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In the context of automatic and preventive condition monitoring of rotating machines, this
paper revisits the demodulation process essential for detecting and localizing cracks in
gears and bearings. The objective of the paper is to evaluate the performance of the
well-known Hilbert demodulation by providing a quantified assessment in terms of signal
processing. For this purpose, vibration test signals are simulated guided by the analysis of
real-world measurements. The database comes from a natural wear experimentation on a
test bench at an industrial scale and without any fault initiation. In the proposed simulated
model, the amplitude modulation is designed in a physical approach in order to be able to
set up the number of faulty teeth and their location. The impact of a limited spectral band-
width filtering is quantified not only for the amplitude but also for the phase modulation
estimations. The interactions between the amplitude and phase estimations are discussed.
A focus is made on the analytic signal ambiguity due to the non-uniqueness of the ampli-
tude estimation. This property induces an original investigation when demodulating the
residual generated after a time synchronous averaging. Finally, as the objective is a contin-
uous surveillance of a machine, results are given for a sequence of real-world measure-
ments in order to visualize the fault evolution through the demodulation process.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Advanced signal processing is essential to provide automatic and thorough monitoring of a complex mechanical system
to assess its health as part of a condition-based preventive maintenance strategy. It concerns various application domains
such as energy (nuclear plants, onshore and offshore wind turbines, marine and tidal turbines, wave energy converters,
hydropower plants. . .), manufacturing and industrial equipment (paper machines, mills, grinders, presses. . .), transport (rail-
way tracks and vehicles, large-sized construction machines, mining machineries, aircrafts . . .) or civil engineering (bridges,
high-rise buildings, dams. . .).

Many papers have been published on the spectral analysis of vibrations generated by rotating machines. Among others,
B. Randall in 1982 [1] highlighted the importance of identifying modulation sidebands. Three years later, McFadden [2]
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identified an early fatigue crack in a helicopter gear after looking at the averaged and band-pass filtered signal. Then, a year
later, the same author [3] proposed a demodulation process to estimate the amplitude and phase modulations of the same
helicopter gear signal. These modulations revealed a small phase lag with minor amplitude modulation in the early stage,
and an amplitude falling to near zero with a phase shift of 360 degrees when the crack is advanced and the gear is under
load. These studies [1,2,3] clearly indicate that a fault investigation should be completed with a demodulation of specific fre-
quency bands to estimate the amplitude, phase or frequency modulations. The demodulation is a very crucial step for the
fault localization and characterization.

In this context, an automatic and data-driven sideband demodulation has already been proposed by the authors [4]. The
objective of this paper is to assess the performance of that approach by the comparison of the analyses of a proposed vibra-
tion signal model and of real-world measurements on a test bench. This paper also compares 2 methods: demodulation on
the original signal and on its residual part. The fitting of the proposed model to real-world signals allows a right parametriza-
tion of the model and the illustration of the limits of the proposed method by extending the model. As the objective is the
continuous surveillance of a system, the measurements are a sequence of signals which convey the evolution of the system
state.

Without loss of generality, this paper focuses on a parallel-shaft gear multiplier from a test bench named GOTIX which is
described in [5]. Vibration measurements come from a natural wear test at an industrial scale and without any fault
initiation.

The multi-estimator method described in [4,6] is applied to process both simulated and measured signals. This method
provides a detection of all the peaks of a spectrum through a hypothesis test defined in frequency and an automatic cluster-
ing of the harmonic families and sidebands. When processing a sequence of measurements over time characterizing the evo-
lution of a system, an automatic tracking method detailed in [7] links the corresponding peaks from signal to signal to form
time–frequency trajectories. These trajectories are a precious help for monitoring a system. This approach has been validated
on onshore wind turbines [8–10] and paper machines [11].

