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A tensor is a multidimensional array (or multi-way array, N−way array).

The “order” of a tensor is the number of dimensions d.
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Motivation

• Much real-world data is inherently multidimensional:
◦ Colour (RGB) and hyperspectral images are 3-order tensors

◦ Color depth images1 are 3-order tensors

1
https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html



6/28

Motivation
◦ Hyperspectral videos are 4-order arrays

◦ Medical images, times series, light fields, etc.

• Tensors serve to compress or constrain data in the multiples
dimensions.
• Matrix-based methods rely on the data vectorization, where the
higher-order structure is lost!
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Singular Value Decomposition (for Matrices)

The SVD of X ∈ Rm×n is given by:

X = USVT (1)

• where U ∈ Rm×m and V ∈ Rn×n are orthogonals matrices

• S ∈ Rm×n diagonal matrix whose elements are the singular
values with decreasing order.

SVD Truncation2: Xr = UrSrV
T
r ;

r (rank): maximum number of linearly independent vectors in the matrix3

r

rxr

2
https://csiu.github.io/blog/update/2017/04/16/day51.html

3When vectors are linearly independent and span a whole space we say they are a ‘basis’ of that space.
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r = 1 in UrSrVT
r



8/28

r = 2 in UrSrVT
r
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r = 3 in UrSrVT
r
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r = 4 in UrSrVT
r
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r = 5 in UrSrVT
r
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r = 10 in UrSrVT
r
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r = 100 in UrSrVT
r
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r = 200 in UrSrVT
r
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Is there a natural analogy of SVD for higher-order
arrays (d ≥ 3)?

… …
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Basic Notation - Multilinear Algebra
Mode-n matrix representation / Sub-arrays

…

…

…

Slices

𝓧

𝐗(1)

𝐗(2)

𝐗(3)

Mode-𝑛

Tensor

Matrix (Unfolding)

Tube/fibers

Mode-n product: product between a tensor and a matrix.

Z = X ×n A⇔ Z(n) = AX(n) (2)

Outer product
X = a(1) ◦ a(2) ◦ ... ◦ a(N) (3)

Ex: X = a ◦ b = abT
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Tensors Rank Decomposition
Canonical Polyadic Decomposition-CANDECOMP/Parallel Factors-PARAFAC4

▷ Factorize a tensor X ∈ RI1×I2×...×IN into a SUM of a finite number
of rank-one tensors as:

X ≈
R∑

r=1

a(1)r ◦ a(1)r ◦ . . .a(N)
r

Ex: Suppose a 3-order tensor X ∈ RI×J×K , the CP is written as:

X ≈
R∑

r=1

ar ◦ br ◦ cr (4)

where R ∈ N, ar ∈ RI , br ∈ RJ , and cr ∈ RK , with r = 1, ..., R.

4T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM
Rev.m 2009.



12/28

Tucker Decomposition (TD)

▷ TD is multilinear transformation of a core tensor G ∈ RR1×...×RN by
a set of factor matrices A(n) ∈ RIn×Rn , n = 1, ..., N as

X ≈ G ×1 A
(1)...×N A(N) (5)

Ex: for the 3-order tensor: X = G ×1 A×2 B×3 C

▷ TD is a form of higher-order SVD.
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Higher-Order SVD (HOSVD)

The HOSVD5 of a given 3-order tensor F can be written as:

F = S ×1 U
(1) ×2 U

(2) ×3 U
(3), (6)

where S = diag(λ1, λ2, ..., λmin(I1,I2,I3)), λ1 ≥ λ2 ≥ ... ≥ λmin(I1,I2,I3) ≥ 0.

A suitable tensor-decomposition-based sparsifying transform U can be
constructed by using the unitary matrices as

U(F) = F ×1 U
(1)T ×2 U

(2)T ×3 U
(3)T , (7)

where
• U(·) induces sparsity on the signal and S ← U(F)
• U(n) ∈ RIn×In , with n = 1, 2, 3 is found as the Rn left singular
vectors on the n-mode of F .

