymore. For example, we can consider the classical form of a dynamical system as

follows [Goodfellow et al. (2016)]:

s(t) = f(s(t−1)), (3.6)

where s(t) denotes the state of the system. Equation (3.6) expresses a recurrent mapping

since the deĄnition of s at time t refers back to the same deĄnition at time t − 1. For a

Ąnite number of time observations (τt), the graph can be unfolded by applying the deĄni-

tion τt − 1 times. For example, the unfolded computation graph for τt = 3 is illustrated in

Ągure 3.3. RNNs are particularly well-suited to applications involving time-series data such

as: handwriting recognition, speech recognition, image captioning, and language transla-

tion [Goodfellow et al. (2016)].
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unfold
Cell Cell Cell Cell

shared parameters

Figure 3.3: Example of an unfolded computation graph.

3.2.2 Convolutional neural networks (CNNs)

Convolutional neural networks (CNNs) are a class of ANNs most commonly applied to

analyze visual imagery [Bengio (2009)]. They emerged as a need for processing grid-like

topology and local features, such as those present in images, for instance. As a natural so-

lution, they employ a mathematical operation called convolution in place of a general linear

operation. The CNNs are known for being shift-invariant, based on the shared-weight archi-

tecture of the convolution kernels or Ąlters. In CNNs, weight-sharing occurs since each Ąlter

is replicated across the entire visual Ąeld. These replicated units share the same parameter-

ization (weight vector and bias), and they together operate to form a feature map. In other

words, the convolutional Ąlters slide along input features and provide translation-equivariant

feature maps. Consequently, CNNs support the full-resolution processing of images, while

conventional neural networks usually process partitioned blocks. Notably, CNNs have been

successful in many computer vision applications [Bengio (2009)] such as classiĄcation [J.

Hu et al. (2018)], object detection [Redmon et al. (2016)] and segmentation [Kaiser et al.

(2017)].

SpeciĄcally, note that the basic unit composing the CNNs is the convolutional layer. The

grid-like topology input data is arranged in 3 dimensions, and each channel consists of a

single 2-dimensional slice of the depth dimension. ui(k, l) represents the ith input channel

at spatial location (k, l). Each stage then begins with an affine convolution:

vi(k, l) =
∑

j

(hi,j ∗ uj) (k, l) + ci, (3.7)

where ∗ represents 2D convolution, hi denotes what is called the ith Ąlter, j represent the

input depth location, and ci represents the bias term. Figure 3.4 presents an illustration of

the 2D convolution operation. In this example, a single Ąlter with kernel size 3 × 3 × 3 is

applied on an image 5× 5× 3. The convolution is computed across the different channels.
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The values obtained from each convolution stage are then summed up to generate the top-

left value of the output. Note that the bias term is not present in this illustration. The stride

(S) deĄnes the distance between spatial locations where the convolution kernel is applied

(here S = 1). Normally a larger stride is chosen (S > 1), resulting in fewer calculations and

less memory usage.

Note that to ensure that boundary values are properly considered, the edges are usually

padded with zeros (zero-padding), by reĆecting the edges of the image (mirror-padding) or

not Ąlled, e.g., ŠvalidŠ as in the Ągure 3.4. The padding size is denoted as P . The output

dimension (Nout) can be computed by:

Nout =



Nin − κ + 2P

S
+ 1

⌋

, (3.8)

where Nin represents the 2D input dimension (Nx or Ny), κ stands for the kernel size of

the Ąlter and ⌊·⌋ denotes the Ćoor operation. The outputŠs depth (number of channels)

is deĄned by the number of Ąlters. In Ągure 3.4, according to Equation (3.8), the output

height/width is (5− 3 + 1) = 3 and the depth is equal to 1 since there is one Ąlter.

This operation is usually followed by downsampling:

wi(k, l) = vi (s× k, s× l) , (3.9)

where s represents the downsampling factor. Downsampling is motivated for reducing the

spatial resolution of the feature maps, eliminate redundancy, and encouraging the network

to extract the most signiĄcant features. A pooling layer performs downsampling. Pooling

assumes that, for images, neighboring pixels are similar. The average pooling layer creates a

downsampled (pooled) feature by dividing the input into rectangular regions and computing

the average values of each of them. This operation adds a small amount of translation

invariance and extracts smooth features. Whereas max-pooling mainly extracts features like

edges by selecting the maximum pixel value of each region, which improves shift-invariance

and makes it suitable for classiĄcation. Average pooling encourages the network to identify

the complete extent of a speciĄc region, while max pooling restricts that only to the most

prominent features and may discard some details. Downsampling can also be performed

during the convolutional operation when selecting S adequately but note that it can be

combined with average or max pooling. Then each stage can conclude with an activation

function.
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Figure 3.4: Illustration of the convolutional operation.

When CNNs aim to generate images, they are often built up from downsampled feature

maps, low resolution, and high-level descriptions. In order to do this, we need some way to

go from a lower resolution image to a higher one. We generally do this with the transposed

convolution operation. In this case, this operation starts with upsampling:

v̂i(k, l) =







ŵi (k/ŝ, l/ŝ) if k/ŝ and l/ŝ are integers,

0 otherwise,
(3.10)

where ŝ is the upsampling factor. Then, this operation is followed by a convolution:

ûi(k, l) =
∑

j

(

ĥi,j ∗ v̂j


(k, l) + ĉi. (3.11)

Note that the transposed convolutional layer does exactly what a standard convolutional

layer does but on a upsampled input feature map (v̂i(k, l)). Analogously to the convolutional

case, each stage can conclude with a non-linear activation function which is task dependent.
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3.2.3 Autoencoders (AE)

Autoencoders (AEs) are motivated from the need to learn descriptive representation in

lower-dimension for input data. Along with the reduction side, reconstruction is also desired.

AEs donŚt aim not only learn latent representations of seen input features, but to generalize

in a way that allows for an interpretation of unseen data and data features with slight

variations [Bårli et al. (2021)]. AEs have been initially designed for data dimension reduction

similar to, e.g., Principal Component Analysis [Bengio (2009)]. An encoder (E) is applied

to the input data x to produce a learned representation y = E(x) at the bottleneck. Then,

a decoder (D) is applied to reconstruct the input data from y: x̂ = D(y). The architecture

of a fully-connected autoencoder is illustrated in Ągure 3.5. Note that convolutional AEs

represent a motivation for transposed convolutions. Autoencoders may also be employed to

output reconstructed images from low-resolution or distorted images. In this case, they are

trained with a pair degraded input/clean reference.

Input 

Bottleneck 

Output 

Encoder Decoder

Figure 3.5: Illustration of a fully-connected autoencoder.

Sometimes, the input images may be noisy. In this case, when using noise-free images

as reference, the autoencoder can be trained to denoise them, produce the hidden code

representation, and then reconstruct the noise-free images [Vincent et al. (2010)]. Thus,

it is designated as denoising autoencoder (DA). It can be seen as an extension of the ba-

sic autoencoders architecture suitable for image reconstruction. Note that DAs were not

originally designed to automatically denoise an image. Their training is intended to stimu-

late their hidden layers to learn more robust Ąlters. Thus, one strategy consists of adding

additive random noise to the autoencoder inputs and then encouraging it to recover the

original noise-free image. It reduces the risk of overĄtting in the autoencoder [Vincent et
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al. (2008)] and prevents it from learning a simple identity function [Vincent et al. (2010)].

Recent theoretical links between autoencoders and latent variable models have also placed

autoencoders to the lead of generative modeling [Bengio (2009)].

3.2.4 Generative models

The variational autoencoder (VAE) consists of a particular generative model for unsuper-

vised representation learning [Kingma and Welling (2013)]. A VAE provides a probabilistic

manner for describing an observation in the latent space. Normally, a VAE consists of a

standard autoencoder component which encodes the input data (x) into a latent represen-

tation (y) by minimizing the reconstruction error and forcing the posterior of the latent

representation to match a prior distribution [Kingma and Welling (2013)]. For VAEs, the

encoder is sometimes referred to as the inference network whereas the decoder is sometimes

referred to as the generative network. In this case, the encoder also returns a distribution

over the latent space. Note that a regularisation term is also added over that returned

distribution in the loss function.

Prior
distribution

DecoderEncoder

Dataset

Figure 3.6: Illustration of the stochastic mappings learned by the VAE [Kingma and Welling
(2019)].
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3.3 Training neural networks

To train the weights or parameters of a NN, a loss function is usually minimized via stochas-

tic gradient descent (SGD). When considering supervised training, we dispose of a training

set of input data ¶xi♢, where i = 1, ..., N designate individual samples with a corresponding

set of output data ¶yi♢. The goal is to learn the parameter vector θ so that the network

mapping function fθ(x) ⋍ y. θ gathers the learnable parameters such as the weights or

the Ąlter coefficients in the case of convolutional networks and possibly parameters of the

activation functions. Therefore, the training is cast as an optimization problem.

3.3.1 Loss function and gradient descent

The loss function J(x, θ) measures the error, and the optimization algorithm minimizes it

between the training labels and the neural network mapping with respect to θ. A simple and

standard loss function is the mean square error (MSE), which calculates the mean squared

difference between fθ(x) and y. The loss function generally follows:

J(x, θ) =
1

N

N
∑

i=1

D(fθ(xi), yi). (3.12)

where D(.) designates a divergence measure. For the minimization of the loss function, a

gradient descent method is adopted. This requires the computation of the loss function gra-

dient with respect to θ. The gradient of the loss function with respect to θ is computed with

the backpropagation algorithm [Bengio (2009)]. The bakcpropagation algorithm computes

the gradient of the loss function for a single weight by the chain rule. It efficiently computes

one layer at a time, unlike a native direct computation. The back propagation algorithm is

later presented in this section. method iteratively updates the set of learnable parameters

with the aid of the gradient. Note that in practice, the gradient cannot be computed. The

gradient is thus estimated on mini-batches. In a simple deĄnition, the gradient descendent

method can be expressed as:

θ ← θ − ρ · ∂J(x, θ)

∂θ
, (3.13)

where ρ represents the learning rate [Bengio (2009)]. The gradient descent method does not

necessarily reach the global minimum. Otherwise, it can reach a local minimum or it can

get stucked in a saddle point in a worse case scenario. Moreover, a different initialization

of the set of learnable parameters can result in a different solution. Consequently, the
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initialization of θ is particularly important. [Glorot and Bengio (2010)] showed that a simple

random initialization of the parameters is not suited for deep neural networks. Instead, they

introduce a new heuristic for initializing θ. This heuristic takes into account the size of the

previous layer (i.e., number of neurons arranged in the convolutional layers) ni−1 and the

size ni of the current layer i. The weights of layer i are thus initialized as follows [Glorot

and Bengio (2010)]:

θi ∼ U [−
√

6√
ni−1 + ni

,

√
6√

ni−1 + ni
], (3.14)

where U [−a, a] represents a uniform distribution between (−a, a) and θi = w(i) represents

the learnable parameters at layer i. The motivation of the weight initialisation is to avoid

layer outputs from exploding or vanishing during the forward pass through a NN.

Every weight in θ is deĄned as w
(i)
j,k where j describes the jth element composing the

current layer (i) and k deĄnes the connection unit in the previous layer. Figure 3.7 illustrates

the unit j at the layer i, which corresponds to the y
(i)
j and its respective K input connections

showed in Ągure 3.2.

Figure 3.7: Example of one unit y
(i)
j corresponding to the layer i.

Next, we introduce the backpropagation algorithm [Rumelhart et al. (1986) and LeCun

et al. (2015)] which consists of an efficient method to compute the gradient with respect to

the weights. To compute the gradient for each weight (w
(i)
j,k), the backpropagation algorithm

disposes of the following recursive equation:

∂J(θ)

∂w
(i)
j,k

= δ
(i)
j · y

(i)
j , (3.15)
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where δ
(i)
j corresponds the partial derivative, y

(i)
j is a single unit with respect to the layer

i. σi designates the activation function of layer i and z
(i)
j =

∑K
l=1 w

(i)
j,l · y

(i−1)
l denotes the

activation value from unit j in layer i. Thus, y
(i)
j = σi(z

(i)
j ). To compute the partial

derivative of the loss with respect to the layer output δ
(i)
j · y

(i)
j , we apply the chain rule as

follows:

δ
(i)
j =











∂J(θ)

∂y
(i)
j

· σ′

i(z
(i)
j ) if i is the network output.

∑Q
l=1

(

δ
(i+1)
j · w(i+1)

l,j



· σ′

i(z
(i)
l ) if i is a hidden layer.

(3.16)

where Q deĄnes the number of units in the layer i+1. Before initialize the backpropagation

process, the forward propagation must be computed to produce the activation values z
(i)
j

and consecutively the output of y
(i)
j . These values are required for the backpropagation

algorithm. Once all gradients are computed, the gradient descendent step can be applied,

with the weights being individually updated as follows:

w
(i)
j,k ← w

(i)
j,k − ρ · ∂J(x, θ)

∂w
(i)
j,k

. (3.17)

Thus, the next iteration can be started. This process is repeated until the completion of a

predeĄned maximal number of iterations, or when the loss value (J(x, θ)) reaches a value

lower than a predeĄned threshold.

In DNNs, the gradients are approximated using a small subset of the dataset called mini-

batch instead of using the whole dataset per gradient computation. Optimization algorithms

form the basis on which DNNs can learn through observing examples. There are several ways

learning is implemented with different kinds of optimization algorithms, such as Nesterov

Momentum, Adagrad, RMSProp, and Adam [Zaheer and Shaziya (2019)]. Adam is the most

popular algorithm in deep learning due to its high efficiency in optimizing DNNs. Adam

is an algorithm for Ąrst-order gradient-based optimization of stochastic objective functions

based on adaptive estimates of lower-order moments. This method is well adopted since it

is straightforward to implement, is computationally efficient, has few memory requirements,

and is well suited for problems that are large in terms of data and/or parameters. We

adopted the Adam algorithm in the experiments conducted in this thesis, and we wonŠt

discuss the different optimization algorithms since it is not the focus of this thesis.
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3.3.2 Hyperparameters and model selection

Hyperparameters are the variables that determine the NN structure (e.g., number of hidden

units, number of layers, activation functions, etc.) and the variables which determine how

the network is trained (e.g., training algorithm, learning rate, etc.). Hyperparameters are

usually set before training. The NN performance can be signiĄcantly changed when ad-

justing them, and more precisely, the model capacity. A higher capacity model is expected

to model more complex relationships between more variables than a model with a lower

capacity. When considering neural networks, these parameters can be the learning rate (ρ)

and the chosen architecture (e.g., the number of layers and the number of Ąlters on each

layer). Usually, these parameters are once Ąxed and not learned during the training. When

considering a particular problem, the methodology adopted is to test different conĄgurations

of hyperparameters and prefer the one which presents the lowest generalization error. Note

that this adjustment usually demands extensive empirical evaluations.

As we will also Ąnd later in this work, the neural network method architecture often

depends on the desired application. Consequently, it is hard to Ąnd theoretical explanations

for the proposed methods.

3.4 Compression with neural networks

ArtiĄcial NNs appeared as powerful data-driven tools to solve problems previously addressed

with model-based methods in recent years. In particular, image processing has been widely

impacted by convolutional neural networks (CNNs) such as segmentation, classiĄcation,

and denoising. With the fast development of artiĄcial NNs, end-to-end CNNs have been

successfully employed for lossy image compression [Ballé et al. (2017), Theis et al. (2017),

Rippel and Bourdev (2017), and Ballé et al. (2018)]. These proposals explore the great

potential of NN to form learned image compression frameworks. However, the development

of these learned methods presents signiĄcant differences compared to traditional compression

methods. In the case of model-based compression methods, performance improvements are

obtained by reĄnement of each element of the compression framework, e.g., in the Wavelet

decomposition scheme and quantization strategy presented in 2.3.1. However, considerable

human efforts are usually necessary. In some cases, even if the performance of an individual

module is improved, the performance of the combined modules may not result in signiĄcant

improvements. Thus, further improving the model-based methods is a difficult task [Y. Hu

et al. (2021)].
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When considering end-to-end learned compression, all the modules are trained together

to reinforce the Ąnal objective. Two aspects are usually considered when designing such

methods. First, more bit-rate can be saved in the entropy coder if the learned transform

leads to less redundant coefficients [Y. Hu et al. (2021)]. Second, if the probability distri-

bution of the learned coefficients can be precisely estimated, they can be more efficiently

encoded by the entropy coder. Thus, such architectures jointly learn a non-linear transform

and its underlying statistical distribution to optimize a rate-distortion trade-off. They are

able to dramatically outperform traditional compression schemes regarding this trade-off.

However, the performance improvements usually come at the cost of high computational

complexity.

This section proposes an overview of the end-to-end learned compression composing the

state-of-the-art. The different components and design options are presented, along with the

challenges and limitations they encounter.

3.4.1 Generalities

Many different NN architectures have been proposed to image compression. They can be

divided into two main categories: feedforward frameworks and multistage recurrent frame-

works, described in the following paragraphs.

Feedforward frameworks In the literature, higher rate-distortion performance is at-

tributed to the feedforward frameworks [Y. Hu et al. (2021)]. A typical neural network

image compression framework is built upon a convolutional autoencoder [Ballé et al. (2017),

Theis et al. (2017), and Ballé et al. (2018)]. The autoencoder transforms an image x into

a learned representation y. With the dimensional reduction and entropy constraints, the

learned representation consists of less-redundant data. An entropy coder is used to generate

a bitstream from the learned representation with the aid of an entropy model.