In this approach, the demodulation process needs the estimation of the analytic signal which can be achieved in different
ways. The Hilbert transform, a linear operator which produces the orthogonal signal of a real input, is a way to compute the
imaginary part of the analytic signal. Another way commonly used in digital communications is called the synchronous or
coherent detection and consists of low-pass filtering the output of a multiplier between a complex oscillator at the gearmesh
frequency and the signal [12]. As mentioned in the same reference, the Hilbert transform is the only operator that satisfies
physical conditions such as amplitude continuity and differentiability, phase independence of scaling and harmonic corre-
spondence. Nevertheless, whatever the estimation is, this complex representation is unique and does not generate a unique
decomposition in amplitude and phase which can lead to some ambiguities [14]. In addition, to satisfy these properties, the
signal should respect the Bedrosian constraints [13]. Given these conditions and constraints with the use of the Hilbert trans-
form for computing the analytic signal, this paper studies the impact of this choice on the demodulation, in particular the
impact of filtering, and deduces some judicious choices for a well-behaved amplitude and phase estimation.

In the faulty gear vibration model proposed, more attention is given to the amplitude modulation. Indeed, this modula-
tion is often modelled as a Fourier series [3] or with a Hanning window [15]. After comparison with the results of the real-
world data analysis, this paper considers a model closer to the physics in order to be able to set up physical parameters and
to evaluate the detection performance of the demodulation.

This paper presents an in-depth study of the results obtained in [16], in addition to focusing on the ambiguities of the
analytic signal. The interactions between amplitude and phase estimations are further analyzed. In addition, given that
the gear wear has increased, it is really of interest to show that the demodulation process proposed is now able to detect
several failures on specific teeth which actually present spalls. Thus, the proposed model to generate simulated signals is
more complex and the performance analysis is thoroughly investigated. All the vibration data used in this paper can be
downloaded in [5].

The paper is organized as follows. Section 2 derives the vibration model of a faulty gearbox with specific simulated mod-
els for the frequency and amplitude modulations. In Section 3, after a brief recap of the used demodulation already published
in [4], the simulated model parameters are set thanks to a comparison with real-world measurement analyses. In Section 4,
variations of the model parameters give then the possibility to evaluate the demodulation process in both healthy and faulty
cases. Section 5 is a focus on the analytic signal ambiguity according to its definition and its consequences when demodu-
lating a residual signal generated after time synchronous averaging. Section 6 comments on the results of the continuous
monitoring and the evolution of two natural failures. Finally, Section 7 draws conclusions and perspectives.

2. Simulation model of a faulty gearbox

Aiming to assess the demodulation process of vibratory measurements, the investigation of a model is necessary. A pair of
meshing gears is considered at steady-state conditions, that is with a meshing under a constant speed and load. Such a
healthy system at nominal speed and at a given load produces a vibration component due to the transmission error of
the meshing gears. This component, due to the elastic deformation of the loaded teeth, is load dependent and periodic at
the gearmesh frequency with integer harmonics. In addition, geometrical deviations from the ideal tooth profiles contribute
to the error transmission also but are not load dependent [17]. Moreover, since there are 2 shafts, one for driving (gear side)
and one for braking (pinion side), harmonics at smaller amplitude from the rotations of these shafts can also be found.
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In case of a healthy system, a vibration model denoted as xhealthy tð Þ can be written as
xhealthy tð Þ ¼
XNH

h¼1
Amesh

h sin 2phfmeshtþ /mesh
h

� �
þ
XNG

g¼1
Agear

g sin 2pgfgeartþ /gear
g

� �
þ
XNP

p¼1
Apinion

p

� sin 2ppfpiniontþ /pinion
p

� �
þ n tð Þ ð1Þ
where, for the gearmesh frequency f mesh, NH is the number of harmonics, Amesh
h is the amplitude and /mesh

h is the phase of the
hth harmonic, for the gear shaft frequency f gear , NG is the number of harmonics, Agear

g is the amplitude and /gear
g is the phase of

the gth harmonic, for the pinion shaft frequency f pinion, NP is the number of harmonics, Apinion
p is the amplitude and /pinion

p is the
phase of the pth harmonic. In addition to these deterministic parts induced mainly by the meshing and shaft rotating forces,
the random part of the vibration signal and the non-periodic components nðtÞ are simply approximated by a stationary Gaus-
sian noise, non-necessarily white.

