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A tensor is a multidimensional array (or multi-way array, N —way array).

d=0 scalar a=[1
d=1 vector a—=
d=2 matrix A=
d>3 tensor q =

The “order” of a tensor is the number of dimensions d.



Motivation

e Much real-world data is inherently multidimensional:
o Colour (RGB) and hyperspectral images are 3-order tensors

R. - Wavelength

ﬁa‘x ﬁ
H

o Color depth images® are 3-order tensors
h -

lhttps ://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html



Motivation

o Hyperspectral videos are 4-order arrays

Spectral frame

‘Wavelength

>t

e Tensors serve to compress or constrain data in the multiples
dimensions.

e Matrix-based methods rely on the data vectorization, where the
higher-order structure is lost!

o Medical images, times series, light fields, etc.



Singular Value Decomposition (for Matrices)

The SVD of X € R™*" is given by:
X =UsvT (1)
e where U € R™*™ and V € R™ " are orthogonals matrices

e S € R™*" diagonal matrix whose elements are the singular
values with decreasing order.

SVD Truncation?: X, = UTSTVTT;
r (rank): maximum number of linearly independent vectors in the matrix
rxXr

i1 nxn

r

2https ://csiu.github.io/blog/update/2017/04/16/day51 . html

3When vectors are linearly independent and span a whole space we say they are a ‘basis’ of that space. 7/28
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Is there a natural analogy of SVD for higher-order
arrays (d > 3)7

Four-dimensional ~ Five-dimensional Six-dimensional
tensor tensor tensor




Basic Notation - Multilinear Algebra
Mode-n matrix representation / Sub-arrays

Matrix (Unfolding)
-l -
Tensor
l s X @
Slices Mode-n Tubeffibers

Mode-n product: product between a tensor and a matrix.
Z=X X, A& Z(n) = AX(n) (2)

Outer product
X=aPoa®o..0cal (3)

Ex: X =aob =ab’ 10/28



Tensors Rank Decomposition
Canonical Polyadic Decomposition-CANDECOMP /Parallel Factors-PARAFAC*

> Factorize a tensor X € RI1*x12X--XIN jnto a SUM of a finite number
of rank-one tensors as:

R
X@Zag)oagl)o...ag\[)
r=1

Ex: Suppose a 3-order tensor X € R/*/XK the CP is written as:
R
X~ aoboc (4)
r=1

where R € N, a, € R!, b, € R/, and ¢, € RE, with r = 1,...,R.

[ ] [
b, b,

] —
br

1

~ + : 4ot

ap az agR

4T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM
Rev.m 2009. 11/28



Tucker Decomposition (TD)

> TD is multilinear transformation of a core tensor G € Rt X xRy by
a set of factor matrices A" € RIn*Fn n =1, . N as

X~Gx AW xy AW (5)

Ex: for the 3-order tensor: X = G x1 A x9 B x3C

Zc7

> TD is a form of higher-order SVD.

12/28



Higher-Order SVD (HOSVD)

The HOSVD? of a given 3-order tensor F can be written as:
F=8x;UW x, U® x3 UG, (6)
where S = diag(A1, A2, ooy Amin(1y,72,15))r A1 > A2 > oo > Ain(1,,15,15) > 0.

A suitable tensor-decomposition-based sparsifying transform U can be
constructed by using the unitary matrices as

Z/{(]:) =F X1 U(l)T X9 U(2)T X3 U(B)T, (7)

where

e U{(-) induces sparsity on the signal and S « U(F)

e UM ¢ RI=*In with n = 1,2,3 is found as the R,, left singular
vectors on the n-mode of F.

5L. De Lathauwer, et al, 'A multilinear singular value decomposition,” SIAM journal on Matrix Analysis and
Applications, 2000 13/28



Higher-Order SVD (HOSVD)

The HOSVD? of a given 3-order tensor F can be written as:
F=8x;UW x, U® x3 UG, (6)
where S = diag(A1, A2, ooy Amin(1y,72,15))r A1 > A2 > oo > Ain(1,,15,15) > 0.