Feedforward frameworks have mainly been adopted for end-to-end learned image com-

pression. [Ballé et al. (2017)] proposed the initial one. Note that a signiĄcant improvement

in learned compression was the proposal of the generalized divisive normalization (GDN)

(resp. inverse generalized divisive normalization (IGDN)) activation functions in [Ballé et

al. (2016)], which have proven efficient for image compression.

Multistage recurrent frameworks In the multistage recurrent frameworks, the archi-

tecture design takes into account the fact that the image encoding/decoding will be pro-
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gressive [Toderici et al. (2016) and Toderici et al. (2017)]. They perform successive passes

to encode an original image and the resulting residual representations.

The compression networks [Toderici et al. (2016) and Toderici et al. (2017)] are composed

of an encoding network Ga, a binarizer B and a decoding network Gs, where Gs and Ga

contain recurrent network components, such as convolutional LSTMs [Xingjian et al. (2015)].

The decoder network creates an estimate of the original input image based on the received

binary code. This procedure is repeated with the residual error. The network weights are

shared between iterations, and the states in the recurrent components are propagated to

the next pass. In each pass, B produces a bitstream bt ∈ ¶−1,1♢m, where m represents the

number of bits produced after every pass, following [Toderici et al. (2016)]. The network

generates a total of m · k bits after k passes, where m is a linear function of input size.

For example, when considering image patches of 32 × 32, m = 128. The recurrent units

used to create the encoder and decoder include two convolutional kernels: the Şhidden

kernelŤ and the Şhidden convolutionŤ. The larger hidden kernels consistently resulted in

improved compression curves [Toderici et al. (2017)]. In each stage, the composing recurrent

layers take the current produced residual and the state from the previous stage as input,

as previously explained in 3.2.1. Naturally, the variable rate is achieved when controlling

the number of passes. More passes result in higher quality, however, at the cost of higher

complexity.

Note that the recurrent-based frameworks require backpropagation through time (BPTT),

rendering training more difficult besides the more complicated residual formulation that

results in more complex frameworks [Y. Hu et al. (2021)]. In addition, the recurrent-based

frameworks usually demand more time to encode and decode an image since the network runs

multiple times. Regarding these considerations, this work focus on feedforward frameworks

and their characteristics.
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3.4.2 Analysis and synthesis transforms
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Figure 3.8: Architecture of the autoencoder [Ballé et al. (2017)].

In this thesis, we consider the reference architecture proposed in [Ballé et al. (2017)], dis-

played in Ągure 3.8. This architecture performs analysis and synthesis transforms using

multiple convolutional layers that can include the generalized divisive normalization (GDN)

(resp. inverse generalized divisive normalization (IGDN)) activation functions. In the anal-

ysis transform, the encoder reduces the spatial dimensions with the aid of stride convolu-

tions [Ballé et al. (2017)]. Respectively, in the synthesis transform, the decoder increases

the spatial dimensions using transposed convolutions. Based on [Ballé et al. (2017)], the au-

thors proposed improvements in the synthesis and analysis transforms [Ballé et al. (2018)].

In [Theis et al. (2017) and Mentzer et al. (2018)], the authors adopted multiple residual

blocks in both encoder and decoder, which allowed to increase the depth of the network.

Moreover, some works adopt multiscale structure [Rippel and Bourdev (2017) and Cai et al.

(2018)].

A deeper network is frequently associated with performance improvements in computer

vision tasks, e.g., image recognition [He et al. (2016) and Szegedy et al. (2015)]. However,

extending the architecture complexity does not result in signiĄcant performance improve-

ments for learned image compression [Y. Hu et al. (2021)]. Although deeper architectures

are more effective for image modeling, they are harder to train than their shallower coun-

terparts devoted to compression [Y. Hu et al. (2021)].

3.4.2.1 Generalized divisive normalizations (GDNs)

In the context of transform coding, most compression methods are based on orthogonal

linear transforms, chosen to reduce correlations in the data and thus to ease entropy cod-

ing. On the contrary, the joint statistics of linear Ąlter outputs commonly exhibit strong
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dependencies due to the convolutional operation. According to [Sinz and Bethge (2013),

Lyu (2010), and Schwartz and Simoncelli (2001)], these redundancies may be signiĄcantly

reduced through the use of joint local nonlinear gain control, inspired by models of visual

neurons [Heeger (1992) and Carandini and Heeger (2012)]. Cascaded variants of before-

mentioned joint local nonlinear gain control modules have been used to obtain multiple

stages of visual transformation, resembling a decomposition process [Simoncelli and Heeger

(1998) and Mante et al. (2008)]. Some earlier results suggested that incorporating local

normalization in linear block transform coding techniques can improve coding compression

performance [(Malo et al., 2005; Malo and Laparra, 2010)]. However, the normalization

parameters were not optimized for compression.

A GDN (resp. IGDN) transform with optimized parameters was Ąrst proposed in [Ballé

et al. (2017)]. Contrarily to usual pointwise parameter-free activation functions (e.g., ReLU,

sigmoid), GDN and IGDN are parametric functions that implement an adaptive normal-

ization. In a given layer, the normalization operates through the different channels in-

dependently on each spatial location of the Ąlter outputs. The GDN (resp. IGDN) has

demonstrated an impressive capacity for modeling neural responses suitably to learned im-

age compression. Since then, multiple end-to-end image frameworks have been proposed

using GDN/IGDN [Ballé et al. (2017), Theis et al. (2017), and Ballé et al. (2018)]. If vi(k, l)

denotes the spatial location indexed by (k, l) of the output of the ith Ąlter, the GDN output

is derived as follows:

GDN(vi(k, l)) =
vi(k, l)

(βi +
∑N
j=1 γijv2

j (k, l))1/2
for i = 1, ..., N, (3.18)

where N deĄnes the number of channels. The IGDN is an approximate inverse of the

GDN and is used in the decoder part, derived as follows:

IGDN(v̂i(k, l)) = v̂i(k, l)



β′
i +

N
∑

j=1

γ′
ij v̂

2
j (k, l)





1/2

for i = 1, ..., N. (3.19)

According to Equation (3.18) (resp. Equation (3.19)), the GDN (resp. IGDN) for channel

i is deĄned by N + 1 parameters denoted by βi and γij for j = 1, ..., N (resp. β′
i and γ′

ij for

j = 1, ..., N). Finally N(N + 1) parameters are required to deĄne the GDN/IGDN in each

layer. Note that the learning and the storage of these parameters are required. However,

GDN has been shown to reduce statistical dependencies [Ballé (2018) and Lyu (2010)] and

thus it appears particularly appropriate for transform coding. According to [Ballé (2018)],
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the GDN better estimates the optimal transform than conventional activation functions for

a wide range of rate-distortion trade-offs. GDN and IGDN, while intrinsically more complex

than usual activation functions, are prone to boost the compression performance especially

in case of a low number of layers, thus affording a lower global complexity for the network.

3.4.3 Loss function: rate distortion trade-off

The compression framework usually consists of an encoder and decoder pair (resp. analysis

transform and synthesis transform). Given an input image x with distribution px(x), the

encoder with an analysis transform (Ga), and a quantization function (Q), a discrete code

ŷ is generated as:

ŷ = Q (Ga(x)) . (3.20)

To obtain the reconstructed image, the corresponding decoder Gs reconstructs the image x̂

from the discrete code ŷ according to:

x̂ = Gs(ŷ). (3.21)

Two different metrics, i.e., distortion Dr and bit-rate Rt, arise to the rate-distortion opti-

mization λDr + Rt, which represents the main problem in lossy image compression. The

distortion metric Dr measures how dissimilar the reconstructed image is from the original

image, according to:

Dr = Ex∽px(x) [D(x, x̂)] , (3.22)

where ∽ means distributed according to, and D(.) represents the distortion function. In

practice, we consider the empirical mean squared error (MSE) as follows:

Dr =
1

N

N
∑

i=1

♣♣x− x̂♣♣22 . (3.23)

Rt corresponds to the number of bits used to encode ŷ, which is bounded according to

the entropy of ŷ which can be estimated by computing the continuous differential entropy

model of ỹ (pỹ(ỹ)), as it will be further explained in 3.4.3.1 and 3.4.3.3. The relaxed

formulation of the differential entropy allows to optimize entropy within differential-based

learning frameworks. The overall compression problem can be viewed as an optimization of

the weighted sum of Dr and Rt. This problem can be addressed by minimizing the following
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optimization as follows:

θ̂Ga , θ̂Gs , θ̂py = arg min
θGa ,θGs ,θpy

λD(x, x̂) + R(ŷ), (3.24)

where θGa , θGs , θpy denotes the set of parameters for the analysis transform, synthesis trans-

form and entropy model, respectively. The sets of parameters θ̂Ga and θ̂Gs consist of the

weights of the convolutional Ąlters and the own parameters of the GDNs and IGDNs. The

entropy model, as it will be detailed in in 3.4.3.4, has its own set of parameters deĄned by

θpy . Transforms learned for different λ values are necessary to cover a wide rate-distortion

range [Ballé et al. (2017) and Ballé et al. (2018)]. This may limit the adoption of such

learned frameworks for variable-rate applications. Note that, usually, the rate-distortion

performances of image compression are tuned by varying the quantization step size. In [Du-

mas et al. (2018)], the authors showed that comparable performances can be obtained with

a unique learned transform. The different rate-distortion points are then reached by varying

the quantization step size at test time.

In a multistage recurrent frameworks, during training, a L1 loss is calculated on the

weighted residuals generated at each iteration as follows:

θ̂Ga , θ̂Gs = arg min
ϕGa ,ϕGs

β
∑

t

∣

∣

∣r̂(t)
∣

∣

∣, (3.25)

where β stands for the weighting parameter.

3.4.3.1 Differentiable quantization

In the speciĄc context of learned compression, a signiĄcant obstacle in training such autoen-

coder-based frameworks is that the derivative of the quantization function is zero everywhere

except at integers, where it is undeĄned. Thus, its use is hampered in differential-based

learning frameworks. Consequently, a quantization relaxation need to be adopted in the

backward pass to overcome this limitation (i.e., when backpropagating the error gradient).

One of the proposed methods in this sense includes approximating the quantization using

additive uniform noise, η ∼ U (−0.5, + 0.5) and backpropagate it [Ballé et al. (2017)]. In-

dependent uniform noise is often used as a quantization error model since it approximates

the quantization error in terms of its marginal moments [Gray and Neuhoff (1998)]. Conse-

quently, the same approximation can be extended to the distortion measure. For simplicity

of notation, letŠs assume a scalar y ∈ y. Thus, the resulting learned representation becomes

ỹ = y + η. Therefore, assuming that py(y) represents the PDF of y, the PDF of ỹ can be
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written as:

pỹ(ỹ) = (py ∗ U (−0.5, + 0.5))(ỹ)

= Fy(ỹ + 0.5)− FY (ỹ − 0.5)
(3.26)

where Fy(y) :=
∫ x

−∞ py(y) dy is deĄned as the cumulative distribution function (CDF) of

py(y). Moreover, the density function of the relaxed quantized representation (ỹ) is a

continuous relaxation of the probability mass function (PMF) of ŷ (pŷ(ŷ)) which implies

that the differential entropy of ỹ (pỹ(ỹ)) can be used as an approximation of the entropy of

ŷ in a gradient optimization framework. Bit-rate Rt can thus be estimated using differential

entropy rather than discrete entropy during the training phase. In [Theis et al. (2017)],

the authors proposed to replace the derivative of the quantization function with a smooth

approximation. In both cases, the quantization is kept as it is in the forward pass (i.e.,

when processing input data).

3.4.3.2 Distortion

Considering that the goal is to output an image with better visual quality as perceived by a

human observer, a chosen distortion measure D may account for image quality. The mean

square error (MSE) 3.23 is the most adopted distortion measure across various Ąelds, from

regression to signal and image processing. It reunites desirable properties for optimization

problems since it is convex and differentiable [Zhao et al. (2016)]. Note that other attractive

property arises because MSE provides the maximum likelihood estimate when dealing with

i.i.d. Gaussian noise. However, despite the widespread adoption of MSE, it is widely

accepted that the MSE, and consequently the Peak Signal-to-Noise Ratio (PSNR), do not

correlate well with image quality as perceived by a human viewer. PSNR (in dB) is deĄned

as:

PSNR = 20 · log10



MAXx√
MSE



= 20 · log10 (MAXx)− 10 · log10 (MSE) ,

(3.27)

where MAXx is the maximum possible pixel value of the image. For example, when the

pixels are represented using 12 bits per sample, this is MAXx = 4095. It turns out that MSE

is not capable of capturing the elaborate characteristics of the human visual system (HVS).

On the other hand, there is a vast literature of error measures that attempt to address

the limitations of the simple MSE distortion. A popular perceptual distortion metric is
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the structural similarity index (SSIM) [(Wang et al., 2004)]. SSIM evaluates image quality

taking into account that the HVS is sensitive to changes in local structure.

To express SSIM formally [(Wang et al., 2004)], consider a pair of images ¶x, xr♢ of sizes

Nx ×Ny. We aim to measure three aspects of similarities according to human perception:

luminance (βl(x, xr)), contrast (c(x, xr)), and structure (s(x, xr)). These measures are

quantiĄed according to the summary of relative measures including mean (µ), variance (σ2),

and co-variance measured under sliding windows of size ξ × ξ, with step size of 1 on both

horizontal and vertical directions. For each sliding window, each perception subfunction for

images x and xr is computed as follows:

l(x, xr) =
2µxµxr

+ C1

µ2
x + µ2

xr
+ C1

, (3.28)

c(x, xr) =
2σxσxr

+ C2

σ2
x + σ2

xr
+ C2

, (3.29)

s(x, xr) =
2σxxr

+ C3

σxσxr
+ C3

, (3.30)

where ¶C1, C2, C3♢ are constants less than 1 to avoid potential zero division issue. Normally,

C3 = 1
2C2 [Y. Lu (2019)]. To enforce independence among those measures, the SSIM

measured is deĄned as the product of those metrics as follows:

SSIM(x, xr; ξ) = l(x, xr)α · c(x, xr)β · s(x, xr)γ , (3.31)

where ¶α, β, γ♢ is a set of exponential weights [Y. Lu (2019)]. SSIM is extended in [Wang

et al. (2003)] by observing the scale at which local structure should be analyzed as a function

of factors such as image-to-observer distance. [Wang et al. (2003)] thus proposes MS-SSIM

as a multi-scale version of SSIM that weighs SSIM computed at different scales according to

the sensitivity of the HVS. Taking two images ¶x, xr♢ as the input, the system iteratively

applies a low-pass Ąlter and downsamples the Ąltered image by a factor of 2. The original

image is indexed as Scale 1, and the highest scale as Scale M , which is obtained after M −1

iterations. At the j-th scale, the contrast 3.29 and the structure 3.30 are computed and

denoted as cj(x, xr) and sj(x, xr), respectively. The luminance measure 3.28 is calculated

on at Scale M and denoted as lM (x, xr). The MS-SSIM is thus obtained by combining the

measurements at different scales as follows [Wang et al. (2003)]:

MS − SSIM(x, xr; ξ) = lM (x, xr)αM ·
M
∏

j=1

cj(x, xr)βj · sj(x, xr)γj , (3.32)
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where ¶αM , βj , γj♢ is a set of exponential weights used to adjust the importance of different

components, analogously to [Y. Lu (2019)]. Note that MS-SSIM is differentiable [Zhao et

al. (2016)]. However, it requires computing a pyramid of M levels of patch P , which is a

computationally expensive operation given that it needs to be performed at each iteration.

3.4.3.3 Rate estimation

The rate Rt achieved by an entropy coder is lower-bounded by the entropy derived from the

actual discrete probability distribution m(ŷ) of the quantized vector ŷ. The rate increase

comes from the mismatch between the probability model pŷ(ŷ) required for the coder design

and m(ŷ). Consequently, the bit-rate is given by the Shannon cross entropy between the

two distributions:

R(ŷ) = H(ŷ) = Eŷ∼m

[−log2pŷ(ŷ)
]

, (3.33)

The bit-rate is thus minimized if the distribution model pŷ(ŷ) is equal to the distribution

m(ŷ) arising from the actual distribution of the input image and from the analysis transform

Ga. Note that the bit-rate estimation is derived from the differential entropy of ỹ during

training [Ballé et al. (2017) and Ballé et al. (2018)], according to Equation (3.26).

3.4.3.4 Entropy model

As stressed above, a key element in the end-to-end learned image compression frameworks

is the entropy model deĄned through the probability model pŷ(ŷ) assigned to the quantized

representation for coding. Since bit-rate estimation is derived from the differential entropy

of ỹ, we considered the differential entropy here.

• Fully factorized model: For simplicity, in [Ballé et al. (2017) and Theis et al. (2017)],

the approximated quantized representation was assumed independent and identically

distributed within each channel and the channels were assumed independent of each

other, resulting in a fully factorized distribution:

pỹ♣ψ(ỹ♣ψ) =
∏

i

pỹi♣ψi
(ỹi), (3.34)

where index i runs over all elements of the representation, through channels and spatial

locations, ψi is the distribution model parameter vector associated with each element.

As mentioned previously, for backpropagation derivation during the training step, the
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quantization process (ŷ = Q(y)) is approximated by the addition of an i.i.d uniform

noise η.