Let us now assume the occurrence of a local gear fault such as small pits or spalls. This damage gives rise to a local dis-
turbance of the vibration signal. Variations in the meshing force and pressure due to the variation of the tooth surface and
profile cause amplitude modulation. These variations create torque transmission errors, which cause speed fluctuations and
thus generate frequency modulation as well. The signal is then modulated in amplitude and phase by periodic functions at
the rotation frequency of the shaft supporting the faulty gear. Therefore, the vibration model in Eq. (1) denoted now as
xfaulty tð Þ is modified as
xfaulty tð Þ ¼ xfaulty;fmesh tð Þ þ
XNG

g¼1
Agear

g sin 2pgfgeartþ /gear
g

� �
þ
XNP

p¼1
Apinion

p sin 2ppfpiniontþ /pinion
p

� �
þ n tð Þ; ð2Þ
with xfaulty;fmesh tð Þ ¼ PNH
h¼1AMh tð Þ sin 2phfmeshtþ PMh tð Þ þ /mesh

h

� �
; where AMh tð Þ and PMh tð Þ are the amplitude and phase

modulations of the hth harmonic of f mesh respectively.
All these vibration sources are transmitted through the structure to the measurement point where the accelerometer is

located. As a consequence, a simulated signal denoted as sfaultyðtÞ is obtained through a linear time invariant filter that models
this transmission path in the structure
sfaulty tð Þ ¼ xfaulty tð Þ � hðtÞ ð3Þ

with hðtÞ the impulse response of this filter and � the convolution operator.

The following section will focus on a local fault on one or several gear teeth and consequently on the evolution of
xfaulty;fmesh tð Þ in Eq. (2). In this context, the aim is to propose a simulation model for both AMh tð Þ and PMh tð Þ.

2.1. Simulation models of the amplitude modulation

The modelling of the amplitude modulation AMh tð Þ is crucial since its choice can lead to different possibilities to fit the
reality.

This paper reviews the classical model based on Fourier series and compares it to a second model based on the physics. In
both cases, a constraint prevents negative values of AMh tð Þ. The impact of this constraint is discussed in Section 5.

2.1.1. As a Fourier series

As the modulation is a periodic process, AMh tð Þ is often represented by discrete Fourier series [2], denoted as AMf
h tð Þ
AMf
h tð Þ ¼ Amesh

h 1þmf
h tð Þ

� �
with mf

h tð Þ ¼
XL

l¼1
mh;lsin 2plf geart þ£h;l

� �
; and mf

h tð Þ
��� ��� < 1; ð4Þ
with L the harmonic number, mh;l and £h;l respectively the amplitude modulation index and the random phase of l-order
harmonic.

Any periodic function with a finite power can be decomposed in an infinite sum of sines, which argues for the use of this

model. Nevertheless, the sinusoidal property of AMf
h tð Þ has no direct link with the physics, hence the need of considering

high orders.
At some angles, the vibration amplitude of the faulty signal can be lower than the healthy vibration amplitude. As an

alternative, the authors in [15] model the fault impact with a Hanning window, the length of which represents the angular
duration of the impact.

2.1.2. As a shock series
In order to be closer to physics, another model for AMh tð Þ is developed and proposed in this paper. The meshing contact

plays the role of the excitation input of the system. To write it simple by considering one degree of freedom only, the equa-
tion of a linear motion writes as [18],
m€y tð Þ þ b _y tð Þ þ ky tð Þ ¼ 0; ð5Þ

with y tð Þ the position of the mass m, b the damping coefficient and k the stiffness. Then the free solution writes as
3
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y tð Þ ¼ Ae�atsin 2pf 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
t þ /

� �
; ð6Þ
with A and / the amplitude and phase respectively, a the damping factor, f 0 the natural frequency and g the damping ratio.
Dealing with vibration signals measured by accelerometers, the second derivative of Eq. (6) gives the acceleration gen-

erated by the meshing
€y tð Þ ¼ �A4p2f 20e
�atsin 2pf 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
t þ /þ 2arcsin gð Þ

� �
ð7Þ
with the notation f 0 ¼ 1
2p

ffiffiffi
k
m

q
, a ¼ b

2m, g ¼ a
2pf 0

¼ b=m

2
ffiffiffiffiffiffi
k=m

p .