A suitable tensor-decomposition-based sparsifying transform U can be
constructed by using the unitary matrices as

Z/{(]:) =F X1 U(l)T X9 U(2)T X3 U(B)T, (7)

where

e U{(-) induces sparsity on the signal and S « U(F)

e UM ¢ RI=*In with n = 1,2,3 is found as the R,, left singular
vectors on the n-mode of F.

Remark: A HOSVD transformation is useful in a compressive sensing based
scenario due to that the coefficients decay is faster and lead sparsest
solutions!

5L. De Lathauwer, et al, 'A multilinear singular value decomposition,” SIAM journal on Matrix Analysis and
Applications, 2000 13/28



Application

Task: Exploit tensors for sparse transform compressive learning! J

Multilinear transformation
A fourth-order (4D) tensor spectral video F € RI1*/2xIsxIs can pe

decomposed as:

4D Spectral Video Tensor

Iy s Core Factor Factor Factor Factor
ﬁ Matrix 1 Matrix 2 Matrix 3 Matrix 4

8.m-m-0-E

I, xRy I, xR, LxRy ;xR
&x&x&x&
F = G x, u® ><2U(2) X3 u® X4 u®w

o G c RIxR2xR3xRa ig the core tensor.
o {UM }4 € RI»xFn is 3 dictionary basis for each n-mode.
e X, Is the mode—n productﬁ.

6Examplc mode-3 of F is F (3 U<3)B(:;) (U g Uu® g UU))T 14/28



Compressed Measurements
Single-Shot Compressive Spectral Video Sensing (CSVS)

3D Block-Unblock [,

Coded Aperture
’ i]‘ Coded Detector
Aidady h Aperture W

AM,

I
Color Filter Weo-o H s

Unblock = 1
Array
Time-Varying Colored Coded Aperture

Iy Objective Filter Relay Dispersive
Lens Lens Element

Ia
Spectral video scene

Video-rate Colored Coded Aperture
Snapshot Spectral Imager (Video CCASSI)

Given a spectral video F, the sensing process is written as:

I3

Vig i ia = Z fil;(i'z*is),is,m ° Til,(iz*is),is’u + Wiy ig,ia- (8)
is=1 15/28



Traditional Matrix-based Formulation

Spatial-spectral coded compressive spectral imager extended to video acquisition

Given a spectral video F € Rt *I2xIsxX1s then n = [11,1514 and
m = I11314. In matrix form:

yeRllllllXI H e RIBLxLDITL Ue RODLILx I I3 9 e RID1Ix1

Frame 1 Frame 2 Frame 3 Frame 4

Commonly used transform bases:

* Wavelet, Discrete Cosine

e Kronecker product
\I/=\Ill(X)\I’2®\I/3®\I’Jt

® Dictionary Learning

Y
£ e RIDLIIX]
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Acquisition and Recovery Problem
Tensor-based Model for the 3D-CASSI

» The CSVS acquisition procedure can be then expressed as
Y=H(F)+W, (9)

where H(F) : Rivxl2xlsxls _y RIXJ2x1a yepresents the CSVS

operator and establishes the modulation and compression of the
incoming signal.

» Recovery Problem: For a fixed basis {®(*)}4_,

2
minimize || — H(g x1 U o TP 5 §B) o, \11(4)) H
GeRI1 X2 xI3x1y r

subject to ||vec(G)|]1 < S,

(10)

where the constant S denotes the sparsity level of the core tensor.



Acquisition and Recovery Problem
Tensor-based Model for the 3D-CASSI

» The CSVS acquisition procedure can be then expressed as
Y=H(F)+W, (9)

where H(F) : RIvx2xlsxls _ RIixJ2xIa yepresents the CSVS
operator and establishes the modulation and compression of the
incoming signal.

» Recovery Problem: For a fixed basis {®()}1_,,

minimize
QERII XIgxIgxIy

subject to ||vec(G)|]1 < S,

V= H(G %1 ¥D x, @) 5y ¥ x4\11(4>)H; (10)

where the constant S denotes the sparsity level of the core tensor.