For generality, in [Ballé et al. (2017)], the distribution pyi♣ψi
(yi) is assumed non-

parametric, namely without predeĄned shape. [Ballé et al. (2017) and Ballé et al.

(2018)] use small NNs to model p(x). In [Ballé et al. (2018)], a density p : R → R
+

is deĄned using its CDF c : R→ [0, 1]. Assuming the cumulative can be written as a

composition of functions, then the density can be deĄned as a composition of functions

using the chain rule of calculus as:

c = fK ◦ fK−1 · · · f1 (3.35)

p = f
′

K · f
′

K−1 · · · f
′

1, (3.36)

where f
′

k stands for the derivative of fk. fks are allowed to be vector functions:

fk : Rdk → R
rk . In general, the f

′

k are Jacobian matrices, and · stands for matrix

multiplications [Ballé et al. (2018)]. The domain of f1 and the range of fK need to be

one dimensional (d1 = rK = 1) to ensure p(x) is univariate. All the Jacobian elements

are required to be non-negative to guarantee that p(x) is a density [Ballé et al. (2018)].

According to [Ballé et al. (2018)], an effective choice of fk is the following:

fk(x) = gk (Hkx + bk) 1 ≤ k < K (3.37)

fK(x) = sigmoid (HKx + bK) (3.38)

where Hk are matrices, bk are vectors and gk are non-linearities deĄned as follows:

gk(x) = x + ak ⊙ tanh(x), (3.39)

where ak is a vector and ⊙ denotes elementwise multiplication. Each univariate den-

sity model is thus associated to its own set of parameters ¶ak, bk, Hk♢. Note that these

parameters together form ψ(i). For all experiments performed in [Ballé et al. (2018)],

the authors used K = 4, with the dimensionalities r1 = r2 = r3 = 3. In [Ballé et al.

(2018)], the authors found that this model Ąts well to arbitrary densities. Note that

in [Ballé et al. (2017) and Theis et al. (2017)], the parameter vectors are learned from

data during the training phase. This learning, performed once and for all, prohibits

adaptivity to the input images during operational phase. Moreover, the simplifying

hypothesis of a fully-factorized distribution is very strong and not satisĄed in prac-

tice, since elements of ŷ can exhibit strong spatial dependency as observed in [Ballé
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et al. (2018)]. To overcome these limitations and thus to obtain a more realistic and

more adaptive entropy model, [Ballé et al. (2018)] proposed a hyperprior model, de-

rived through a variational autoencoder, which takes into account possible spatial

dependency in each input image.

• Hyperprior model: Auxiliary random variables z̃, conditioned on which ỹ elements are

independent, are derived from ỹ by an auxiliary autoencoder, connected in parallel

with the bottleneck. The hierarchical model hyper-parameters are learned for each

input image in operational phase. In [Ballé et al. (2018)], z̃ distribution is assumed

fully factorized and each representation element yi, knowing z̃, is modeled by a zero-

mean Gaussian distribution with its own standard deviation σi. Finally, taking into

account the quantization process, the conditional distribution of each ỹi is given by:

ỹi♣z̃ ∼ N
(

0, σi
2


∗ U (−0.5, + 0.5) . (3.40)

The rate computation must take into account the prior distribution of z̃.

3.5 Denoising with neural networks

Compared to standard denoising techniques, denoising CNNs are able to adapt to the dataset

as well as to the noise model. Numerous works have been proposed in the past few years. We

will only focus on residual learning of deep CNN for image denoising (DnCNN) [K. Zhang

et al. (2017a)], a fast and Ćexible solution for CNN based image denoising (FFDNet) [K.

Zhang et al. (2018)], and Image denoising using deep CNN with batch renormalization

(BRDNet) [Tian et al. (2020)]. It is important to remember that we were not interested in

deep networks for onboard compression due to their inherent high complexity. However, in

denoising, deep networks constitute the state-of-the-art, so we turn our attention to them

in this case.

3.5.1 General concepts

Residual learning (RL) In denoising neural networks, instead of learning a CNN that

tries to output a noise-free image directly, residual learning considers a different learning

perspective that targets predicting a residual image. The residual image is the difference

between the corrupted and clean reference images. Residual learning [He et al. (2016)] in

CNN was primitively conceived to address the performance degradation issues related to
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training very deep neural networks, i.e., networks that present a high number of layers.

The residual mapping is assumed to be much easier to be learned than the direct noise-free

image, and this approach led to an easier training phase and improved accuracy for image

classiĄcation and object detection using remarkably deep neural architectures [He et al.

(2016)].

Batch normalization (BN) When training CNNs, mini-batch gradient descendent has

been widely used. However, its training efficiency is negatively impacted by internal co-

variate shift [Ioffe and Szegedy (2015)], i.e., abrupt changes in the distributions of inputs

during training. Thus, batch normalization (BN) [Ioffe and Szegedy (2015)] is used to ease

the internal covariate shift. For a layer composed by a K-dimensional input x = (x1 . . . xK)

, each dimension, for j = 1, ..., K, is normalized as follows [Ioffe and Szegedy (2015)]:

x̂j =
xj − E [xj ]
√

V ar [xj ]
, (3.41)

where the expectation and variance are computed over the training data set. Note that

simply normalizing each input of a layer may change what the layer can effectively rep-

resent, i.e., normalizing the inputs of an activation function such as the Sigmoid would

constrain them to the linear regime of the non-linear activation function [Ioffe and Szegedy

(2015)]. In order to address this issue, scale (γj) and shift (βj) steps are integrated after

the normalization step and preceding the nonlinearity in each layer as:

yj = γj x̂j + βj . (3.42)

These parameters are learned during the training phase, along with the original architecture

parameters. Thus, the proposed BN method can prevent exploding or vanishing gradients,

accelerate the convergence of the network, and improve performance and stability [Ioffe and

Szegedy (2015)]. Besides, BN also provides regularization. Therefore, a NN is expected

to be robust enough to the internal covariate shift during training. Note that the batch

normalization has to calculate mean and variance to normalize the previous outputs across

the batch. This statistical estimation will be as much as more accurate if the batch size

is reasonably large while keeps on decreasing as the batch size decreases. Since the batch

normalization calculates the mean and variance to normalize the previous outputs across

the batch, their statistical estimation will be as much as more accurate if the batch size

is reasonably large. However, it keeps on decreasing as the batch size decreases. On the
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other hand, BN is not effective for small mini-batches, which limits its applications, e.g.,

for image detection and video tracking [Ioffe (2017)].

Batch renormalization (BRN) Batch renormalization (BRN) was proposed to deal

with the small mini-batch issue that affects BN [Ioffe (2017)]. BRN is applied over a

mini-batch preceding the nonlinearity in each layer according to the Algorithm 4. During

backpropagation, a standard chain rule is used. The values marked with stop-gradient are

treated as constant for a given training step, and the gradient is not propagated through

them.

Algorithm 4: Batch Renormalization implementation

Input: Values of x over a training mini-batch B = ¶x(1) . . . x(m)♢;
γ and β: parameters;

µ and σ: current moving mean ad standard deviation, respectively;

α: moving average update rate;

rmax and dmax: maximum allowed corrections;

µB ← 1
m

∑m
i=1 x(i);

σB ←
√

ϵ + 1
m

∑m
i=1

(

x(i) − µB
)

;

r ← stop-gradient
(

clip[1/rmax,rmax]

(σB

σ

)



);

r ← stop-gradient
(

clip[−dmax,dmax]

(

µB−µ
σ



);

x̂(i) ← x(i)−µB

σB
· r + d;

y(i) ← γx̂(i) + β;

µ := µ + α(µB − µ);

σ := σ + σ(σB − σ);

Result: yi = BatchRenorm(xi); updated µ and σ

Inference: y ← γ · x−µ
σ + β

BRN can effectively address the small mini-batch issue and non-independent identically

distributed mini-batch problems since it uses individual samples to approximate the training

data distribution. The non-independent identically distributed mini-batch issue occurs when

samples in the same mini-batch are non-i.i.d, leading to poor performance of the trained

neural network.
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3.5.2 Residual learning of deep CNN for image denoising (DnCNN)

In [K. Zhang et al. (2017a)], the authors investigated the construction of feedforward de-

noising convolutional neural networks (DnCNNs) to embrace the progress in deep learning

into image denoising. To architecture design, the VGG, which stands for Visual Geometry

Group network [Simonyan and Zisserman (2014)], was modiĄed to adapt it for image de-

noising. VGG consists of a classical CNN architecture that relies on 16 layers to increase

its performance on ground-breaking object recognition applications. VGGŠs convolutional

layers leverage a minimum kernel size, i.e., 3×3, the smallest possible size that still captures

vertical and horizontal spatial information to minimize computational complexity impact.

Note that the receptive Ąeld is a relevant concept in designing deep CNNs. The receptive

Ąeld is deĄned as the region size in the input that produces the feature. It measures the

association of an output feature (of any layer) to the input region (patch) [Araujo et al.

(2019)]. Ideally, a higher receptive Ąeld is desired to ensure that no crucial information

is not taken into account by the convolutional layers. The convolution stride is Ąxed at 1

pixel to keep the spatial resolution preserved after convolution and all pooling layers were

removed. After convolution, the VGG architecture relies on the ReLU as its activation

function. The VGG achieves almost 92.7% top-5 test accuracy in ImageNet. ImageNet is a

dataset consisting of more than 14 million images belonging to nearly 1000 classes [J. Deng

et al., 2009]. The VGG architecture surpasses baselines on many tasks and datasets beyond

ImageNet, making it one of the most popular image recognition architectures. For learning

the network, the authors adopted residual learning (RL) and batch normalization (BN),

previously presented in 3.5.1 and 3.5.1 respectively, to improve the denoising performance

and for fast training.

Rather than outputting the denoised image directly, the proposed DnCNN is designed

to predict a residual image F (In) = In − Inf , i.e., the difference between the noisy image

(In) and the noise-free image (Inf ), which is the principle of residual learning. Differently

from the originally proposed residual network [He et al., 2016] that presents several residual

connections, the proposed DnCNN adopted a single residual unit to extract the residual

image [K. Zhang et al. (2017a)] from a noisy input image.

The architecture of the proposed DnCNN for learning the residual image is illustrated in

Ągure 3.9.
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Figure 3.9: Architecture of the DnCNN network [K. Zhang et al. (2017a)].

A DnCNN architecture (with d layers), consists of three types of layers, shown in Ąg-

ure 3.9. (a) Conv + ReLU: for the Ąrst layer, 64 Ąlters with kernel size 3 × 3 followed by

ReLU nonlinear activation functions are used to generate 64 feature maps. (b) Conv +

BN + ReLU: from layers 2 to (d − 1), 64 Ąlters with kernel size 3 × 3 are used and batch

normalization [Ioffe and Szegedy (2015)] is performed between convolution and ReLU. (c)

Conv: in the last layer, 64 Ąlters with kernel size 3×3 are used to predict the noise residual

image f (̂In).

Following the same principle in [Simonyan and Zisserman (2014)], the kernel size of con-

volutional Ąlters was also set to 3×3 and all pooling layers were removed. Consequently, the

receptive Ąeld associated to the DnCNN with depth d is (2d + 1)× (2d + 1) [K. Zhang et al.

(2017a)]. Note that an increased receptive Ąeld allows the use of the information present in

a larger image region. Setting a proper depth for DnCNN represents an important issue for

Ąnding a better trade-off between performance and complexity. It is worth mentioning that

the receptive Ąeld size in denoising neural networks is analogous to the effective patch size

of model-based denoising methods [Burger et al. (2012) and Jain and Seung (2008)]. For

Gaussian denoising with a speciĄc noise level, the number of layers composing the DnCNN

architecture is set to 17, and it is set to 20 for other general image denoising tasks [K.

Zhang et al. (2017a)]. The averaged MSE (3.23) between the desired residual images and

the estimated ones from noisy input can be adopted as the loss function as follows:

J(x, θ) =
1

Np

Nt
∑

i=1

♣♣F (In
(i))− (In

(i) − Inf
(i))♣♣2, (3.43)

where Np represents the noisy/noise-free training image pairs.

In practice, various image denoising tasks can be implemented by employing the proposed

DnCNN method. In [K. Zhang et al. (2017a)], the authors consider three speciĄc tasks, i.e.,

blind Gaussian denoising, single image super-resolution problem, and JPEG deblocking.

In the training stage, the authors used images with AWGN from a wide range of noise

levels, downsampled images with multiple upscaling factors, and JPEG images with different
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quality factors to train a single DnCNN architecture. Experimental results show that the

learned DnCNN can provide great results for any of the three general image denoising tasks.

3.5.3 Toward a fast and flexible solution for CNN based Image denoising
(FFDNet)

CNNs have demonstrated tremendous success for image denoising, notably using residual

learning. This success is attributed to their large modeling capacity and advances in deep

learning techniques. However, existing CNN-based denoising methods have been limited in

Ćexibility, and the trained network usually doesnŠt perform well in handling different noise

levels. For example, a single DnCNN trained for Gaussian denoising fails in generalizing

well to real noisy images and works only if the noise level is within a preset range [K. Zhang

et al. (2017a)]. Moreover, the existing residual learning-based methods are not able to deal

with spatially variant noise.

To overcome the limitations mentioned above, the authors in [K. Zhang et al. (2018)]

presented a fast and Ćexible denoising convolutional network (FFDNet). The FFDNet

architecture consists of three types of layers, shown in Ągure 3.10. (a) Conv + ReLU: for

the Ąrst layer. (b) Conv + BN + ReLU: for the middle layers, and (c) Conv: for the last

convolutional layer.

Conv
 +  
BN 
+

ReLU

Conv
 +  
BN 
+

ReLU

Conv 
Conv

+ 
ReLU

Downsampling

Downsampling

Upsampling

Figure 3.10: Architecture of the FFDNet network [K. Zhang et al. (2018)].

After the last convolution layer, an upscale operator is applied to produce the denoised

image (Inf ) as the reverse operator of the downsampling operator initially applied in the

input image. Different from DnCNN [K. Zhang et al. (2017a)], FFDNet does not adopt

residual learning to predict a noise map. The choice for operating on downsampled sub-

images avoids the need to increase the receptive Ąeld further, e.g., by employing dilated

convolutions [F. Yu and Koltun (2015)]. The FFDNet is formulated as a residual mapping,

which is here expressed as F (In, M), where M denotes a noise level map. Consequently, in
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the FFDNet, the noise level map is incorporated as an input, and the network parameters

are invariant to the noise level. It is expected that the FDDNet performs well when the

input noise map matches the noise degradation present in the noisy image. Furthermore,

the noise level map also assumes the role of controlling the trade-off between noise reduction

and detail preservation. The authors also introduced a reversible downsampling operation

to reshape the input mage of size Nx × Ny × C into four downsampled sub-images of size

Nx/2 × Ny/2 × 4C. The authors also concatenate a tunable noise level map M with the

downsampled sub-images to form a tensor Xin of size Nx/2 × Ny/2 × (4C + 1). When

considering spatially invariant AWGN with noise level σ, M is a uniform map with all

elements equal to σ.

The authors set the number of convolutional Ąlters as 15 for grayscale images and 12 for

color images to balance complexity and performance. The authors claim that using fewer

convolutional layers encourages the architecture to exploit the inter-channel dependency in

color images. Concerning the number of feature maps deĄned by the number of Ąlters, the

authors chose 64 for grayscale images and 96 for color images. Experimentally, the authors

also found that employing more Ąlters per layer is beneĄcial when dealing with color images.

Taking into account Ćexibility, efficiency and effectiveness, FDDNet consists on a practical

solution to CNN denoising applications.

3.5.4 Image denoising using deep CNN with batch renormalization
(BRDNet)

More recently in [Tian et al. (2020)], the authors proposed a novel deep learning framework

designated batch-renormalization denoising network (BRDNet). BRDNet uses batch renor-

malization (BRN) [Ioffe (2017)] to deal with small mini-batch convergence issues in BN and

adopts RL similarly to [K. Zhang et al. (2017a)]. Batch Renormalization is applied over a

mini-batch preceding the nonlinearity in each layer according to the Algorithm 4.

BRDNet also blends two parallel sub-networks to obtain more relevant features for im-

proving the denoising performance [Szegedy et al. (2015)]. Furthermore, the idea in this

model was to increase the width of the network rather than the depth (e.g., number of lay-

ers) and thus avoid vanishing or exploding gradients issues during training, which mainly

affect deeper networks. The proposed network is shown in Ągure 3.11.
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Figure 3.11: Architecture of the BRDNet network [Tian et al. (2020)].

In and Înf denote the noisy image and the denoised image, respectively. We observe that

the upper network mainly involves RL and BRN, while the lower network features RL, BRN,

and dilated convolutions [F. Yu and Koltun (2015)]. The authors claim that dilated con-

volutions allow the extraction of more context information with relatively lower complexity

when compared to conventional CNNs, mostly because they attain the same receptive Ąeld

with few layers and parameters. In [Tian et al. (2020)], experiments demonstrated that

the proposed BRDNet outperforms state-of-the-art deep learning denoising methods, e.g.,

DnCNN [K. Zhang et al. (2017a)], but also the fast and Ćexible denoising network (FFD-

Net) [K. Zhang et al. (2018)] and the image-restoration CNN (IRCNN) [K. Zhang et al.

(2017b)].