The aim of this notation is to highlight the role of the stiffness k in the following. Indeed, the amplitude writes as A k
m e�at .

This equation shows that the amplitude modulation of the instantaneous acceleration is linearly dependent on the stiffness k
in the case of one-degree of freedom.

For example, in [26], it is shown that a spall on a gear tooth or a tooth break induce a local drop of the gear stiffness, the
profile of which depends a lot on the geometry of the fault. According to Eq. (7), these stiffness drops induce a drop in the
amplitude of the instantaneous acceleration. To differentiate cracks and spalls, [27] studies the effect on the transmission
error taking into account the load. In [16], the measurements of GOTIX test bench show some amplitude bumps. Inspired
by these remarks, and in order to have a generic model, both drops and bumps of the amplitude modulation of the instan-
taneous acceleration at each gear rotation are considered. Each drop and bump, called a shock, is the response of the system
to the fault excitation. The values of these modulation parameters are given by the analysis of the GOTIX measurements in
order to be close to the reality. It should be clear that, in this paper, the objective is to generate simulated signals as close as
possible to real-world signals in order to evaluate the performance of the signal processing and not to give mechanical inter-
pretation as it is interestingly done for example in [28].

An accelerometer measures the resulting acceleration filtered through the mechanical system. Each input excites the res-
onance modes of the system, the response of which is the sum of both the forced and free responses of the system at these
resonance modes. Thus, let us model AMh tð Þ in Eq. (2) as a series of S shocks, a shock s having a positive or negative amplitude
and an exponential damping. Let t0;s be the instant of the shock on the first rotation of the gear with regard to a tooth
reference.

For a measurement over R rotations of the gear, a series of S shocks occurs at each rotation r at instant
tr;s ¼ t0;s þ r � 1=f gear with r ¼ 0; � � � ;R, and s ¼ 1; � � � ; S. The modal response of the system can be written as
xfaulty;fmesh tð Þ ¼ PNH
h¼1A

mesh
h sin 2phfmesht þ /mesh

h

� �
þPR

r¼0

PNH
h¼1

PS
s¼1A

mesh
h mh;se�ah;sðt�tr;sÞu t � tr;sð Þsin 2phfmeshðt � tr;sÞ þ /mesh

h

� �
;

ð8Þ
where u tð Þ is the Heaviside step function, mh;s and ah;s the amplitude and damping factor of the shock s. More details of this
model are given in [18]. The damping factor ah;s is linked to the duration for the stiffness to return to its normal value. There-

fore, the amplitude modulation AMh tð Þ, denoted as AMshock
h tð Þ for this shock series model, writes
AMshock
h tð Þ ¼ Amesh

h 1þmshock
h ðtÞ� �

; with mshock
h tð Þ ¼

XR

r¼0

XS

s¼1

mh;se
�ah;s t�tr;sð Þu t � tr;sð Þ; and mh;s tð Þ�� �� < 1: ð9Þ
In this paper, it is assumed that the fault does not evolve during the measurement so that the shock parameters, the
amplitude mh;s and the damping ah;s, are the same at each rotation r. Over one faulty gear rotation and as a function of
the rotation angle h ¼ 360f geart within 0;360½ � in degrees, the amplitude modulation in Eq. (9) is no more r-dependent
and writes
AMshock
h hð Þ ¼ Amesh

h 1þmh;s hð Þ� �
; with mshock

h hð Þ ¼
XS

s¼1

mh;se�ah;sðh�hsÞ=360f gear u h� hsð Þ; ð10Þ
with hs ¼ 360f geart0;s: To characterize each shock from a physical point of view, a direct relation to the relaxation time is
given. The relaxation time of a shock modelled by Eq. (9) is equal to 1=ah;s. In this study, the width of a shock is defined
as corresponding to three times the relaxation time, i.e., to an attenuation of 26 dB (or an amplitude decrease of 95%).
Expressed in pitch, this shock width writes
wa ¼ 3
ah;s

f gearZgear; ð11Þ
with Zgear the gear tooth number (see Appendix).
4
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2.2. Simulation model of the phase modulation