Remark: A HOSVD transformation is useful in a compressive sensing based

scenario due to that the coefficients decay is faster and lead sparsest

solutions!

5L. De Lathauwer, et al, ’A multilinear singular value decomposition,’ SIAM journal on Matrix Analysis and
Applications, 2000
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Application

Task: Exploit tensors for sparse transform compressive learning!

Multilinear transformation
A fourth-order (4D) tensor spectral video F ∈ RI1×I2×I3×I4 can be
decomposed as:

• G ∈ RR1×R2×R3×R4 is the core tensor.
• {U(n)}4n=1 ∈ RIn×Rn is a dictionary basis for each n-mode.
• ×n is the mode-n product6.

6Example: mode-3 of F is F(3) = U(3)B(3)

(
U(4) ⊗ U(2) ⊗ U(1))T
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Compressed Measurements
Single-Shot Compressive Spectral Video Sensing (CSVS)

Given a spectral video F , the sensing process is written as:

Yi1,i2,i4 =

I3∑
i3=1

Fi1,(i2−i3),i3,i4 ◦ Ti1,(i2−i3),i3,i4 +Wi1,i2,i4 . (8)
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Traditional Matrix-based Formulation
Spatial-spectral coded compressive spectral imager extended to video acquisition

Given a spectral video F ∈ RI1×I2×I3×I4 , then, n = I1I2I3I4 and

m = I1I2I4. In matrix form:
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Acquisition and Recovery Problem
Tensor-based Model for the 3D-CASSI

▶ The CSVS acquisition procedure can be then expressed as

Y = H(F) +W, (9)

where H(F) : RI1×I2×I3×I4 → RI1×J2×I4 represents the CSVS
operator and establishes the modulation and compression of the
incoming signal.

▶ Recovery Problem: For a fixed basis {Ψ(z)}4z=1,

minimize
G∈RI1×I2×I3×I4

∥∥∥Y −H(G ×1 Ψ
(1) ×2 Ψ

(2) ×3 Ψ
(3) ×4 Ψ

(4)
)∥∥∥2

F

subject to ||vec(G)||1 ≤ S,

(10)

where the constant S denotes the sparsity level of the core tensor.

How the basis can be learned from the compressed
measurements Y?
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▶ IDEA: A spatial approximation of the frame t can be obtained by the
summation of two consecutive measurement frames as
YG

:,:,t = Y(:, :, t) + Y(:, :, t+ 1), where for the last frame is assigned the

(I4 − 1)-th estimated spatial approximation, i.e., YG
:,:,I4

= YG
:,:,I4−1.

▶ Temporal Superpixels (TSP) from the Measurements
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Proposed Formulation
Joint Dictionary and Recovery Problem Formulation

▶ Let U(z) ∈ RIz×Iz , for z = 1, ..., 4, be the factor matrices that
sparsify the core tensor G, then the joint sparse transform and re-
construction estimation can be expressed as

{Û(z), Ĝ} ∈ argmin
{U(z)}4z=1,

G

∥∥∥Y −H(G ×1 U
(1) ×2 U

(2) ×3 U
(3) ×4 U

(4)
)∥∥∥2

F

subject to ||vec(G)||1 ≤ S,

U(z)TU(z) = I(z), z = 1, .., 4,

(11)

where G ∈ RI1×I2×I3×I4 is the core tensor, and I(z) is an identity
matrix.

𝐔(1)

𝐔(2)

𝐔(3)
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Based on TSP, the Eq. (11) can be rewritten as

{
Ĝd,Û

(z)
d ,Û(3)

}
∈ argmin

Gd,U
(3)

{U(z)
d }2,4z=1

∥∥∥Yd −Hd

(
Gd ×1 U

(1)
d ×2 ...×4 U

(4)
d

)∥∥∥2
F

subject to ||vec(Gd)||1 ≤ S,

{U(z)
d

T
U

(z)
d = I(z)}z=1,2,4, U

(3)TU(3) = I(3),

(12)

where Yd = ydi1i2i4 is a TSP patch computed from the measurements.