3.5.5 Neural networks for compression artifacts suppression

Lossy image compression allows high compression rates by discarding information that in-

troduces image distortion. The resulting image quality degradation may be acceptable in

many applications, but the produced visual artifacts become unacceptable at elevated com-

pression rates or in certain critical applications. Blocking, blurring, and ringing artifacts are

common examples of image degradation arising from traditional lossy image compression

methods.

All lossy compression algorithms produce ringing artifacts [Yang et al. (2005)]. They

consist of a Gibbs type of oscillations around sharp-intensity transitions in the image. Con-

sequently, unpleasing short vertical and horizontal "ridges" appear in the image, representing

the ringing artifacts. These artifacts appear at high compression ratios in all transform-

based codecs due to the low-pass nature of such systems as JPEG and JPEG2000. These
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systems are by far the most popular compression systems. The classic JPEG compression

algorithm produces blocking artifacts at high compression ratios. This artifact originates

from the independent quantization of the block discrete cosine transform (DCT) coeffi-

cients used in the JPEG algorithm [Yang et al. (2005)]. When considering the JPEG2000

method, visual quality degradation commonly consists of prominent ringing and blurring

artifacts [M. W. Marcellin et al. (2002)]. The JPEG2000 operates in the wavelet domain,

endeavoring to represent an image as a sum of smooth oscillating waves. Blurring means

that the image is smoother than originally. Texture information is usually discarded during

lossy compression, while shape information is preserved. Blocking is mostly noticeable in

low-frequency regions, while the ringing artifacts are especially well perceptible around sharp

edges. Note that the blurring effect is less visually unpleasant compared to the blocking

artifacts.

A wide variety of methods designed to reduce compression artifacts varies from relatively

simple and fast handcrafted designed Ąlters to fully probabilistic image restoration methods

with complex priors [T.-S. Wong et al. (2009)] and new methods based on machine learn-

ing advances [Dong et al. (2014)]. Most image and video viewing software features simple

deblocking and artifact removal post-processing Ąlters. For example, the FFmpeg codec

disposes of a simple post-processing Ąlter (spp) [Nosratinia (1999)] that simply re-applies

JPEG compression to the shifted versions of the previously compressed image, and aver-

ages the results. In Pointwise Shape-Adaptive DCT (SA-DCT) [Foi et al. (2007)], which is

currently considered the state-of-the-art deblocking method among the learning-free meth-

ods, a local estimate of the signal within the adaptive form support is reconstructed from

thresholded or attenuated transformation coefficients. However, similar to other deblocking

methods, SA-DCT is not able to sharpen the edges and it excessively smooths images.

Convolutional networks have been used to suppress compression artifacts by [Dong et

al. (2015)], who proposed the artifacts removing CNN network (AR-CNN) based on the

super-resolution CNN (SRCNN) [Dong et al. (2014)], originally proposed to deal with the

super-resolution problem. The SRCNN method consists of 3 feature extraction layers, a

high dimensional mapping layer, and a Ąnal reconstruction layer. The SRCNN also adopts

the so-called residual learning. Thus, residual learning also appears to be very important in

super-resolution/compression artifacts suppression. AR-CNN [Dong et al. (2015)] extends

the original SRCNN architecture [Dong et al. (2014)] with feature enhancement layers. The

network training consist of two stages Ű a shallow network is trained Ąrst and used as an

initialization for a Ąnal 4 layer CNN. According to the authors in [Dong et al. (2015)], the

two stage training approach enhanced results when compared to training the 4 layer CNN
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directly from scratch.

3.5.6 Denoising with GANs

GANs are used mostly as alternatives to traditional distortion measures such as MSE.

They are capable of obtaining better perceptual image quality and visual performance.

Recalling the concepts concerning generative adversarial networks (GANs) [Goodfellow et

al. (2014)] presented in 3.2.4, we are now interested in denoising with GANs. In this case,

the generator network is used to create solutions to an indistinguishable image with a ground

truth noise-free image (Inf) by receiving a noisy image (In) as input [Zhong et al. (2020)].

The discriminator network, in turn, receives the noise-free image (Inf) and is expected to

distinguish the generated denoised image (În) from the ground truth noise-free image (Inf).

GANs have become famous for their ability to produce photorealistic images with high

quality [Zhong et al. (2020)]. On the other hand, training GANs represents a great challenge

due to problems such as vanishing gradients and mode colapse [Salimans et al. (2016)]. When

used in image denoising, one major drawback for GANs is their tendency to synthesize some

areas in the denoised image. Although presenting visually pleasing synthesized regions, this

effect is undesirable in applications that rely on higher image Ądelity. Consequently, they

are not good candidates for satellite image denoising.
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Learned reduced-complexity onboard
satellite image compression

This chapter is adapted from [Alves de Oliveira et al. (2021)]
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This chapter starts with the description of two interesting frameworks [Ballé et al. (2017)

and Ballé et al. (2018)] that we selected among the state-of-the-art to design a reduced-

complexity framework adapted to satellite image compression. Besides improved perfor-

mance, recall that the learned frameworks usually involve high computational complexity.

Through cautious simpliĄcations of [Ballé et al. (2018)], we seek an alternative solution

with similar performance as [Ballé et al. (2018)] and similar or perhaps lower complexity

than [Ballé et al. (2017)].

Note that most of the state-of-the-art deep learning architectures are brieĆy presented

in the literature, and more emphasis is given to their performance. To achieve an effective

complexity reduction, it is necessary Ąrst to understand the importance of each architecture

element and, subsequently, how any simpliĄcation or replacement impacts the resulting

performance. For this reason, each component of the original architecture, which includes

Ąlters, activation functions, and the entropy model, is studied in detail. Finally, complexity

reductions are proposed based on these studies.

4.1 Focus on the two reference learning-based architectures

4.1.1 Recalling the main characteristics

In the context of image compression, autoencoders are used to learn a representation with

low entropy after quantization. Autoencoders are composed of an analysis transform and a

synthesis transform connected by a bottleneck. When devoted to compression, the bottle-

neck performs quantization and entropy coding. Please note that the dequantization process

is integrated in the synthesis transform. An auxiliary autoencoder can also be used to infer

the probability distribution of the representation as in [Ballé et al. (2018)].
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Figure 4.1: Architecture of the autoencoder [Ballé et al. (2017)] (left) and of the variational
autoencoder [Ballé et al. (2018)] (right).

Here we focus on two reference architectures: [Ballé et al. (2017)] displayed in Ągure 4.1

(left) and [Ballé et al. (2018)] displayed in Ągure 4.1 (right). The reference architecture [Ballé

et al. (2017)] is composed of a single autoencoder. The second reference architecture [Ballé

et al. (2018)] is composed of a main autoencoder (slightly different than the one in [Ballé

et al. (2017)]) and of an auxiliary one which aims to infer the probability distribution of the

learned representation.

4.1.1.1 Analysis and synthesis transforms

In the main autoencoder (Ągure 4.1 (left) and left column of Ągure 4.1 (right)), the analysis

transform Ga is applied to the input image x to produce a representation y = Ga(x). After

the bottleneck, the synthesis transform Gs is applied to the quantized representation ŷ
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to reconstruct the image x̂ = Gs(ŷ). These representations are derived through several

layers composed of Ąlters, some of them followed by a non-linear activation function. The

learned representation is multi-channel (the output of a particular Ąlter is called a channel

or a feature map) and non-linear. As previously mentioned, the analysis and synthesis

transforms proposed in [Ballé et al. (2018)] result from improvements (mainly parameter

adjustments) of the ones proposed in [Ballé et al. (2017)]. Thus, for brevity, the following

description focuses on [Ballé et al. (2018)].

In [Ballé et al. (2018)], the analysis (resp. synthesis) transform Ga (resp. Gs) is derived

through 3 convolutional layers each composed of N Ąlters with kernel support 5×5 associated

with parametric activation functions called Generalized Divisive Normalizations (GDN)

(resp. Inverse Generalized Divisive Normalizations (IGDN)) and a downsampling (resp.

upsampling) by a factor 2. These three convolutional layers are linked to the input (resp.

output) of the bottleneck by a convolutional layer composed of M > N (resp. N) Ąlters

with the same kernel support but without activation function. The fact that the last layer

of the synthesis transform is composed of M > N Ąlters leads to a so-called wide bottleneck.

According to [Ballé et al. (2018)], a wide bottleneck (large M) allows to attain comparable

performance with low values of N and to accommodate higher bitrates more efficiently.

[Ballé et al. (2018)] also stated that there exists a particular number of Ąlters per layer

that reaches a performance saturation level. Figure 4.2 (resp. Ągure 4.3) displays the

before-mentioned four-layer analysis transform (Ga) (resp. four-layer synthesis transform

(Gs)) [Ballé et al. (2018)]. These Ągures display the tensor-transforms performed along with

the successive convolutional layers from the input to the recovered image. The activation

functions GDN (resp. IGDN) are also shown. Nx and Ny deĄne the width and height

of the input image. Note that downsampling (resp. upsampling) operations accompany

the convolutional layers. These operations lead to representations with low 2D dimensions

at the bottleneck. Note that downsampling (resp. upsampling) is performed during the

convolutional (resp. upsampling) operation by selecting the stride and padding adequately

for computational efficiency [Ballé et al. (2017)].
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Figure 4.2: Four-layer analysis transform Ga [Ballé et al. (2018)].
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Figure 4.3: Four-layer synthesis transform Gs [Ballé et al. (2018)].
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4.1.1.2 Loss function: rate distortion trade-off

The autoencoder parameters (Ąlter weights, GDN/IGDN parameters and representation

distribution model) are jointly learned through the optimization of a loss function involving

the rate R(ŷ) and the distortion D(x, x̂) between the original image x and the reconstructed

image x̂. The rate-distortion criterion, denoted as J(x, x̂, ŷ), writes as the weighted sum:

J(x, x̂, ŷ) = λD(x, x̂) + R(ŷ), (4.1)

where λ is a key parameter that tunes the rate-distortion trade-off. The loss function deĄned

in Equation (4.1) is minimized through gradient descent with backpropagation [Bengio

(2009)] on a representative image training set.

Distortion The distortion D is chosen to account for image quality as perceived by a

human observer. Due to its many desirable computational properties, the mean square

error (MSE) is generally selected. However, a measure of perceptual distortion may also

be employed such as the multi-scale structural similarity index (MS-SSIM) [Wang et al.

(2003)], as described in 3.4.3.2.

Rate The bit-rate is minimized if the entropy model (pŷ(ŷ)) is equal to the actual dis-

tribution of the learned image representation m(ŷ), as described in 3.4.3.3. After training,

a range encoder losslessly compresses the quantized learned representation [Ballé et al.

(2017)]. A range encoder can encode integer data into strings using cumulative distribution

functions (CDF).

4.1.1.3 Entropy model

As previously presented in chapter 3, a critical element in the end-to-end learned image

compression frameworks is the entropy model deĄned through the probability model pŷ(ŷ)

assigned to the quantized representation. The entropy model is necessary to compress the

quantized representation efficiently in a lossless manner. However, note that the bit-rate

estimation is derived from the differential entropy of ỹ. The differential entropy consists

of a continuous relaxation used only for training purposes that already incorporates the

quantization effect by an additive uniform noise (η), as explained in 3.4.3.4. The resulting

learned representation becomes ỹ = y + η. For simplicity, we consider the differential

entropy here in the following formulations.
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• Fully factorized model: In [Ballé et al. (2017) and Theis et al. (2017)] for simplicity,

the approximated quantized representation was assumed independent and identically

distributed within each channel, and the channels were considered independent of each

other, resulting in a fully factorized distribution:

pỹ♣ψ(ỹ♣ψ) =
∏

i

pỹi♣ψ(i)(ỹi), (4.2)

where index i runs over all elements of the representation, through channels and

through spatial locations, ψ(i) is the distribution model parameter vector associated

with each element. In [Ballé et al. (2017)], for generality purpose, the distribution

pỹi♣ψ
(i) (ỹi) is assumed non-parametric. This model assumes that each channel would

present some unknown distribution with an arbitrary and potentially complex shape

In [Ballé et al. (2017) and Theis et al. (2017)], the parameter vectors are learned during

the training phase from data. Note that this learning process prohibits adaptivity

during the operational phase since the entropy model parameters are assumed Ąxed

once training is completed, no matter the input image.

• Hyperprior model: An additional set of auxiliary random variables z̃ is derived from ỹ

by an auxiliary autoencoder, connected in parallel with the bottleneck (right column of

Ągure 4.1 (right)). The conditional model hyper-parameters are thus learned for each

input image in operational phase. First, the hyperprior transform analysis Ha pro-

duces a set of auxiliary random variables z̃. Second, z̃ is transformed by the hyperprior

synthesis transform Hs into a second set of random variables σ. Figure 4.4 (resp. Ąg-

ure 4.5) displays the before-mentioned three-layer hyperprior analysis transform (Ha)

(resp. four-layer hyperprior synthesis transform (Hs)) [Ballé et al. (2018)]. These Ąg-

ures display the tensor-transforms performed along with the successive convolutional

layers from ỹ to the conditional entropy model parameters σ. Note that downsam-

pling (resp. upsampling) operations accompany the convolutional layers. In [Ballé et

al. (2018)], z̃ distribution is assumed fully factorized and each representation element

yi, knowing z̃, is modeled by a zero-mean Gaussian distribution with its own standard

deviation σi produced by Hs. Thus, taking into account the quantization process, the

conditional distribution of each ỹi is expressed by:

ỹi♣z̃ ∼ N
(

0, σi
2


∗ U


−1

2
,
1

2



. (4.3)

During compression, the rate computation has to consider the entropy model of z̃ since
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z̃ is compressed and transmitted to the decoder to perform the complete decompression

of ỹ.

Note that the fully-factorized entropy model is very generic whereas the second one re-

quires high computational complexity. Indeed, in neural network learning, especially in

deep networks, complex methods are employed to handle a wide variety of data. However,

for onboard compression purpose, some prior knowledge would be welcome to simplify the

entropy model. In the following, we perform a statistical analysis of the learned transform

on a representative set of satellite images. The objective is to propose an entropy model

simpler than the two previous ones, while being adaptive to the input images.
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Figure 4.4: Three-layer hyperprior analysis transform Ha [Ballé et al. (2018)].
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Figure 4.5: Three-layer hyperprior synthesis transform Hs [Ballé et al. (2018)].
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4.1.2 Statistical analysis of the learned transform

Since the network must also learn the underlying distribution of the learned representation,

we can try to provide it with a priori information to simplify its task. This subsection

Ąrst performs a statistical analysis of each feature of the learned representation in the par-

ticular case of satellite images. A similar statistical analysis has been conducted in the

case of natural images in [Dumas et al. (2018)] with the objective to properly design the

quantization in the architecture of [Ballé et al. (2017)]. The probability density function

related to each feature was estimated on a representative set composed of 24 natural images

through a normalized histogram. The study showed that most features can be accurately

modelled as Laplacian random variables. Interestingly, a similar result has also been ana-

lytically demonstrated in [Lam and Goodman (2000)] for block-DCT coefficients of natural

images under the assumption that the variance is constant on each image block and that its

values on the different blocks are distributed according to an exponential or a half-normal

distribution. We conducted the statistical analysis on the representation obtained by the

main autoencoder as deĄned in [Ballé et al. (2018)], with N = 128 and M = 192, but used

alone, as in [Ballé et al. (2017)], without auxiliary autoencoder. First, the main autoen-

coder in [Ballé et al. (2018)] beneĄts from improvements concerning the one in [Ballé et al.

(2017)]. Second, the auxiliary autoencoder is not necessary for this statistical study. This

autoencoder is trained on a representative dataset of satellite images described in 2.6 and

for rates between 2.5 bits/pixel and 3 bits/pixel. This rate range represents the target oper-

ating compression rates in satellite image compression. First, as an illustration, let consider

the satellite image displayed in Ągure 4.6. This image of the city of Cannes (French Riviera)

is a 12-bit simulated panchromatic Pléiades image with size 512×512 and resolution 70 cm.
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Figure 4.6: Simulated 12-bit Pléiades image of Cannes with size 512 × 512 and resolution
70 cm

Figure 4.7 shows the 1st 32×32 feature derived from the Cannes image and its normalized

histogram with Laplacian Ątting.

(a) 1st feature. (b) Normalized histogram and Laplacian Ątting.

Figure 4.7: First feature of Cannes image representation, its normalized histogram with
Laplacian Ątting.

On this example, the Ątting with an almost centered Laplacian seems appropriate. Ac-

cording to the Kolmogorov-Smirnov goodness-of-Ąt test [Pratt and Gibbons (1981)], 94% of

the features derived from this image follow a Laplacian distribution with a signiĄcance level

α = 5%. Recall that the Laplacian distribution Laplace(µ, b) is deĄned by the probability
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density function:

f(ζ, µ, b) =
1

2b
exp



−♣ζ − µ♣
b



for ζ ∈ R, (4.4)

where µ is the mean value and b > 0 is a scale parameter related to the variance by

V ar(ζ) = 2b2. The remaining non-Laplacian feature maps (6% of the maps for this example)

stay close to the Laplacian distribution. Figure 4.8 displays two representative examples

of non-Laplacian feature maps. Please note that the Ąrst one (19th feature map) is a low-

pass approximation of the input image. However, this is a very particular case: the second

displayed feature has a typical behavior, not so far from a Laplacian distribution.