If we assume that a local fault is on one gear tooth, PMh tð Þ in Eq. (2) can be modelled with a sum of C harmonic sine waves

of the fundamental f gear , denoted as PMf
h tð Þ,
PMf
h tð Þ ¼

XC
c¼0

bh;csin 2pcf geart þ wh;c

� �
; ð12Þ
with bh;c and wh;c , respectively the phase modulation index and the phase of the harmonic c of the fault frequency f gearand C
the sine number in the phase modulation. This model has been proposed by [3]. Whatever the value of h,bh;0 ¼ 0. Thus, C ¼ 0
induces PMh tð Þ ¼ 0, a way to represent the case without phase modulation. The frequency modulation rate denoted as
FMRhis defined as
FMRh ¼ f hmax � f hmin

f hmax þ f hmin
; ð13Þ
with f hmax and f hmin respectively the maximum and minimum frequency of the instantaneous frequency defined from the
derivate of PMh tð Þ. Getting the analytical expression of FMRh for any value of C is a tricky task. For C ¼ 1, the frequency excur-
sion is equal to 2bh;1f

gear and
FMRh ¼
2bh;1f

gear

2hfmesh
¼ bh;1

hZgear : ð14Þ
3. Simulation model identification through demodulation process

After a brief presentation of the analysis and demodulation methods, the aim of this section is to use the models proposed
in Section 2.1 to generate simulated signals with characteristics as close as possible to those of real vibrations
measurements.

The reference measurements come from the database of the GOTIX test bench located in GIPSA-lab [5]. The proposed
demodulation is applied together with an automatic spectral analysis based on a multi-estimator approach [6]. The analysis
of the measurements provides the estimated amplitude and phase modulations, AMh tð Þ and PMh tð Þ respectively. These esti-
mations are used to generate the simulated signals from the models described in the previous section. In what follows, all
amplitude and phase modulations are written as a function of h in degrees.

3.1. The analysis and demodulation methods

This section briefly recalls the used methods. The spectral analysis is realized thanks to a multi-estimator approach based
on Fourier estimators [6] and adapted to vibration signals. It automatically detects peaks, harmonics, sidebands and provides
a wide list of advanced features, that can be a posteriori associated to kinematic values or labels of the analyzed system [4].
This spectral component detection is based on a two-hypotheses test, as explained in what follows. Let xðtÞ be a discrete sta-
tionary random signal with an estimated power spectral density denoted by bcx tð Þ and defined as a sum of an unknown signal
of interest sðtÞ and a noise signal nðtÞ,
x tð Þ ¼ s tð Þ þ nðtÞ ð15Þ

where s tð Þ is a stationary random process, whose estimated power spectral density is denoted by bcs tð Þ, m being the frequency
variable. nðtÞ is assumed to be a zero mean stationary Gaussian noise, independent of the signal s tð Þ, and with an estimated
power spectral density denoted by cn tð Þ. This additive noise is not necessarily white. A statistic test based on two hypotheses
is defined in the frequency domain,
T tð Þ ¼ bcx tð Þ
cn tð Þ

H0

7
H1

lPFA; ð16Þ
with the two hypotheses H0 : cx tð Þ ¼ cn tð Þ, H1 : cx tð Þ ¼ cs tð Þ þ cn tð Þ, and lPFA the threshold adjusted from the probability of
false alarm of the test.

Adjusting and setting up this test requires answering the following three questions: 1) which kind of estimator should be
used for the estimated power spectral density bcx tð Þ, 2) how can the noise power spectral density can be estimated and 3)
what is the statistics of the test variable T tð Þ in order to adjust the threshold to a given false alarm probability.