How the basis can be learned from the compressed
measurements )?



» IDEA: A spatial approximation of the frame ¢ can be obtained by the
summation of two consecutive measurement frames as

Yg’t = V(1) + V(5 t 4+ 1), where for the last frame is assigned the
(I3 — 1)-th estimated spatial approximation, i.e., Y&, =Y& | .




» IDEA: A spatial approximation of the frame ¢ can be obtained by the
summation of two consecutive measurement frames as

Y&, =Y(::t) + V(:,:,t 4 1), where for the last frame is assigned the
(I3 — 1)-th estimated spatial approximation, i.e., Y&, =Y& | .

» Temporal Superpixels (TSP) from the Measurements

Time-varying scene TSP Label Map

@
Jl

Region1 ~ MERegion2  Region3

$
R ”Spatial

| > |
P
%
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Proposed Formulation

Joint Dictionary and Recovery Problem Formulation
> Let UGB ¢ REXL: for 2 = 1,...,4, be the factor matrices that
sparsify the core tensor G, then the joint sparse transform and re-
construction estimation can be expressed as

{UR) G} e {ilJIgmm HJJ H(G x1 UM 5 UP 53 U U(4))HF

(11)

Subjcctto [[vec(G)|1 < S,
U u® 10 =1, .4,

where G € RI<I2xIsxls s the core tensor, and I*) is an identity
matrix.

1

, L}

#i
=] H uw

1 ]

1 L}

1 1

1 1

@
[N
a

,

~
P
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Based on TSP, the Eq. (11) can be rewritten as

2
(6,00 .00)} € argmin Hyd - Hd(gd <1 UW x5 xy Uff)) H1
Ga, UL

Uy, (12)
subject to ||vec(Ga)|l1 < S,

{Ufiz)TU((iz) =19}, 124, UOTUO =10,

where Vg = yiim is a TSP patch computed from the measurements.

20/28



Based on TSP, the Eq. (11) can be rewritten as

2
{60 0™} € argmin Hyd - Hd(gd X1 U((il) Ko Xa U¢(i4>> H ‘
Gy, UG F
U1 (12)
subject to |[vec(Ga)|l1 < S,

U U =10}, UOTUO =19,

where Yy = y5. ;,;, is @ TSP patch computed from the measurements.

Approach Summary

‘ PP PPPPRY
) e RIxBxl = a
YeRr? Grayscale »—4._%1 TSP (superpixel) | | Regular shape TSPs
Approximation Estimation Extraction

Csvs Segmemeu Label Map
Sar=e 3 Joint Sparse Transform
- v and Signal Estimation

F e RIxbxIsxI| s

Merging of the patches

Compressed . @

Projections )| Szwve
B=
Signal Acquisition Preprocessing Learning and Signal Reconstruction
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Sparsity Analysis on the Proposed Basis

TenDL: Tensor-based sparsifying transform
TSP-TenDL: TenDL performed in temporal superpixels
RegP-TenDL: TenDL performed in regular patches

WWDD: Kronecker of 2D Wavelet, 1D discrete cosine (DCT), and 1D DCT
50
=#-TSP-TenDL
45+ |~ 'RegP-TenDL X
RegP-WWDD T
4L [— TenDL ) s | =
o (n
g %]
z @
E 35 g
4 Je -
ol Z ol / *--TSP-TenDL
/ —< RegP-TenDL
P oss |/ RegP-WWDD
B 1 s — TenDL
o i --—~WWDD
20 - - - . 0.55
0.1% 0.5% 0.8% 1% 5% 10% 0.1% 0.5% 0.8% 1% 5% 10%
Percentage of Coefficients Percentage of Coefficients

Evaluation of the compression capabilities of different sparse representations respect to the
percentage of coefficients used for represent a spectral video.
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Numerical Experiments
» Methods to be compared:

> WWDD-Vec: vector-form recovery +
fixed basis

> WWDD-TenD: proposed tensor model-
ing + fixed basis.