(a) 19th feature. (b) Normalized histogram and Laplacian fitting.

(c) 55th feature. (d) Normalized histogram and Laplacian fitting.

Figure 4.8: Normalized histogram of the ith feature map and Laplacian Ątting f(., µ, b).
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To extend this result, the representation (composed of M = 192 feature maps) was derived

for 16 simulated 512× 512 Pléiades images. Figure 4.9 shows the normalized histograms of

some feature maps derived from these 16 images and the Laplacian Ątting.

(a) i = 1. (b) i = 58.

(c) i = 136. (d) i = 144.

Figure 4.9: Normalized histogram of the ith feature map and Laplacian Ątting f(., µ, b).

We can also observe that most of the feature maps have a similar normalized histogram.

Please note that the Gaussian distribution, N (µ, σ2) with a small value of µ, also Ąts the

features albeit to a lesser extent. This statistical study will allow us to propose a more

speciĄc entropy model than those proposed in [Ballé et al. (2017) and Ballé et al. (2018)]

and, therefore, more computationally efficient.
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4.2 Reduced-complexity variational autoencoder

In the literature, the design of learning-based image compression frameworks hardly takes

into account the computational complexity: the objective is merely to obtain the best

performance in terms of rate-distortion trade-off. However, in the context of onboard com-

pression, a trade-off between performance and complexity has also to be considered to take

into account the strong computational constraints.

Our focus here is to propose a complexity-reduced alternative to the state-of-the-art

architecture [Ballé et al. (2018)] while minimizing the impact on the performance. Please

note that this complexity reduction must be essentially targeted at the coding part of

the framework, which is subject to the onboard constraints. A meaningful indicator of

the architecture complexity is the number of its parameters. Its reduction has a positive

impact not only on the memory complexity, but also on the training difficulty. Indeed, the

optimization process involved in the training step applies on fewer parameters. This is an

advantage even if the training is performed on ground. The convergence is thus obtained

with less iterations and thus faster. Moreover, the reduction of the number of parameters

has also a positive impact on the ease to upload the Ąnal model to the spacecraft (once the

training with real data completed) as the up-link transmission is severely limited. Note,

however, that the time complexity is not proportional to the number of parameters as

detailed in 4.4.

4.2.1 Simplified analysis and synthesis transforms

Our approach to reduce the complexity of the analysis and synthesis transforms, while

maintaining an acceptable rate-distorsion trade-off, is to Ąne-tune the number of layers, the

parameters of each layer (number of Ąlters and Ąlter sizes) and to consider the replacement

of GDN/IGDN by simpler non-parametric activation functions.

In a Ąrst step, we propose a SimpliĄed entropy model. The state-of-the-art frameworks

generally involve a large number of Ąlters with the objective of increasing the network ap-

proximation capability [Ballé et al. (2017) and Ballé et al. (2018)]. However, a high number

of Ąlters also implies a high number of parameters and operations in the GDN/IGDN, as it

increases the depth of the tensors (equal to the number of Ąlters) at their input. Apart from

a harder training, an increased number of Ąlters comes with a high number of operations

and a high memory complexity, which is problematic in onboard compression. In [Ballé

et al. (2018)], the number of Ąlters at the bottleneck (M) and for the other layers (N) are
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Ąxed according to the target bit-rate: the higher the target bit-rate, the higher M and N .

Indeed, higher bit rates mean lower distortion and thus increased network approximation

capabilities [Ballé et al. (2018)]. This principle also applies to the auxiliary autoencoder

implementing the hyperprior illustrated in Ągure 4.1 (right column of the right part). In

the present chapter, we propose and evaluate a reduction of the number of Ąlters in each

layer for different target rate ranges. In particular, we investigate the impact of M on the

attainable performance when imposing a drastic reduction of N . The question is whether

there is a real need for a high global number of Ąlters (high N and M) or whether a high

bottleneck size (low N and high M) is sufficient to achieve good performance at high rates.

For that purpose, we impose a low value of N (typically N = 64) and we consider increasing

values of M deĄned by M = 2N, 3N, 4N, 5N to determine the minimum value of M that

leads to an acceptable performance in a given rate range.

In a second step, we investigate the replacement of the GDN/IGDN by non-parametric

activation functions. As previously mentioned, according to [Ballé (2018)], GDN/IGDN

allow obtaining good performance even with a low number of layers. However, for the sake

of completeness, we also test their replacement by ReLU functions. Finally, we propose to

evaluate the effect of the Ąlter kernel support. The main autoencoder in [Ballé et al. (2018)]

is entirely composed of Ąlters with kernel support n× n. The idea then is to test different

kernel supports that is (n− 2)× (n− 2) and (n + 2)× (n + 2). The case with a larger kernel

size is tested to check if performance improvements can be obtained by only increasing the

kernel size.

4.2.2 Simplified entropy model

The entropy model simpliĄcation aims at achieving a compromise between simplicity and

performance while preserving the adaptability to the input image. In [Ballé et al. (2017)],

the representation distribution is assumed fully factorized and the statistical model for each

feature is non-parametric to avoid a prior choice of a distribution shape. This model is

learned once, during the training. In [Ballé et al. (2018)], the strong independence assump-

tion leading to a fully factorized model is avoided by the introduction of the hyperprior

distribution, whose parameters are learned for each input image even in the operational

phase. Both models are general and thus suitable to a wide variety of images; however the

Ąrst one implies a strong hypothesis of independence and prohibits adaptivity to the input

image while the second one is computationally expensive. Based on the previous analysis,

we propose the following parametric model for each of the M features. Consider the jth
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feature elements yij for ij ∈ Ij , where Ij denotes the set of indexes covering the jth feature:

yij ∼ Laplace(0, bj) (resp. yij ∼ N (0, σ2
j ))

with: bj =
√

V ar(yij )/2 (resp. σ2
j = V ar(yij )).

(4.5)

The problem then boils down to the estimation of a single parameter per feature referred

to as the scale bj (respectively the standard deviation σj) in the case of the Laplacian

(resp. Gaussian) distribution. Starting from [Ballé et al. (2018)], this proposal reduces the

complexity at two levels. First, the hyperprior autoencoder, including the analysis Ha and

synthesis Hs transforms, is removed. Second, the side information initially composed of the

compressed auxiliary random variable set (z) of size 8 × 8 ×M now reduces to a M × 1

vector of variances.

As a fully factorized model, this model supposes that the learned representation elements

are i.i.d. within a particular feature map, which is a simplifying but strong assumption.

Concerning the mean values for each feature map, we can observe that they are mostly

close to zero. Note that the data is automatically centered to zero within our software

implementation, and the mean shift is included in the bit stream. Compared to the fully

factorized non-parametric entropy model [Ballé et al. (2017)], the simpliĄed entropy model

is adaptive given that the scale parameter (bj) is estimated for each feature of each input

image. For the feature map that appears as a low-pass approximation of the input image,

as observed in Ągure 4.8, it is difficult to Ąnd a general parametric distribution with a good

Ąt. Moreover, it is not straightforward to Ąnd a priori its position. This feature map is

also modelled using the Laplacian distribution, which is not bit-rate efficient. We expect,

however, to keep the entropy model as simple as possible and that this particular feature

modelling does not penalize too much the overall efficiency of our proposed model.

The auxiliary network simpliĄcation is displayed on the right part of Ągure 4.10.
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Figure 4.10: Proposed architecture after entropy model simpliĄcation: main autoen-
coder [Ballé et al. (2018)] (left column) and simpliĄed auxiliary autoencoder (right col-
umn).

In the next section, the performance of these proposals and of their combinations are

studied for different rate ranges.

4.3 Performance analysis

This section assesses the performance, in terms of rate-distortion, of the proposed archi-

tecture in comparison with the CCSDS 122.0-B [B. Book (2017)], JPEG2000 [Marcellin

and Taubman (2002)] and with the reference methods [Ballé et al. (2017) and Ballé et al.

(2018)]. Beforehand, a subjective image quality assessment is proposed. Although infor-

mal, it allows comparing the artefacts produced by learned compression and by the CCSDS

122.0-B [B. Book (2017)].
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4.3.1 Implementation setup

To assess the relevance of the proposed complexity reductions, experiments were conducted

using TensorFlow. The batch size (i.e., the number of training samples to work through

before the parameters are updated) was set to 8 and up to 1M iterations were performed.

Both training and validation datasets are composed of simulated 12-bit Pléiades panchro-

matic images provided by the CNES, covering various landscapes (i.e., desert, water, forest,

industrial, cloud, port, rural, urban). These datasets are detailed in 2.6. The reference

learned frameworks for image compression are designed to handle 8-bit RGB natural im-

ages and they generally target low rates (typically up to a maximum of 1.5 bits/pixel).

In contrast, onboard satellite compression handles 12-bit panchromatic images and targets

higher rates (from 2bits/pixel to 3.5 bits/pixel). The training dataset is composed of 8M

of patches (of size 256 × 256) randomly cropped from 112 images (of size 585 × 585). The

validation dataset is composed of 16 images (of size 512 × 512). MSE was considered to

be the distortion metric for training. The rate and distortion measurements were averaged

across the validation dataset for a given value of λ. Please note that the value of λ has to

be set by trial and error for a targeted rate range.

In addition to the MSE, we also evaluate those results in terms of MS-SSIM. Both metrics

were detailed in 3.4.3.2. Please note that they exhibit a similar behavior even if the models

were trained for the MSE only. The proposed framework is compared with the CCSDS

122.0-B [B. Book (2017)], JPEG2000 [Marcellin and Taubman (2002)] and with the reference

methods [Ballé et al. (2017) and Ballé et al. (2018)] implemented for values of N and M

recommended by their authors for particular rate ranges.

When naming the different learning frameworks, we intend to distinguish between the

main autoencoder architecture and the entropy model since we tested different combinations

of both. In this case, we designate AE-1 to the main autoencoder [Ballé et al. (2017)] and

AE-2 refers to the main autoencoder [Ballé et al. (2018)]. With respect to the entropy model,

-NP- designates the non-parametric fully-factorized entropy model [Ballé et al. (2017)], -

H- designates the hyperprior entropy model [Ballé et al. (2018)] and -L- designates the

simpliĄed Laplacian entropy model. Lastly, all the frameworks considered in this chapter

terminates with -C which indicates that they were trained exclusively for compression. This

suffix indication will be more evident in the following chapter. In this chapter, we consider

both following learned framework baselines:

• AE-1-NP-C refers to the compression framework originally proposed in [Ballé et al.

(2017)]. This framework is originally implemented for N = 192 (respectively N = 256)
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for rates below 2 bits/pixel (respectively above 2bits/pixel). Note that the number of

Ąlters composing each layer is the same for all layers in this architecture.

• AE-2-H-C refers to the compression framework proposed in [Ballé et al. (2018)]. This

framework is implemented for N = 128 and M = 192 (respectively N = 192 and

M = 320) for rates below 2 bits/pixel (respectively above 2 bits/pixel).

4.3.2 Subjective image quality assessment

At low rates, JPEG2000 is known to produce quite prominent blurring and ringing ar-

tifacts, which is particularly visible in high-frequency textures [Marcellin and Taubman

(2002)]. This is also the case for the CCSDS 122.0-B [B. Book (2017)]. Figure 4.11a,b

shows the original image of the city of Blagnac, which is a 12-bit simulated panchromatic

Pléiades image with size 512 × 512 and resolution 70 cm. The Ągure also shows the im-

age compressed by CCSDS 122.0 (c) and the image compressed by the reference learned

compression architecture AE-1-NP-C (d), for a low compression rate (1.15 bits/pixel). The

image obtained through learned compression appears closest to the original one than the

image obtained through the CCSDS.

(a) Original image. (b) Zoom on the original image.

(c) Zoom on the CCSDS compressed image. (d) Zoom on the end-to-end compressed image.

Figure 4.11: Subjective image quality analysis (R = 1.15 bits/pixel).
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For medium luminances, far less artifacts, such as blurring and Ćattened effects are ob-

served. In particular, the building edges are sharper. The same is true for low luminances,

corresponding to shaded areas: the ground markings are sharp and less Ćatened areas are

observed. As shown in Ągure 4.12, for a higher rate of 1.66 bits/pixel, the two reconstructed

images are very close. However, the image obtained through learned compression remains

closest to the original one, especially in shaded areas.

(a) Original image. (b) Zoom on the original image.

(c) Zoom on the CCSDS compressed image. (d) Zoom on the end-to-end compressed image.

Figure 4.12: Subjective image quality analysis (R = 1.66 bits/pixel).

Finally, as shown in Ągure 4.13 for an even higher rate of 2.02 bits/pixel, CCSDS 122.0 still

produces Ćattened effects, especially in low variance areas. The learned compression method

leads to a reconstructed image that is closest to the original one. Even though the stadium

ground markings slightly differs from the original, the image quality is overall preserved.
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(a) Original image. (b) Zoom on the original image.

(c) Zoom on the CCSDS compressed image. (d) Zoom on the end-to-end compressed image.

Figure 4.13: Subjective image quality analysis (R = 2.02 bits/pixel).

Finally, for various rates, the learned compression method [Ballé et al. (2017)] does not

suffer from the troublesome artifacts induced by the CCSDS 122.0, leading to a more uniform

image quality. The same behavior was observed for the proposed simpliĄed architecture.

In the following, an objective performance analysis is performed in terms of rate-distortion

trade-off for the CCSDS 122.0-B [B. Book (2017)], JPEG2000, the reference architectures

[Ballé et al. (2017)] and [Ballé et al. (2018)] and the proposed simpliĄed ones.

4.3.3 Impact of the number of filter reduction

When considering the number of Ąlters, it is essential to distinguish between the bottleneck

size - deĄned by the number of Ąlters M in the layer just before the bottleneck - and the

other layerŠs number of Ąlters N . At Ąrst, we consider a reduction of N , and then we

evaluate the impact of the bottleneck size M .

4.3.3.1 Apart from the before-bottleneck layer

At Low Rates We Ąrst consider architectures devoted to low rates, say up to 2 bits/pixel.

Starting from Ballé et al. (2018) denoted as AE-2-H-C, the number of Ąlters N (for all layers,
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Table 4.1: Detailed complexity of AE-2-H-C (N=64, M=192)

Layer Filter size Channels Output Parameters FLOPp

n n Nin Nout sout sout

conv1 5 5 1 64 256 256 1664 4.16 × 102

GDN1 4160 1.04 × 103

conv2 5 5 64 64 128 128 102464 6.40 × 103

GDN2 4160 2.60 × 102

conv3 5 5 64 64 64 64 102464 1.60 × 103

GDN3 4160 0.65 × 102

conv4 5 5 64 192 32 32 307392 1.2 × 103

Hconv1 3 3 192 64 32 32 110656 4.32 × 102

Hconv2 5 5 64 64 16 16 102464 1.00 × 102

Hconv3 5 5 64 64 8 8 102464 0.25 × 102

HTconv1 5 5 64 64 16 16 102464 1.00 × 102

HTconv2 5 5 64 64 32 32 102464 4.00 × 102

HTconv3 3 3 64 192 32 32 110784 4.32 × 102

Tconv1 5 5 192 64 64 64 307264 4.80 × 103

IGDN1 4160 0.65 × 102

Tconv2 5 5 64 64 128 128 102464 6.40 × 103

IGDN2 4160 2.60 × 102

Tconv3 5 5 64 64 256 256 102464 2.56 × 104

IGDN3 4160 1.04 × 103

Tconv4 5 5 64 1 512 512 1601 1.60 × 103

Total 1683969 5.2264 × 104

Table 4.2: Comparative complexity of the global architectures - Case of target rates up to
2 bits/pixel.

Method Parameters FLOPp Relative

AE-2-H-C (N=128, M=192) 5055105 1.9115 × 105 1.00
AE-2-H-C (N=64, M=192) 1683969 5.2264 × 104 0.27
AE-2-L-C (N=64, M=192) 1052737 5.0774 × 104 0.265

apart from the one just before the bottleneck) is reduced from N = 128 to N = 64, keeping

M = 192 for the layer just before the bottleneck. This reduction is applied jointly to the

main autoencoder and to the hyperprior one. The proposed simpliĄed architecture is termed

AE-2-H-C (N=64, M=192). The complexity of this model is evaluated in terms of number

of parameters and of Ćoating point operation per pixel (FLOPp) in Table 4.1. Note that

the complexity and FLOPp calculation is described in the Appendix A.1.

Table 4.2 compares the complexity of AE-2-H-C (N=64, M=192) to the reference AE-

2-H-C (N=128, M=192). The complexity of the proposed simpliĄed architecture is 73%

lower in terms of FLOPp with respect to the reference architecture. Now let consider

the impact on compression performance of the reduction of N . Figure 4.14 displays the

performance, in terms of MSE and MS-SSIM, of our different proposed solutions, of the
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reference learned architectures (AE-2-H-C (N=128, M=192) and AE-1-NP-C (N=192)) and

of the JPEG2000 [Marcellin and Taubman (2002)] and CCSDS 122.0-B [B. Book (2017)]

standards. The gray curve portions indicate that the values of N and M are not recom-

mended for this rate range (above 2 bits/pixel). In this Ąrst experiment, we are mainly

concerned by the comparison of the blue lines: the solid one for the reference architecture

AE-2-H-C (N=128, M=192) and the dashed one for the proposal AE-2-H-C (N=64, M=192).
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(b) Distortion measure: MS-SSIM (dB).