For the estimation of bcx tð Þ, one key idea of the approach is to combine the results of several different Fourier estimators
according to their complementary properties. Studying the degree of freedom, the spectral leakage percentage, the effective
5
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statistical bandwidth and the frequency resolution of various Fourier estimators enable the selection of a set of methods and
windows. More details are in [6].

Then, bcx tð Þ is used to estimate cn tð Þ, as the result of a filtering of bcx tð Þ. Previous studies [31] compare various nonlinear
filters such as median or morphological filters, but also n-path filters that iterate nonlinear estimation and detection for the
peak removal. Whatever the choice is, the filter lengthM should be adjusted according to the spectral window of the Fourier
estimator.

The choice of both estimators makes possible the derivation of the distribution of the test statistic under hypothesis H0.
For example, the choice of a median filter for the noise estimation leads to a distribution which can be approximated by a
Fisher-Snedecor law Fr;rM , with parameters r and rM, r being the degree of freedom of the chosen estimator for bcx tð Þ and M
being the median filter length. Under hypothesis H1, the distribution is unknown given that s tð Þ is unknown. Then, at each
spectrum maximum corresponding to a frequency tmax, the test is assessed with the p-value, defined under H0 as the prob-
ability of having a test value equal or more extreme than the one observed
p0 ¼ Pr T tð Þ � T tmaxð Þ =H0½ � ¼
Zþ1

T tmaxð Þ

Fr;rM xð Þdx ð17Þ
If the p-value is lower than a given threshold corresponding to a probability of false alarm, the corresponding peak poten-
tially belongs to H1.

Once all peaks belonging to H1 are detected, a specific algorithm patent-protected [32] and then published in [7] groups
all the peaks in harmonic families with their own sidebands. As mentioned in the introduction, this approach has been val-
idated on onshore wind turbines [8–10] and paper machine [11] in the context of two European projects.

This multi-estimator approach detects all the modulated frequency bands, which can then be demodulated. The used
demodulation follows a classical two-steps scheme: first, the signal is band-pass filtered around the band of interest and sec-
ond, after a time synchronous averaging, amplitude and phase modulations are calculated through a Hilbert transform. In
order to enhance the performance of the final Hilbert transform, sharp transition bands are necessary in the context of
real-world signals with a rich spectral content. However, designing such digital filters using conventional methods can be
difficult: finite impulse response filters which have a length inversely proportional to the transition width would have a crip-
pling high order and infinite impulse response filters may suffer from a high sensitivity due to their possible instability. To
tackle this stability problem, in [4], an innovative band-pass filtering is proposed. It is based on a multi-rate approach [33] to
provide a fully automatic solution to design the band-pass filter, whatever the bandwidth constraints are. The objective is to
find the stable elliptic filter of the highest order, to benefit from the sharp transition of such filters, while imposing strong
constraints to minimize bandwidth ripple. The required elliptic filter order q is given by
q ¼
K sð ÞK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s21

q� �
K s1ð ÞK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p� �

where K :ð Þ represents the complete elliptic integral of the first kind, s the transition ratio and s1 a function of the passband
ripple and of the stopband attenuation [34]. Even if for a given order, elliptic filters are optimal in the sense that no other
filter has a sharper transition, the strong constraints on the filter specifications may prevent from designing a stable filter.
The proposed approach [4] is iterative and uses a multistage implementation of a well-chosen decimation of the signal in
order to ‘‘zoom” around the passband of interest before designing the filter. The decimation factor is chosen as a compromise
between a sufficiently high final sampling frequency and the ‘‘relaxing” effect on the required transition band of the filter to
be designed: for a given decimation factor D, the transition band expressed in normalized frequencies becomes
Df D ¼ Df 0D;
where Df 0 is the original required transition band in normalized frequencies. Thus, decimation is a way to transform a highly
sensitive filter design problem into a simpler one. Note that the anti-aliasing filter used before decimation is a Butterworth to
avoid any distortion in the spectral zoom done by the decimation. Moreover, to perform this decimation whatever the factor
D required, a multi-stage implementation is proposed.