> 3SDL-Vec: Dictionary learning (simulta-
neous sparse model) + PanCam.

> 3SDLg-Vec: Dictionary learning +
grayscale approximation.

> TenDL: proposed tensor model on full data.
> TSP-TenDL: proposed tensor model +

Temporal Superpixels.

» CA used: Temporal colored CA.

» Dataset Size:

Spatial pixels Bands Frames
Size Iy Iz I3 Is
Video 1 128 128 8 8
Video 2 256 256 8 32
Video 3 128 128 24 16

Original WWDD-Vec  WWDD-TenD  3SDL-Vec 3SDLg-Vec TenDL

Video 2 Video 1

Video 3

26.2180 dB_|25.4071 dB |25.0509 dB 26.9475 d_B 27.3868 HB

Frame1 § 28.2603 dB | 26.1781 dB |25.9743 dB

Frame'5 28.2402 dB |28.3913 dB 27 9734 dB 27 5924 dB

'31.3136 dB |30.9599 dB

TSP-TenDL

33.1937 dB | 33.4842 dB

RGB profile of the originals (1st column) and the reconstructed frames 1, 5 and 10 of each video.
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Intensity

Frame 10, i =127, j =73

&~ Original
& WWDD-Vec (0.058)

3SDL-Vec (0.21)
--p--3SDLg-Vec (0.17)
TenDL (0.026)
-4--TSP-TenDL (0.013)
1

Frame 20. i =127. i =73

—A—WWDD-TenD (0.049)

o
o

Y LF

o

r|—&— Original

“E WWDD-Vec (0.019)

—A—\WWDD-TenD (0.011
3SDL-Vec (0.21)

--p--3SDLg-Vec (0.17)
TenDL (0.016)

-4--TSP-TenDL (0.0086)

)

>
Intensity

o

—R=——

’

3 4 5 6
Spectral band

Frame 20

Intensity

4 5 6

Spectral band

Frame 30, i =127, j =73
T T ~—&~ Original

@ WWDD-Vec (0.04)

—A—\WWDD-TenD (0.043)

3SDL-Vec (0.21)

=-p-3SDLg-Vec (0.17)
TenDL (0.017)

=49--TSP-TenDL (0.013)

3 4 5 6
Spectral band
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Overall Accuracy and Computing Time

Mean of PSNR

Table 1: Mean of PSNR, SSIM and RMSE of the Reconstructed Videos from the Different Approaches.

Video 1 Video 2 Video 3 Video 1 | Video 2 ‘ Video 3
Method PSNR | SSIM | PSNR | SSIM | PSNR | SSIM RMSE
WWDD-Vec 31.26 [ 0.933 | 30.31 [ 0.923 | 30.70 | 0.851 | 0.0206 | 0.0299 | 0.0221
WWDD-TenD 30.31 | 0.931 | 30.56 | 0.930 | 32.08 | 0.843 | 0.0228 | 0.0241 | 0.0196
3SDL-Vec 29.84 | 0.915 | 27.47 | 0.854 | 30.59 | 0.832 | 0.0252 | 0.0371 | 0.0229
3SDLg-Vec 29.30 | 0.907 | 26.64 | 0.835 | 30.35 | 0.823 | 0.0269 | 0.0411 | 0.0236
TenDL (Proposed) 35.61 | 0.978 | 33.97 | 0.962 | 34.62 | 0.907 | 0.0136 | 0.0175 | 0.0137
TSP-TenDL (Proposed) | 37.17 | 0.980 | 33.44 | 0.960 | 34.77 | 0.915 | 0.0110 | 0.0176 | 0.0130
TenDL
0.925 5
—p—Parallel Time (28 Cores)
%0 A3000 —©—Averaged Time per TSP
= ‘g <z 3000 [ \3393.8
[} o A
%] £ “2000 2004
— =
o (=) — 100d 834.4
pt O o
s o = dlo . s1d%
| g %‘) 51000 SSZELERETEEI AL
—*-PSNR| | 0.905 °E L
34.6 -8-SSIM <
- - - — 0.9 0= : - i d
0 50 100 150 200 0 50 100 150 200
Number of TSPs Number of TSPs

Impact of the number of TSPs in the reconstruction process and computing time using the video 3.
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Summary

Design based on Tensor Representation (Basis and Recovering)
1. The sparse representation is learned from the compressed measure-
ments while the video is estimated. The CA is fixed.