Figure 4.14: Rate-distortion curves for the considered learned frameworks and for the
CCSDS 122.0-B [B. Book (2017)] and JPEG2000 [Marcellin and Taubman (2002)] stan-
dards in terms of MSE and MS-SSIM (dB) (derived as−10 log10(1−MS-SSIM)) - Case of
rates up to 2 bits/pixel.
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Table 4.3: Comparative complexity of the global architectures - Case of target rates above
2 bits/pixel.

Method Parameters FLOPp Relative

AE-2-H-C (N=192, M=320) 11785217 4.3039 × 105 1.00
AE-2-H-C (N=64, M=320) 1683969 5.6966 × 104 0.13
AE-2-L-C (N=64, M=320) 1052737 5.4774 × 104 0.1273

As expected, AE-2-H-C (N=64, M=192) achieves a rate-distortion performance close to

the one of AE-2-H-C (N=128, M=192) [Ballé et al. (2018)], both in terms of MSE and MS-

SSIM, for rates up to 2 bits/pixel. We can conclude that the decrease in performance is

very small, keeping in mind the huge complexity reduction. Please note that our proposal

outperforms by far CCSDS 122.0-B [B. Book (2017)], JPEG2000 [Marcellin and Taubman

(2002)] standards as well as AE-1-NP-C (N=192) [Ballé et al. (2017)].

At High Rates Now let consider the architectures devoted to higher rates, say above

2 bits/pixel. For such rates, the reference architectures involve a high number of Ąlters

(N = 256 in [Ballé et al. (2017)], N = 192 and M = 320 in [Ballé et al. (2018)]). Starting

from [Ballé et al. (2018)], we reduced the number of Ąlters to N = 64 in all layers except

the one before the bottleneck, keeping M = 320. The proposal AE-2-H-C (N=64, M=320)

is compared to the reference AE-2-H-C (N=192, M=320) but also to AE-1-NP-C (N=256)

and to JPEG2000 [Marcellin and Taubman (2002)] and CCSDS 122.0-B [B. Book (2017)]

standards. Table 4.3 compares the complexity of AE-2-H-C (N=64, M=320) to the reference

AE-2-H-C (N=192, M=320).

The complexity of the proposed simpliĄed architecture is 87% lower in terms of FLOPp

with respect to the reference method. Now let consider the impact on compression perfor-

mance of the reduction of N . Ągure 4.15 displays the performance, in terms of MSE only,

of our different proposed solutions, of the reference learned methods and of the JPEG2000

and CCSDS standards. The MS-SSIM shows the same behaviour.
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Figure 4.15: Rate-distortion curves at higher rates for learned frameworks and for the
CCSDS 122.0-B [B. Book (2017)] and JPEG2000 [Marcellin and Taubman (2002)] stan-
dards for MSE in log-log scale - Case of high rates (above 2 bits/pixel).

Theses curves show that the simpliĄed architectures (e.g., resulting from a decrease of N)

by far outperform the JPEG2000 and CCSDS standard even at high rates, while showing a

low decrease in performance with respect to the reference architectures. Note however that,

for both the reference (AE-2-H-C (N=192, M=320)) and the simpliĄed (AE-2-H-C (N=64,

M=320)) architectures with hyperpriors, a training of 1M iterations seems insufficient for

the highest rates. Indeed, due to the auxiliary autoencoder implementing the hyperprior,

the training has conceivably to be longer, which can be a disadvantage in practice. This

may be an additional argument to propose a simpliĄed entropy model.

4.3.3.2 The before-bottleneck layer

As previously highlighted, the bottleneck size M plays a key role in the performance of the

considered architectures. Thus, we now consider a Ąxed low value of N (N = 64) and then

we vary the bottleneck size (M = 128, 192, 256 and 320). This experiment, performed on

the proposed architecture integrating the simpliĄed entropy model AE-2-L-C (N=64), allows

quantifying the impact of M on the performance in terms of both MSE and MS-SSIM for

increasing values of the target rate on the proposed architecture. Figure 4.16 shows the

rate-distortion averaged over the validation dataset. According to the literature, high bit

rates require a large global number of Ąlters [Ballé et al. (2018)].
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(b) Distortion measure: MS-SSIM (dB).

Figure 4.16: Impact of the bottleneck size in terms of MSE and MS-SSIM (dB) (derived as
−10 log10(1−MS-SSIM)) .

Figure 4.16 shows that increasing the bottleneck size M only, while keeping N very

small, allows maintaining the performance as the rate increases. As displayed in Ągure 4.16,

while the performance reaches a saturation point for a given bottleneck size, it is possible

to renew its dynamic by increasing M only. This result is consistent since the number of

output channels (M), just before the bottleneck, corresponds to the number of features that

must be compressed and transmitted. It therefore makes sense to produce more features at

high rates for a better reconstruction of the compressed images. Interestingly, this Ągure
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allows establishing in advance the convolution layer dimensions (N and M) for a given rate

range, taking into account a complexity concern.

4.3.3.3 Summary

As an intermediary conclusion, for either low or high bit rates, a drastic reduction of N

starting from the reference architecture [Ballé et al. (2018)], does not decrease signiĄcantly

the performance, both in MSE and in MS-SSIM, while it leads to a complexity decrease of

more than 70%. These results are interesting since it was mentioned in [Ballé et al. (2017),

Ballé et al. (2018), and Ballé (2018)] that structures of reduced complexity would not be

able to perform well at high rates.

4.3.4 Impact of the filter kernel support in the main autoencoder

The original framework AE-2-H-C (N=128, M=192)[Ballé et al. (2018)] is also tested when

replacing the 5 × 5 Ąlters composing the convolutional layers of the main autoencoder by

3×3 and 7×7 Ąlters. The architectures considered in this part share the same entropy model

obtained through the same auxiliary autoencoder in terms of number of Ąlters and kernel

supports. According to Ągure 4.17, a kernel support reduction from 5× 5 to 3× 3 leads to a

performance decrease. This result is expected in the sense that Ąlters with a smaller kernel

support correspond to a reduced approximation capability. On the other hand, a kernel

support increase from 5×5 to 7×7 does not lead to a signiĄcant performance improvement.

This result indicates that the approximation capability obtained with a kernel support 5×5

is sufficient.

4.3.5 Impact of the GDN/IGDN replacement in the main autoencoder

The original architecture of AE-2-H-C (N=128, M=192) [Ballé et al. (2018)], involving

GDN/IGDN non-linearities, is compared with the architecture obtained after a full ReLU

replacement, except for the last layer of the synthesis part. Indeed, this layer involves a

sigmoid activation function for constraining the output interval mapping between 0 and

1 before quantization. Figure 4.17 shows the rate-distortion averaged over the validation

dataset in terms of both MSE and MS-SSIM (dB).

As claimed in [Ballé (2018)], GDN/IGDN perform better than ReLU for all rates and es-

pecially at high rates. Thus, although GDN/IGDN increase the number of parameters

to be learned and stored, as well as the number of FLOPp, on one side this increase
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represents a small percentage of the overall structure with respect to conventional non-

linearities [Ballé (2018)]. On the other side, GDN/IGDN lead to a dramatic performance

boost. In view of these considerations, the complexity reduction in this chapter does not

target the GDN/IGDN. However, their replacement by simpler activation functions can be

envisioned in future work to take into account onboard hardware requirements.
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(b) Distortion measure: MS-SSIM (dB).

Figure 4.17: Impact of the GDN/IGDN replacement and of the Ąlter kernel support on
performance in terms of MSE and MS-SSIM (dB) (derived as −10 log10(1−MS-SSIM)).
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4.3.6 Impact of the number of layer reduction in the main autoencoder

The original framework AE-2-H-C (N=128, M=192) [Ballé et al. (2018)] is also compared

to the framework obtained when the number of layers composing the main autoencoder (4

layers for the encoder and 4 layers for the decoder) is reduced to 3 layers and 2 layers suc-

cessively. Note that all the simpliĄed architectures considered in this part share the same

entropy model obtained through the same auxiliary autoencoder in terms of the number

of Ąlters and kernel supports. Surprisingly, according to Ągure 4.18, reducing the number

of layers leads to a performance improvement for high rates. When reducing to 2 layers,

there is a slight deterioration in performance. However, the two-layer architecture overcame

the saturation level achieved by the original architecture for higher bit rates. This result

tends to be misleading since suppressing an intermediate layer does not necessarily imply

a reduction in complexity, as we will see later in detail. The complexity of a convolutional

layer is not directly proportional to the number of its parameters, according to the com-

plexity calculation detailed in the Appendix A.1. Its complexity is also associated with the

dimensions of its input, downsampling factors (resp. upsampling), and consequently, the

dimensions of its output.

To better understand the attained performances, we now turn to the complexity of the

considered architectures, which is shown in Table 4.4. We observe that the complexity in

FLOPp is increased by simply reducing the number of layers. Note that this trend can-

not be generalized since the architecture complexity also depends on other conĄgurations.

Although this architectural modiĄcation reduces the number of parameters, the latent rep-

resentation (y) has a larger spatial dimension since downsampling operations have been

suppressed. According to Equation A.2, the resulting complexity for the Ąltering operation

is expressed as a function of the spatial dimensions of the output intermediary representation

(sout × sout). Consequently, a larger spatial dimension implies higher complexity, especially

at the layer preceding the bottleneck, which contains M = 192 Ąlters that also operate in

a greater spatial extent (sin × sin). One way to compensate for this complexity increase

would be to increase the downsampling (resp. upsampling) factor from 2 to 4, for example.

However, a higher downsampling factor can imply abrupt losses in the spatial dimension.

Following this logic, this becomes even more explicit when we look at the complexity of the

secondary autoencoder that implements the hyperprior in Table 4.5. Despite maintaining

the same number of parameters in this part, the complexity in FLOPp is considerably in-

creased since it acts in a latent representation with a larger spatial dimension (multiplied

by 2 and multiplied by 4 for one-layer and two-layer reduction, respectively).
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Table 4.4: Comparative complexity of the considered architectures - Case of reducing the
number of layers.

Method Parameters FLOPp Relative to FLOPp

AE-2-H-C (N=128, M=192)-4-layers (original) 5055105 1.9115 × 105 1.00
AE-2-H-C (N=64, M=192) -4-layers 1683969 5.2264 × 104 0.27
AE-2-H-C (N=128, M=192)-3-layers 4202625 2.0732 × 105 1.08
AE-2-H-C (N=64, M=192) -3-layers 1470721 6.6605 × 104 0.34
AE-2-H-C (N=128, M=192)-2-layers 3350145 2.7201 × 105 1.42

Table 4.5: Comparative complexity of the considered architectures on the hyperprior part-
Case of reducing the number of layers.

Method Parameters FLOPp Relative to FLOPp

AE-2-H-C (N=128, M=192)-4-layers (original) 2081472 4230 1.00
AE-2-H-C (N=64, M=192) -3-layers 2081472 16920 4.00
AE-2-H-C (N=64, M=192) -2-layers 2081472 67680 16.00

When reducing the number of layers composing the main autoencoder (the symmetric pair

of layers part of the encoder and decoder), each reduction represents one less downsampling

(resp. upsampling) operation adopted. Each downsampling operation (resp. upsampling)

implies the discarding (resp. interpolation) of information present in the spatial dimensions

of the intermediary tensors along the whole autoencoder. Note that this process may be

one of the sources of visual quality degradations in the resulting compressed image. In this

case, there is a possible smaller loss of information in encoding and decoding processes.

To further explore the number of layer reduction, experiments were also carried out with a

single architecture that brings together the number of layer reduction (one layer reduction)

and the number of Ąlter reduction (N = 64 instead of N = 192). This architecture main-

tained the same high performance compared to its counterpart with more layers and Ąlters

and even for higher bit rates. Concerning the complexity, we observed that this architecture

presents a lower complexity in terms of FLOPp with respect to the two-layer one. However,

it is still greater to the one of the architecture featuring the number of Ąlters reduction only

(AE-2-H-C (N=64, M=192)).

Reducing the number of layers allows high compression performance at high rates without

using a wider bottleneck, as seen in previous experiments. Thus, modifying the number of

layers can be a different design choice to attain better performance at higher rates. However,

this does not necessarily mean that reducing the number of layers is better than increasing

the bottleneck size. Indeed, reducing the number of layers implies a complexity increase in

FLOPp. However, reducing the number of layers allows reducing the number of parameters,
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which may be relevant in a limited storage context.

1 1.5 2 2.5 3 3.5 4 4.5

bit rate [bit/pixel]

10
1

10
2

10
3

M
S

E

(a) Log–log scale. Distortion measure: MSE.

0.5 1 1.5 2 2.5 3 3.5 4

bit rate [bit/pixel]

26

28

30

32

34

36

38

40

42

44

M
S

-S
S

IM
 (

d
B

)

(b) Distortion measure: MS-SSIM (dB).

Figure 4.18: Impact of the number of layer reduction on performance in terms of MSE and
MS-SSIM (dB) (derived as −10 log10(1−MS-SSIM)).

4.3.7 Impact of the entropy model simplification

To evaluate the impact of the entropy model simpliĄcation, the autoencoder implementing

the hyperprior in the reference compression framework [Ballé et al. (2018)] is replaced by

the simpliĄed entropy model presented in 4.2.2, according to Ągure 4.10.
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Table 4.6: Reduction of the encoder complexity induced by the Laplacian entropy model on
the coding part - Case of rates up to 2 bits/pixel.

Method Parameters FLOPp Relative

AE-2-H-C (N=64, M=192) 1157696 1.25 × 104 1
AE-2-L-C (N=64, M=192) 526464 1.09 × 104 0.87

At Low Rates For rates up to 2 bits/pixel, the architectures AE-2-L-C (N=128, M=192)

(with the Laplacian entropy model) and AE-2-L-C (N=64, M=192) (combining the reduction

of the number of Ąlters to N = 64 and the Laplacian entropy model) are compared with

the non parametric reference method AE-1-NP-C (N=192) [Ballé et al. (2017)], with the

hyperprior reference method AE-2-H-C (N=128, M=192) [Ballé et al. (2018)], with its version

after reduction of the number of Ąlters AE-2-H-C (N=64, M=192), with the architecture

denoted as AE-2-NP-C (N=128, M=192) (combining the main auto-encoder in [Ballé et al.

(2018)] and the non-parametric entropy model in [Ballé et al. (2017)]) and its version after

reduction of the number of Ąlters AE-2-NP-C (N=64, M=192). Table 4.6 shows that the

coding part complexity of AE-2-L-C (N=64, M=192) is 13% lower than the one of AE-2-H-C

(N=64, M=192).

Figure 4.14 shows the rate-distortion averaged over the test dataset for the trained archi-

tectures for both MSE and MS-SSIM quality measures. Recall that the architectures were

trained for MSE only. The proposed simpliĄed entropy model (AE-2-L-C (N=64, M=192))

achieves an intermediate performance between the hyperprior model (AE-2-H-C (N=64,

M=192)) and the non parametric model (AE-2-NP-C (N=64, M=192)). Obviously, due to the

entropy model simpliĄcation, AE-2-L-C (N=64, M=192) underperforms the more general

and thus more complex AE-2-H-C (N=64, M=192) model. However, the proposed entropy

model, even if simpler, preserves the adaptability to the input image, unlike the models

AE-2-NP-C (N=128, M=192) and AE-1-NP-C (N=192) [Ballé et al. (2017)]. Please note that

the simpliĄed Laplacian entropy model perform close to the hyperprior model at relatively

high rates. One possible explanation for this behaviour can be the high amount of side

information required by the hyperprior model [Ballé et al. (2018)] for these rates [Y. Hu

et al. (2020)].

At High Rates For high rates (above 2 bits/pixel), the proposed architectures AE-2-L-C

(N=192, M=320) (with the Laplacian entropy model) and AE-2-L-C (N=64, M=320) (com-

bining the reduction of the number of Ąlters to N = 64 and the Laplacian entropy model)

are compared with the non parametric reference architecture AE-1-NP-C (N=M=256) [Ballé
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Table 4.7: Reduction of the encoder complexity induced by the Laplacian entropy model on
the coding part - Case of rates above 2 bits/pixel.

Method Parameters FLOPp Relative

AE-2-H-C (N=64, M=320) 1715008 1.3979 × 104 1
AE-2-L-C (N=64, M=320) 731392 1.1787 × 104 0.8432

et al. (2017)], with the hyperprior reference architecture AE-2-H-C (N=192, M=320) [Ballé

et al. (2018)], with its version after reduction of the number of Ąlters AE-2-H-C (N=64,

M=320), with the architecture denoted as AE-2-NP-C (N=192, M=320) (combining the main

auto-encoder in [Ballé et al. (2018)] and the non-parametric entropy model in [Ballé et al.

(2017)]) and its version after reduction of the number of Ąlters AE-2-NP-C (N=64, M=320).

Figure 4.15 displays the rate-distortion averaged over the validation dataset for the trained

architectures in terms of MSE. The proposed Laplacian entropy method AE-2-L-C (N=64,

M=320) achieves an intermediate performance between the hyperprior model (AE-2-H-C

(N=64, M=320)) and the non parametric model AE-2-NP-C (N=64, M=320), similarly to the

models targeting lower rates in Ągure 4.14. Table 4.7 shows that the coding part complexity

of AE-2-L-C (N=64, M=320) is around 16% lower than the one of AE-2-H-C (N=64, M=320).