Approach Summary
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Sparsity Analysis on the Proposed Basis

TenDL: Tensor-based sparsifying transform
TSP-TenDL: TenDL performed in temporal superpixels
RegP-TenDL: TenDL performed in regular patches
WWDD: Kronecker of 2D Wavelet, 1D discrete cosine (DCT), and 1D DCT

Evaluation of the compression capabilities of different sparse representations respect to the
percentage of coefficients used for represent a spectral video.
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Numerical Experiments
▶ Methods to be compared:

▷ WWDD-Vec: vector-form recovery +
fixed basis

▷ WWDD-TenD: proposed tensor model-
ing + fixed basis.

▷ 3SDL-Vec: Dictionary learning (simulta-
neous sparse model) + PanCam.

▷ 3SDLg-Vec: Dictionary learning +
grayscale approximation.

▷ TenDL: proposed tensor model on full data.
▷ TSP-TenDL: proposed tensor model +
Temporal Superpixels.

▶ CA used: Temporal colored CA.
▶ Dataset Size:

Spatial pixels Bands Frames
Size I1 I2 I3 I4
Video 1 128 128 8 8
Video 2 256 256 8 32
Video 3 128 128 24 16

RGB profile of the originals (1st column) and the reconstructed frames 1, 5 and 10 of each video.
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Overall Accuracy and Computing Time

Table 1: Mean of PSNR, SSIM and RMSE of the Reconstructed Videos from the Different Approaches.

Video 1 Video 2 Video 3 Video 1 Video 2 Video 3
Method PSNR SSIM PSNR SSIM PSNR SSIM RMSE
WWDD-Vec 31.26 0.933 30.31 0.923 30.70 0.851 0.0206 0.0299 0.0221
WWDD-TenD 30.31 0.931 30.56 0.930 32.08 0.843 0.0228 0.0241 0.0196
3SDL-Vec 29.84 0.915 27.47 0.854 30.59 0.832 0.0252 0.0371 0.0229
3SDLg-Vec 29.30 0.907 26.64 0.835 30.35 0.823 0.0269 0.0411 0.0236
TenDL (Proposed) 35.61 0.978 33.97 0.962 34.62 0.907 0.0136 0.0175 0.0137
TSP-TenDL (Proposed) 37.17 0.980 33.44 0.960 34.77 0.915 0.0110 0.0176 0.0130

Impact of the number of TSPs in the reconstruction process and computing time using the video 3.
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Summary

Design based on Tensor Representation (Basis and Recovering)

1. The sparse representation is learned from the compressed measure-
ments while the video is estimated. The CA is fixed.

2. The method allows the higher-order correlations to be exploited in the
recovery procedure.

3. TSP speeds-up the recovery!
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Thank you for your attention!Thank you for your attention!
Questions?
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How to solve the problem? BCD-based Formulation I

▷ The augmented Lagrangian can be written as

LA

(
G,F , {U(z)}4z=1,Q

)
=

∥∥Y −H
(
F
)∥∥2

F
+ λ||vec(G)||1

+ (λ/2)
∥∥∥F − JG;U(1),U(2),U(3),U(4)K +Q

∥∥∥2
F

+

4∑
z=1

IU
(
U(z)

)
,

(13)

where Q is the Lagrange multiplier and IU
(
U(z)

)
is an indicator function defined as

IU
(
U(z)

)
=

{
1, if U(z) ∈ U
0, otherwise

, (14)

where U =
{
U ∈ RIz×Iz |UTU = I

}
, z = 1, ..., 4. Equation (13) can be iteratively solved

by the following three steps, where each variable is updated while the others are fixed:
1) F̃k+1 sub-problem:

F̃k+1 ∈ argmin
F

λ

2

∥∥∥Fk − JGk;U
(1)
k ,U

(2)
k ,U

(3)
k ,U

(4)
k K +Qk

∥∥∥2
F

+
1

2

∥∥Y −H
(
Fk

)∥∥2
F
. (15)

▷ Solution:

f̃ = λvec(JGk;U
(1)
k ,U

(2)
k ,U

(3)
k ,U

(4)
k K) +HT (vec(Y)) = λf +HT (Hf), (16)
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How to solve the problem? BCD-based Formulation II

where f is zero-initialized, H is the sensing matrix that encloses the projection operation
performed by the camera, HT denotes the transpose operation for H, and f̃ can be found
from the conjugate gradient (CG) method.

▷ G̃k+1 sub-problem:

G̃k+1 ∈ argmin
G

λ

2

∥∥∥Fk+1 − JGk;U
(1)
k ,U

(2)
k ,U

(3)
k ,U

(4)
k K +Qk

∥∥∥2
F

+ τ ||vec(Gk)||1, (17)

▷ Solution: This subproblem-update is a proximal operator evaluation, whose closed-form
solution can be obtained from the well-known soft shrinkage operator given by

G̃k+1 = vec−1
{
Sλ/τ

(
vec(Fk+1 + Gk), λ/τ

)}
, (18)

with Sλ/τ (x, β) := sgn(x)max(|x| − β, 0) as the soft thresholding operator, and λ, τ > 0
are regularization parameters.

▷ Online Transform Refinement Ũ
(z)
k+1 for z = 1, ..., 4 After estimating F̃k+1 and G̃k+1,

the sparse transform is refined for each dimension as

Ũ
(z)
k+1 ∈ argmin

{U(z)}4z=1

λ

2

∥∥∥Fk+1 − JGk+1;U
(1)
k ,U

(2)
k ,U

(3)
k ,U

(4)
k K +Qk

∥∥∥2
F

+ Iz
(
U(z)

)
.

(19)
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How to solve the problem? BCD-based Formulation III

Note that this subproblem can be alternatively written in a general form for the mode-z as

Ũ
(z)
k+1 ∈ argmin

U(z)

λ

2
||F(z) −U(z)G(z)(U

(Z) ⊗ ...U(z−1) ⊗U(z+1)...

...⊗U(1))T +Q(z)||2F + Iz
(
U(z)

)
,

(20)

for z = 1, ..., Z, where Z = 4, are the modes of the tensor, such that each matrix U(z)

can be refined by using the mode-z of the Eq. (19). Problem in Eq. (20) is known as the
Orthogonal Procrustes problem, whose closed-form solution is given by

Ũ
(z)
k+1 = SVT , (21)

where S and VT are obtained from the matrix-based singular value decomposition (SVD)

of the factor
(
F(z) +Q(z)

)(
G(z)

(
U(Z) ⊗ ...U(z−1) ⊗U(z+1)...⊗U(1)

)T )T
, i.e.

SΣVT = SVD
(
(F(z) +Q(z))

(
G(z)(U

(Z) ⊗⊗U(z−1) ⊗U(z+1)...⊗U(1))T
)T )

.(22)

Thus, the sparse transform update is reduced to the computation of Eq. (21) for
n = 1, 2, 3, 4. ▷ The multiplier is updated as

Q̃k+1 = Qk + F̃k+1 − JG̃k+1; Ũ
(1)
k+1, Ũ

(2)
k+1, Ũ

(3)
k+1, Ũ

(4)
k+1K. (23)

K. M. León-López and H. A. Fuentes, “Online tensor sparsifying transform based on temporal superpixels from
compressive spectral video measurements,” IEEE Transactions on Image Processing, vol. 29, pp. 5953-5963, Apr. 2020.