2. The method allows the higher-order correlations to be exploited in the
recovery procedure.

3. TSP speeds-up the recovery!

25/28
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How to solve the problem? BCD-based Formulation |

> The augmented Lagrangian can be written as
£4(9, 7 AU D201, Q) = [ = H(F)[7: + Alvec(@)l

f SR (13)
+ (/D) |F - [g U, U, U UD] + Q|| + 3 Tu(UW),
z=1

where Q is the Lagrange multiplier and 7, (U(z)) is an indicator function defined as

0 _ 1, iU ey
Tu (U ) - {0, otherwise ’ (14)

where Y = {U € RIzX1:|[UTU =1}, 2 = 1,...,4. Equation (13) can be iteratively solved
by the following three steps, where each variable is updated while the others are fixed:
1) F*+1 sub-problem:

_ 2 2 1
Frtl e argmin 7 ”]:k - 16Ul U, Ul U] + QkHF o Y -HE)E- (15)

> Solution:

= Avec([Gx; ULV, UP  UP UW]) + HT (vee())) = A + HT(HF),  (16)



How to solve the problem? BCD-based Formulation Il

where f is zero-initialized, H is the sensing matrix that encloses the projection operation

performed by the camera, H” denotes the transpose operation for H, and f can be found
from the conjugate gradient (CG) method.

> GF+1 sub-problem:
~ A 2
G+t € argmin & [ Fien ~ 16 UL, UL, U, O+ Qi+ rlivee(@n)ll, (17)

> Solution: This subproblem-update is a proximal operator evaluation, whose closed-form
solution can be obtained from the well-known soft shrinkage operator given by

GFH = vec ™1 {8,/ (vec(FF T 4+ GF), A /7) (18)

with Sy /7 (x, B) := sgn(x)max(|x| — 3, 0) as the soft thresholding operator, and A, 7 > 0

are regularization parameters.
> Online Transform Refinement U](Cz_zl for z =1, ...,4 After estimating Fr+l and Gh+1,
the sparse transform is refined for each dlmenS|on as

U(431 € al:g)mm = H~7:k+1 - [[gk+17U(1) U<2) U(3 U<4 1+ Qk” + 2. (U%).
{u=)yi_
(19)



How to solve the problem? BCD-based Formulation Ill

Note that this subproblem can be alternatively written in a general form for the mode-z as

(2 A .
U;le € argmin §||F(Z) — U(Z)G(Z)(U<Z> ®..UC" D gutth
U (20)

L@UMT 4+ Quyll} +Z.(U®),

for z =1, ..., Z, where Z = 4, are the modes of the tensor, such that each matrix U(*)
can be refined by using the mode-z of the Eq. (19). Problem in Eq. (20) is known as the
Orthogonal Procrustes problem, whose closed-form solution is given by

OF) =svT, (21)

where S and V7 are obtained from the matrix-based singular value decomposition (SVD)
of the factor (F(.) + Q(2)) (G(») (UP) @ . UG g UEHD @ UM T)T e

SEVT = SVD((F(.) + Q(-)) (G (UP) @ @UE—D g UG L@ u)T)T) (22)

Thus, the sparse transform update is reduced to the computation of Eq. (21) for
n =1,2,3,4. > The multiplier is updated as

Qk+1 = Qk + ‘Fk+1 - Hgk+ly ](CllvU](fllvU;ilrU(él)l]] (23)

K. M. Ledn-Lépez and H. A. Fuentes, “Online tensor sparsifying transform based on temporal superpixels from
compressive spectral video measurements,” |EEE Transactions on Image Processing, vol. 29, pp. 5953-5963, Apr. 2020. 28/28