4.3.7.1 Summary

For either low or high bit rates, the proposed entropy model simpliĄcation leads to inter-

mediary performance when compared to the non parametric and the hyperprior entropy

models with the reference architectures [Ballé et al. (2017) and Ballé et al. (2018)], both

in MSE and in MS-SSIM. Moreover, it leads to a coding part complexity decrease of more

than 10% with respect to [Ballé et al. (2018)].

4.3.8 Discussion about complexity

According to the previous performance analysis, the computational complexity of the pro-

posed simpliĄed architecture combining the number of Ąlters reduction and the Laplacian

entropy model is signiĄcantly lower than the one of the reference learned architecture fea-

turing the hyperprior model [Ballé et al. (2018)]. However, around 10 kFLOPp, the at-

tained complexity is at least 2 orders of magnitude higher than the ones of the CCSDS and

JPEG2000 [Marcellin and Taubman (2002)] standards. Indeed, the complexity of CCSDS

122.0 is around 140 FLOPp (without optimizations), or 70 MAC (Multiplication Accumula-

tion). The JPEG2000 is 2 to 3 times more complex depending on the optimizations. Note,
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however, that the CCSDS 122.0 dates back to 2008 when onboard technologies were limited

to radiation-hardened (Rad-Hard) components dedicated to space, with the objectives of 1

Msample/s/W (as speciĄed in the CCSDS 122.0 green book [G. Book (2015)]), to process

around 50 Mpixels/s. Space technologies, currently developed for the next generation of

CNES Earth observation satellites, rather target 5Ű10 Msample/s/W. Nowadays, the use of

commercial off-the-shelf (COTS) components or of dedicated hardware accelerators is envi-

sioned: based on a thinner silicon technology node, they allow higher processing frequencies

with consistently lower consumption. For instance, the Movidius Myriade 2 announces 1

TFLOPS/W. The 10 kFLOPS of the current network would lead to 100 Mpixels/s/W on

this component. Therefore, the order of magnitude of the proposed simpliĄed architecture is

not incompatible with an embedded implementation, taking into account the technological

leap from the component point of view. Consequently, the complexity increase with respect

to the CCSDS one, which we limited as far as possible, is expected to be affordable after

computation device upgrading. Please note that, in addition, manufacturers of components

dedicated to neural networks provide software suites (for example Xilinx) to optimize the

portings. Finally, before onboard implementation, a network compression (including prun-

ing, quantization, or tensor decomposition for instance) can be envisioned. However, this is

out of the scope of this thesis.

4.4 Conclusions

This chapter proposed different solutions to adapt the reference learned image compression

architectures [Ballé et al. (2017) and Ballé et al. (2018)] to onboard satellite image compres-

sion, taking into account their computational complexity. We Ąrst reduced the number of

Ąlters composing the convolutional layers of the main and auxiliary autoencoders, applying

a special treatment to the bottleneck. The impact of the bottleneck size, under a drastic

reduction of the overall number of Ąlters, was investigated. This study allowed identifying

the lowest global number of Ąlters for each rate. For the sake of completeness, we also

called into question the other design options of the reference architectures, and especially

the parametric activation functions. We also reduced the number of layers composing the

encoder (resp. decoder) to understand its impact on the performance. Counterintuitively,

reducing the number of layers increases complexity. The latent representation has larger

spatial dimensions, which results in more complex operations in the bottleneck part. Sec-

ond, in order to simplify the entropy model, we also performed a statistical analysis of the

learned representation. This analysis showed that most features follow a Laplacian distribu-
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tion. We thus proposed a simpliĄed parametric entropy model, involving a single parameter

to be estimated. To preserve the adaptivity and thus the performance, this parameter is

estimated in the operational phase for each feature of the input image. This entropy model,

although far simpler than non-parametric or hyperprior models, brings comparable perfor-

mance. In a nutshell, by combining the reduction of the global number of Ąlters, and the

simpliĄcation of the entropy model, we developed a reduced-complexity compression archi-

tecture for satellite images that outperforms the CCSDS 122.0-B [B. Book (2017)], in terms

of rate-distortion trade-off, while maintaining a competitive performance for medium to

high rates in comparison with the reference learned image compression models [Ballé et al.

(2017) and Ballé et al. (2018)]. Thereupon, while more complex than traditional CCSDS

122.0 and JPEG 2000 standards, the proposed solutions offer a good compromise between

complexity and performance. Thus, we can recommend their use, subject to the availability

of suitable onboard devices.
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Chapter 5

Satellite image compression and denoising
with neural networks

This chapter is adapted from [Alves de Oliveira et al. (2022)]
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In this chapter, we take advantage of CNNs to address satellite image compression and

denoising. We aim to outperform the current satellite imaging system [Delvit et al. (2019)],

described in chapter 2, both in compression and denoising without manual parameter set-
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ting, without a priori knowledge on the noise statistical model and without tricky procedures

(like VST or instrumental noise restitution) to Ąt the noise to a given model. Besides, we

aim to propose possible onboard denoising whereas it is currently mainly performed on

ground as a post-processing. After a short review of state-of-the-art architectures, we Ąrst

propose an onboard joint compression and denoising approach with a single neural architec-

ture based on [Ballé et al. (2018)]. Second, we propose a modular neural architecture, that

performs sequentially onboard compression based on [Ballé et al. (2018)] and on ground

denoising based on [Tian et al. (2020)]. This sequential approach allows to lighten the on-

board computational load if required, especially since it is compatible with every complexity

reduction proposed in chapter 4.

5.1 Selected methods from state-of-the-art

5.1.1 End-to-end trainable autoencoder for image compression

In the context of image compression, autoencoders are used to learn a representation with

low entropy after quantization [Ballé et al. (2017) and Ballé et al. (2018)]. In this chapter,

we focus on the reference architecture [Ballé et al. (2018)] displayed on Ągure 5.1. In the

main autoencoder (left part of Ągure 5.1), an analysis transform (Ga) is applied to the

input image I to produce a learned representation y = Ga(I) at the bottleneck. Then, a

synthesis transform (Gs) is applied to the quantized representation ŷ to reconstruct the

input image Î = Gs(ŷ), as detailed in chapter 3. Ga and Gs are obtained through multiple

convolutional layers composed of Ąlters followed by non-linear activation functions. N

deĄnes the number of Ąlters in each layer, except in the last layer before the bottleneck

composed by M Ąlters. Indeed, M > N has to be maintained, following the so-called wide

bottleneck strategy [Ballé et al. (2018)]. GDN (resp. IGDN) activation functions are used

to implement a local adaptive normalization. The resulting learned representation is thus

multi-channel and non-linear.
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Figure 5.1: Architecture of the variational autoencoder [Ballé et al. (2018)].

A side autoencoder (right part of Ągure 5.1) is used to estimate the hyper-parameters

of each input image representation distribution even during the operational phase. This

model takes into account possible spatial dependency in each input image representation.

Chapter 4 showed that a simpler fully-factorized Laplacian model can be successfully used to

compress satellite images. This simpliĄed model exploits a statistical analysis of the learned

representation for satellite images presented in chapter 4. The computationally expensive

auxiliary autoencoder (right part of Ągure 5.1) in [Ballé et al. (2018)] was thus replaced by

the simple estimation of the scale parameter related to the Laplacian distribution.

5.1.2 Denoising with BRDNet

Deep CNN-based methods have become very successful in image denoising, as introduced

in chapter 3. From the beginning, [K. Zhang et al. (2017a)] proposed a discriminative

denoising model learning named DnCNN that adopts RL and BN to improve the denoising

performance.

More recently, [Tian et al. (2020)] proposed a novel deep learning framework designated

batch-renormalization denoising network (BRDNet), detailed in chapter 3, whose main char-

acteristics are recalled subsequently. BRDNet uses batch renormalization (BRN) [Ioffe

(2017)] to deal with small mini-batch convergence issues in BN and adopts RL similarly

to [K. Zhang et al. (2017a)]. BRN is applied over a mini-batch according to the Algo-

rithm 4 presented in 3.5.1. BRDNet also blends two parallel sub-networks to obtain more

relevant features for improving the denoising performance [Szegedy et al. (2015)]. Further-

more, the idea was to increase the width of the network rather than the depth (e.g., number

of layers) and thus to avoid vanishing or exploding gradients issues during training, which

mainly affect deeper networks. The proposed network is shown in Ągure 5.2.
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Figure 5.2: Architecture of the BRDNet network [Tian et al. (2020)].

In and Înf denote the noisy image and the denoised image, respectively. We observe that

the upper network mainly involves RL and BRN, while the lower network features RL, BRN,

and dilated convolutions [F. Yu and Koltun (2015)]. The authors claim that dilated convo-

lutions enable the extraction of more context information with relatively lower complexity

when compared to conventional CNNs, mostly because they attain the same receptive Ąeld

with few layers and parameters. In [Tian et al. (2020)], experiments demonstrated that

the proposed BRDNet outperforms state-of-the-art deep learning denoising methods, e.g.,

DnCNN [K. Zhang et al. (2017a)], but also the fast and Ćexible denoising network (FFD-

Net) [K. Zhang et al. (2018)] and the image-restoration CNN (IRCNN) [K. Zhang et al.

(2017b)].

Contrarily to autoencoders, BRDNet uses residual learning to predict a residual image

f(In) ⋍ In − Inf , where f(In) denotes the noise prediction by the DNN. In Ągure 5.2,

BRDNet takes In as input and the predicted denoised image (̂Inf ) as output. The BRDNet

parameters (Ąlter weights) are learned by optimizing a loss function taking account the

distortion between Inf and Înf . The distortion criterion is deĄned by:

J(θ) =
∑

Inf ,̂Inf ∈dataset

D(Inf , Înf ). (5.1)

The loss function deĄned in Equation (5.1) is minimized through gradient descent with

back-propagation [Bengio (2009)] on a representative data set composed of pairs of noisy

(In) and noise-free (Inf ) images.
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5.2 Combining compression and denoising

Currently, as presented in chapter 2, the compression is performed onboard the satellite

whereas the denoising is performed on ground, because of its prohibitive computational

cost [Delvit et al. (2019)]. However, the evolution of satellite computing capacities en-

ables onboard denoising to be reasonably envisioned [Delvit et al. (2019)]. This chapter

addresses data-driven approaches for satellite image compression and denoising, possibly

both performed onboard. The aim is to attain high performance while dispensing from

manual parameter setting, a priori knowledge of the noise model, or tricky intermediary

steps (like VST or instrumental noise restitution). The Ąrst proposed approach takes ad-

vantage of the compression-dedicated architecture, proposed in [Ballé et al. (2018)] and

adapted to satellite in chapter 4, to jointly perform compression and denoising onboard.

The second proposed approach sequentially combines a compression-dedicated architecture

and a denoising-dedicated one. Thanks to its modular structure, this sequential approach

allows to choose the best architectures for compression [Ballé et al. (2018)] and for denois-

ing [Tian et al. (2020)] respectively. Moreover, this approach facilitates consideration of

the onboard hardware constraints since all the complexity-reductions proposed in chapter 4

can be applied to the compression-dedicated architecture in this case. The question of

computational complexity is less crucial for the on ground denoising-dedicated architecture.

Finally, note that whether the joint or the sequential approach are expected to suppress

compression artifacts together with instrumental noise [Delvit et al. (2019)]. The transmis-

sion is assumed not to introduce additional degradations [Carlavan et al. (2012)]. Realistic

simulation of satellite images provide both In and Inf for the same scene, which makes

architecture training and validation possible.

5.2.1 Joint compression and denoising

In this part, we consider the compression-dedicated architecture displayed in Ągure 5.1, with

the number of Ąlters reduction proposed in chapter 4. The input is the noisy acquired image

(In). In order to jointly perform denoising and compression, the architecture parameters are

learned through the optimization of a speciĄc loss function (different from the one used in

chapter 4): the rate R(ŷ) is the same but the distortion D(Inf , Gs(Ga(In))) now measures

the similarity between the reconstructed image Înf = Gs(Ga(In)) and the reference noise-

free image Inf (instead of the input image In). The reconstructed image is thus expected

to be denoised. As joint compression and denoising may require a greater approximation

capacity, we Ąrst consider the more sophisticated hyperprior entropy model [Ballé et al.
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(2018)] (right part of Ągure 5.1) that delivers the best performance/modeling for compres-

sion. However, some supplementary tests were also performed for the simpliĄed Laplacian

entropy model proposed in chapter 4.

5.2.2 Sequential compression and denoising

Compression Denoising

Figure 5.3: Sequential compression and denoising scheme.

The sequential compression and denoising approach exploits two architectures: the compression-

dedicated one detailed in 5.1.1 (with two versions denoted respectively AE-2-H-C when

featuring the hyperprior [Ballé et al. (2018)] and AE-2-L-C when featuring the Laplacian

entropy model [Alves de Oliveira et al. (2021)]), and the denoising-dedicated architecture

BRDNet, detailed in 3.5.4 [Tian et al. (2020)], from which we expect also compression

artifact reduction.

5.2.3 Denoising as a post-processing after joint compression and
denoising

Joint compression
and denoising Denoising

post-processing

Figure 5.4: Joint compression and denoising followed by denoising as a post-processing
scheme.

When combining the beneĄts of both joint and sequential approaches, BRDNet can also be

employed as a post-processing module to joint compression and denoising. The resulting

approach is expected to suppress artifacts arising from the previous compression as well

as remaining noise after denoising. This scheme is illustrated in Ągure 5.4. This approach

beneĄts from two separate denoising stages with one deployed on the ground. The on
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ground architecture is trained on the images that have already been jointly compressed and

denoised.

5.3 Performance analysis

To assess the relevance of the learned proposed compression and denoising approaches, ex-

periments were conducted using TensorFlow. The reference CNES imaging system of [Delvit

et al. (2019)] is considered as our baseline for compression and denoising performance.

5.3.1 Implementation setup

5.3.1.1 Datasets

Our training (resp. test) dataset is composed of 112 (resp. 16) pairs of noisy (In) and

noise-free (Inf ) 12-bit simulated Pléiades panchromatic images (of size 586× 586) provided

by the CNES, covering various landscapes. The instrumental noise is simulated according

to [Delvit et al. (2019)]. For training our compression architectures, we use patches ran-

domly cropped from the noisy images (In) composing our training dataset. For training our

joint compression and denoising architectures, we use pairs of patches randomly cropped

from image pairs In/Inf composing our training dataset. In this case, In is the input of

the network, and Inf is the reference for distortion computation. For the denoising-only

architectures, the training has the same conĄgurations except that the input images are the

noisy compressed images În (resp. Înf ) when performed after compression-only (resp. after

joint compression and denoising). Analogously and following the same logic, full images

(resp. pairs of images) from the test dataset are used to assess the performance.

5.3.1.2 Reference methods

For the joint compression and denoising and denoising-only architectures, the autoencoder

architecture proposed in [Ballé et al. (2018)] is considered. The number of Ąlters was set to

N = 64 and M = 320 following the architecture simpliĄcations in terms of number of Ąlters

presented in chapter 4. The considered architectures are designated as:

• AE-2-H-CD: joint learned compression and denoising architecture featuring the hyper-

prior.
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• AE-2-H-C: learned compression architecture featuring the hyperprior presented in

chapter 4 [Alves de Oliveira et al. (2021)].

• AE-2-L-C: learned compression architecture featuring the simpliĄed Laplacian entropy

model presented in chapter 4 [Alves de Oliveira et al. (2021)].

• CNES-C: CNES compression algorithm [Thiebaut et al. (2016)].

For the sequential denoising, the BRDNet is trained following the architecture description

in [Tian et al. (2020)]. Each convolutional layer is composed of 64 Ąlters with kernel size

3 × 3. Note that both joint and sequential compression and denoising approaches do not

require the instrumental noise restitution and the variance stabilizing transform (VST) used

in the reference CNES imaging system [Anscombe (1948)].

5.3.1.3 Training parameters

For learning the compression-dedicated and the joint compression and denoising architec-

tures, the training patch size was set to 256 × 256, the batch size was set to 8 and up

to 2 million iterations were performed. For learning the denoising-dedicated architecture,

the training patch size was set to 50 × 50, the batch size was set to 20 and up to 500000

iterations were performed [Tian et al. (2020)]. MSE was used as the distortion metric for

training in all cases.

5.3.2 Compression-only performance of the joint compression and
denoising method

In this part, the different methods are tested for input images with noise (In), and their out-

put images are compared with the same noisy images (In) for the compression performance

assessment. The proposed joint compression and denoising architecture AE-2-H-CD is com-

pared with its corresponding compression-only architecture AE-2-H-C, trained to minimize

♣♣̂In − In♣♣22, and the CNES compression method [Thiebaut et al. (2016)].
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Figure 5.5: Curves for MS-SSIM (dB) between the output image and the noisy image (In).

Figure 5.5 shows the performance averaged over the test dataset in terms of bit rate and

MS-SSIM (dB) for the considered methods. In Ągure 5.5, it can be seen that AE-2-H-CD

compresses more than denoises since the distortion arising from compression is expected to

be more outstanding than the instrumental noise in lower bit rates. However, for higher

bit rates, there is a greater tendency of this architecture to suppress noise compared to

the compression-only architecture AE-2-H-C, which has no vocation to denoising. In this

way, the joint compression and denoising architecture can implicitly take into account the

different portions of distortion arising from compression and noise present in the input

images (In) for higher bit rates.

5.3.3 Compression and denoising performance

The considered joint compression and denoising framework AE-2-H-CD and the sequential

compression and denoising approach for AE-2-H-C+BRDNet and AE-2-L-C+BRDNet are com-

pared with the CNES compression method [Thiebaut et al. (2016)] in conjunction with

the denoising algorithm NL-Bayes parametrized by CNES [Delvit et al. (2019)]. The two

different compression and denoising strategies are tested for input images with noise (In),

but their output images are compared with the reference noise-free images (Inf ) for the

quality assessment. The compression/denoising performance for the same corresponding

compression-only methods is also displayed. The performance curve for the CNES-C method

in conjunction with BRDNet is also shown.
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Figure 5.6: Curves for MS-SSIM (dB) between the output image and the noise-free image
(Inf ).
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Figure 5.7: Curves for PSNR (dB) between the output image and the noise-free image (Inf ).

Figures 5.6 and 5.7 show the performance averaged over the test dataset in terms of bit

rate, MS-SSIM (dB) and PSNR (dB) for the considered methods. Table 5.1 compares the

complexity of the autoencoder-based considered methods AE-2-H-CD, AE-2-H-C and AE-2-

L-C to the BRDNet. The complexity of the BRDNet is about 21× higher in terms of FLOPp

with respect to the considered joint compression and denoising AE-2-H-CD. Concerning the
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Table 5.1: Comparative complexity of the considered architectures
Method Parameters FLOPp

AE-2-H-CD / AE-2-H-C (N=64, M=320) 1683969 5.6966 × 104

AE-2-L-C (N=64, M=320) [chapter 4] 1052737 5.4774 × 104

BRDNet [Tian et al. (2020)] 1186816 1.1868 × 106

BRDNet, we will focus on time complexity. It is indeed the more critical criterion on ground

since it determines the pipeline throughput. BRDNet denoises in average 2.192× 106 pixels

per second on an NVIDIA Tesla V100 GPU with 32 GB onboard memory, whereas the

reference CNES-customized NL-Bayes denoises on average 0.073× 106 pixel per second on

an Intel i7-6700 HQ (2.6-3.5GHz) CPU with 8 GB RAM [Masse et al. (2018)]. Finally

BRDNet, beneĄting from the GPU massively parallel architecture, denoises approximately

30 times faster than the CNES-customized NL-Bayes.

These experiments showed that the proposed joint compression and denoising model AE-

2-H-CD outperforms the CNES baseline over the considered bit range between 2 and 3.7

bits/pixel. The advantage of the proposed joint compression and denoising method reduces

at higher rates. The CNES compression algorithm in conjunction with BRDNet showed better

compression and denoising performance than the CNES+NL-Bayes baseline. However, it still

has a lower performance than the learned joint and sequential compression-and-denoising

methods. This result also shows that deep learning denoising can signiĄcantly improve a

typical satellite imaging system.

The sequential compression and denoising approaches (AE-2-H-C or AE-2-L-C followed

by BRDNet) perform similarly and even better than the joint compression and denoising

approach (AE-2-H-CD), particularly for the highest bit rates. The approach that performs

denoising as a post-processing to joint compression and denoising (AE-2-H-CD followed by

BRDNet) performs slightly better for rates between 2.2 and 3.2 bits/pixel. Besides, for this

bit rate range, it outperforms all the other approaches, whereas it performs similarly to

the sequential approaches at high rates. Finally, note that simply replacing the NL-Bayes

algorithm with BRDNet architecture leads to a gain in performance without any modiĄcation

onboard.
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5.3.3.1 Subjective image quality analysis

Figure 5.8: Example result on a test image. (a) CNES-C+NL-Bayes Delvit et al., 2019. (b)
AE-2-H-C+BRDNet. (c) AE-2-H-CD. (d) Noise-free image (Inf ).

Figure 5.8 provides an example of the uncompressed and denoised image, obtained with

the CNES baseline and with the proposed approaches for similar rates. Even if all the

methods perform satisfactorily, the image obtained with the joint compression and denoising

approach AE-2-H-CD is visually the closest to the noise-free reference whereas the sequential

approach (AE-2-H-C+BRDNet) tends to produce a slightly smoothed image. Note that the

current CNES pipeline also adds noise in areas where intensity is low, as is not the case for

the proposed approaches.

5.3.3.2 Impact of the simplified Laplacian entropy model in the joint

compression and denoising

Experiments were also carried out with the end-to-end joint compression and denoising

architecture featuring the simpliĄed Laplacian entropy model proposed in chapter 4. The

considered model is thus designated as:

• AE-2-L-CD: joint learned compression and denoising architecture featuring the simpli-

Ąed Laplacian entropy model [Alves de Oliveira et al. (2021)].

Figure 5.9 shows the performance averaged over the test datasets in terms of bit rate and

MS-SSIM (dB) for the considered AE-2-L-CD model in comparison with its counterpart

AE-2-H-CD that features the more complex hyperprior model. We observe that AE-2-L-

CD didnŠt exhibit a comparable performance. A statistical analysis of the resulting feature

maps for this model revealed that most of them can be well Ątted by centered Laplacian

distributions in a similar proportion when compared to its equivalent compression-only

model as showed in chapter 4.
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Figure 5.9: Curves for MS-SSIM (dB) between the output image and the noise-free image
(Inf ).

5.3.3.3 Impact of the number of filters increase in the joint compression and

denoising

Experiments were also performed with the end-to-end joint compression and denoising

method featuring the hyperprior model with a higher number of Ąlters, analogously to

the original compression framework proposed in [Ballé et al. (2017) and Ballé et al. (2018)]

with N = 192. This model is designated as:

• AE-2-H-CD (N=192, M=320): joint learned compression and denoising architecture

featuring the hyperprior model with N = 192.

Figure 5.10 shows the performance averaged over the test datasets in terms of bit rate

and MS-SSIM (dB) for the considered AE-2-H-CD (N=192, M=320) model in comparison

with its counterpart AE-2-H-CD (N=64, M=320) that features a reduced number of Ąlters.

A higher number of Ąlters doesnŠt result in performance improvements as we observed in

the equivalent compression-only models in chapter 4. This result seems to be related to

increased difficulty in training this architecture with an increased number of Ąlters for joint

compression and denoising.
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Figure 5.10: Curves for MS-SSIM (dB) between the output image and the noise-free image
(Inf ).

5.3.3.4 Lower average luminance images

The idea here is to verify how effective the learning-based joint and sequential compression

and denoising approaches are effective in a different luminance scenario, e.g., with low

average luminance images.
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Figure 5.11: Curves for MS-SSIM (dB) between the output image and the noise-free image
(Inf ).
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Figure 5.12: Curves for PSNR (dB) between the output image and the noise-free image
(Inf ).

Figures 5.11 and 5.12 show the performance averaged over the low-luminance images test

dataset in terms of bit rate, MS-SSIM (dB) and PSNR (dB) for the considered methods.

Analogously to what was observed in Ągures 5.6 and 5.7, the learned approaches AE-2-

H-CD and AE-2-H-C + BRDNet presented a superior performance compared to the CNES-C

+ NL-Bayes for low luminance average images. The AE-2-H-CD model achieved better

performance than the CNES-C + NL-Bayes, even at higher bit rates.

Note that the joint compression and denoising approach (AE-2-H-CD), even when still

underperforming, reached a performance much closer to the one of the sequential approach

when compared to the achieved performance on the standard average luminance images

displayed on Ągures 5.6 and 5.7. Thus, the joint approach appears more attractive here for

dealing with images with low average luminance due to its lower complexity. The sequen-

tial framework AE-2-H-C + BRDNet achieved considerably superior performance than the

CNES-C + NL-Bayes. This result demonstrates how learned approaches can improve satellite

image compression and denoising performance, even when dealing with images in a more

challenging scenario. The Ągure 5.12 also displays the performance of the joint compression

and denoising framework that was trained exclusively on the standard average luminance

images. This framework was not able to achieve a great performance for compression and

denoising in low average luminance images. However, it approached the curve of the ref-

erence CNES-C + NL-Bayes and indicated a tendency to compress well for this different

scenario, showing a behavior close to that of the compression-only method AE-2-H-C.

107



Chapter 5 Satellite image compression and denoising with neural networks

5.4 Conclusions

In this chapter, two different learned approaches for satellite image compression and denois-

ing were proposed. On one side, the joint approach performs compression and denoising

with a single architecture. One advantage is that intermediary steps existing in the cur-

rent CNES imaging system [Delvit et al. (2019)] can be eliminated. This approach is of

interest for commercial applications since it provides noise-free images without on ground

post-processing. On the other side, the sequential approach allows to consider a splitting

compatible with all the architecture simpliĄcations designed for onboard compression in

chapter 4. The proposed approaches were shown to outperform the CNES baseline in terms

of rate-distortion, visual quality and computational time.
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This thesis mainly investigates the feasibility of deep learning techniques for onboard satel-

lite compression. In this context, computational complexity reduction is required due to

power limitations and hardware constraints onboard satellites. The major challenge with

onboard compression is to obtain a good trade-off between rate and distortion while keeping

computational complexity as low as possible.

In chapter 4, we proposed different approaches to adapt the reference learned image

compression frameworks [Ballé et al. (2017) and Ballé et al. (2018)] to onboard satellite

image compression. First, we studied the different choices regarding these autoencoder-

based frameworks. Moreover, we conducted an analysis of the learned representation, which

revealed that most of the feature maps exhibit a Laplacian distribution. This analysis led

to the proposition of a simpliĄed entropy model that requires estimating a single parameter

for each feature map. The proposed simpliĄed entropy model presents an intermediary

performance between the more complex non-parametric entropy model [Ballé et al. (2017)]

and the most performing hyperprior entropy model [Ballé et al. (2018)]. The combination

of the number of Ąlters reduction and the proposed simpliĄed entropy model signiĄcantly

reduces the complexity without penalizing the compression performance with respect to

the reference model. In particular, it outperforms the CCSDS satellite image compression

standard.

Note that learned satellite image compression was Ąrst considered as a separate module in

chapter 4. Chapter 5 was devoted to satellite image compression and denoising based on ma-

chine learning approaches. In a typical satellite imaging system, compression is performed

onboard the satellite, and denoising is performed on the ground due to the prohibitive com-

plexity of the denoising algorithms. Two different approaches were proposed for satellite

image compression and denoising. First, the joint approach was proposed to compress and

denoise with a single autoencoder-based architecture. This approach allows to transmit

noise-free images, which is particularly advantageous for commercial applications requir-

ing fast obtention of exploitable satellite images. Complementary, the sequential approach

allows combining two separate learned-based modules that beneĄt from different architec-
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tures designed to perform the best on each task. Moreover, the denoising architecture

can be plugged as a post-treatment module to the joint approach, which further improves

the removal of remaining noise and compression artifacts. The proposed approaches for

compression and denoising surpassed the CNES baseline in terms of rate-distortion, visual

quality, and computational time. We show experimentally that data-driven compression

and denoising approaches can signiĄcantly improve a typical satellite imaging system.

Of course, there is still a lack of understanding and reliability of ML in industrial applica-

tions. It is essential to consider the existing limitations of the machine learning approaches

and carefully see them as candidate improvements rather than abrupt replacements. Ide-

ally, it would be interesting to incorporate model-based methods into the learning process

and design of data-driven approaches, but this remains a major challenge. Instead of the

limitations, we can observe that the ML Ąeld progresses fast, and it is expected that ML

will become less of a black box and more of a data-driven powerful box.

Perspectives

The possible prospects as a direct extension of this thesis concern four relevant objectives:

consider a feature-dependent entropy model, desymmetrize the autoencoder to reduce on-

board complexity, the hardware implementation of the proposed learned frameworks of this

thesis, and extend the ML-based approaches to other functionalities of a typical satellite

imaging system.

Feature-dependent entropy model

The thesis addressed different entropy models, however the choice a speciĄc entropy model

was made a priori so that a single model is considered at a time. One possibility would

be to combine different entropy models to deal with the diversity of feature maps either

adaptively during training or as a post-training adjustment.

Hardware implementation

The propositions of this thesis were developed and tested in speciĄc frameworks for deep

learning based on Python. However, it would be highly desirable to implement and test

these propositions on real satellite hardware [Rapuano et al. (2021)]. Hardware imple-

mentation is particularly relevant to space-based applications. There is an evident need

110



Conclusion

to reduce the size and complexity of neural networks for deployment in highly constrained

hardware platforms. Quantized models are those in which the learned frameworks are repre-

sented with lower precision, such as 8-bit integers instead of 32-bit Ćoat. Lower precision is

required to leverage particular hardware. Some techniques have been proposed for this pur-

pose, such as quantization-aware training and post-training quantization [Krishnamoorthi

(2018)]. The hardware implementation of ML architectures can also be performed through

dedicated hardware such as Field Programmable Gate Arrays (FPGAs) and GPU (Graphics

Processing Units).

Desymmetrize the autoencoder to reduce onboard complexity

The considered autoencoder architectures are symmetric in relation to the analysis and

synthesis transforms. One possibility to reduce the onboard complexity would be to reduce

the complexity in the analysis transform which would eventually be compensated by an

increase in complexity in the part responsible for the synthesis transform on earth.

Extend the ML-based approaches to other functionalities of a typical
satellite imaging system

Another perspective within the scope of this thesis would be to use the features extracted

for image compression in other ML-based functionalities onboard the satellite, such as clas-

siĄcation or detection, avoiding additional feature extraction steps that result in more com-

putational complexity. In particular, it would be interesting to dote the satellite system

with some intelligence to prevent the compression and transmission of images that are not

exploitable after passing through all the following steps on the ground. Among the non-

exploitable images, there are cloud images and images of highly homogeneous zones that

do not bring relevant information. For example, [Z. Zhang et al. (2019)] proposed cloud

detection onboard satellites using a dedicated CNN architecture for image segmentation. A

high cost is associated with transmitting images, so reducing it would be desirable.

The successful extension of the ML-based approach to denoising in chapter 4 opened up

prospects for extending the ML to the on ground segment, for example, for the deconvolution

or even constituting newer functionalities.
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Complexity assessment

A.1 Complexity assessment for the end-to-end compression
method

First, let characterize the computational complexity of a convolutional layer composing the
analysis and synthesis transforms. Let Nin denote the number of features at the considered
layer input. In the particular case of the network Ąrst layer, Nin is the number of channels
of the input image (Nin = 1 for a panchromatic image) else Nin is the number of Ąlters of
the previous layer. Let Nout denote the number of features at this layer output, that is the
number of Ąlters of this layer. As detailed in chapter 4, in [Ballé et al. (2018)], Nout = N
for each layer of the analysis and synthesis transforms except for the last one of the main
auto-encoder analysis transform and the last one of the auxiliary auto-encoder synthesis
transform composed of M Ąlters with M > N and thus for these layers Nout = M . As
in [Ballé et al. (2017) and Ballé et al. (2018)], we consider square Ąlters with kernel size
n×n. The number of parameters associated to the Ąltering part of the layer is [Cheng et al.
(2019)]:

Paramf = (n× n×Nin + δ)×Nout. (A.1)

The term δ is equal to 1 when a bias is introduced and is equal to 0 otherwise. Note that
this bias is rarely used in the considered architectures (except in Tconv3, as displayed in
Figure 4.1). The Ąltering is applied to each input channel after downsampling (respectively
upsampling). The downsampled (resp. upsampled) input channel if of size sout × sout with
sout = sin/D (respectively sout = sin×D) where D denotes the downsampling (respectively
upsampling) factor and sin × sin is the size of a feature at the Ąlter input. Floating points
operations Operationf for the Ąltering operation is thus:

Operationf = Paramf × sout × sout. (A.2)

GDN/IGDN perform a normalization of a Ąlter output with respect to the other Ąlter
outputs. According to chapter 4, the number of parameters and the number of operations
of each GDN/IGDN are expressed by [Cheng et al. (2019)]:
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Paramg = (Nout + 1)×Nout

Operationg = Paramg × sout × sout.
(A.3)

Since the number of layers is already very low for the considered architectures, the reduction
of the complexity of the analysis and synthesis transforms may target, according to the
previous complexity assessment, the number of Ąlters per layer, the size of these Ąlters
and the choice of the activation functions. Our proposal below details our strategy for
complexity reduction.

A.2 Complexity assessment for the sequential denoising
method

As detailed in chapter 5, in [Tian et al. (2020)], Nout = 64 for each layer of the BRDNet
architecture, except in the last layer after the concatenation where Nout = 128. As in [K.
Zhang et al. (2017a) and Tian et al. (2020)], we use standard square Ąlters with kernel size
n × n. The number of parameters associated to the Ąltering part of the layer corresponds
to Equation A.1. Note that the bias term is not used in the whole considered BRDNet
architecture. The complexity associated to a dilated convolutional layer (also present)
corresponds to the one of a standard convolutional layer, since only the Ąlter layout changes
and not its size. sin × sin stands for the size of a feature at the Ąlter input. Note that the
feature size corresponds to the input image size in the BRDNet architecture for all its layers.
Consecutively, Ćoating-points operations for the Ąltering operation correspond to A.2.

During inference, batch renormalization (BRN) performs a moving average operation of
each Ąlter output. According to section 5, the number of parameters and the number of
operations of each BRN can be expressed by:

Paramb = 4×Nout

Operationb = Paramb,BRDNet × sout × sout.
(A.4)
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