Even though other demodulation approaches exist, this paper focuses on this Hilbert-based method combined with this
efficient band-pass filtering. The aim is to highlight and illustrate the performance of this approach, by looking at the influ-
ence of the fault size, the filter band sensitivity, the phase-amplitude correlation, the amplitude rectification of the analytical
signal, and the impact of a residual analysis. These properties are empirically illustrated thanks to the simulated signals
inspired from the analysis results on vibration measurements.

3.2. Analysis and demodulation of the measurements

Real-world vibration measurements are performed on the GOTIX bench [5], a test bench which has been designed to pro-
duce a database on a natural wearing of a gearbox with two parallel straight gears meshing together. It is important to men-
6
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tion that no fault has been initiated. At the initiation of the test, the gears were new. A gear and a pinion are connected
respectively to a driving asynchronous 3-phase motor rotating at 474 rpm and a loading DC-generator applying a 200Nm

torque on the pinion shaft. The ratio between gear and pinion shaft is 3.8. Then, f gear ¼ 7:91Hz, f pinion ¼ 3:8� f gear ¼
30:06Hz and f mesh ¼ 450:87Hz. At the time of writing, the database contains over a thousand timestamp folders (more than
6000 h of rotation), each folder including 18 synchronous measurements such as vibration and electrical data at a sampling
frequency f s ¼ 25600Hz. The detail of the bench kinematic can be found in the Appendix.

Applying the multi-estimator approach recalled in Section 3.1, Fig. 1 shows the detected peaks and harmonic families of a
GOTIX measurement at 6240 h of rotation in the database, that is in the most advanced state of wearing so far. Fig. 1 (a)
illustrates the main harmonic family due to the gearmesh frequency, each gearmesh harmonics being modulated by the gear
and pinion shafts. For the sake of clarity, only the gear shaft sideband family around the third harmonic is highlighted. Fig. 1
(b) presents a zoom around the third gearmesh harmonic with the detected sideband family at the gear shaft frequency.

According to the sensor location, the transmission path can have an impact on the measured vibration and then on the
demodulation result. In this study, this transmission path is computed for the measurement considered in Fig. 1. through
cepstral liftering [29]. The estimation result is shown in Fig. 2 (a). A frequency zoom around the 3rd harmonic in the filtering
band considered for the demodulation is shown in Fig. 2 (b). It is clear that, for this harmonic, the transfer function is con-
stant over this narrow filtering band.

Therefore, after the signal analysis, the GOTIX measurements are automatically demodulated by the method recalled in
Section 3.1 considering the number of sidebands detected around the 3rd harmonic. Since each gearmesh harmonic is mod-
ulated by the same gear frequency, the demodulation band is limited to half the gearmesh frequency on each side, that is to
the sidebands�Zgear=2. However, in the GOTIX case, the assembly design is not optimal. The gear tooth number

Zgear ¼ 57 ¼ 3� 19 and the pinion tooth number Zpinion ¼ 15 ¼ 3� 5 are not co-prime and have a greatest common divisor
equals to 3. It means that 3 tooth family pairs can be present on both the gear and the pinion. One family from the gear
(19 teeth) is only meshing with its corresponding family from the pinion (5 teeth). This generates an assembly phase fre-
quency three times lower than in the optimal case when all gear teeth mesh with all the pinion teeth. In the studied case,
the sideband structure at the gear frequency has higher energies at frequencies multiple of 19 � f gear , as can be seen in Fig. 1
(b). These harmonics, with their own sidebands at f gear , are interfering with the modulation pattern.
Fig. 1. Detected spectral peaks of a GOTIX measurement at 6240 h. (a) The gearmesh harmonics are highlighted with blue arrows. (b) A zoom around 3f mesh ,
the modulation sidebands are highlighted with purple arrows, undetected sidebands are indicated by a purple cross and a specific focus is made on the 19th
sidebands with black arrows.

7



Fig. 2. Estimated transmission path of GOTIX measurement at 6240 h. (a) On the entire frequency band. (b) Zoom on the demodulation band around the 3rd
harmonic.
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Thus, the demodulation band is set to �9 sidebands. Obviously, the fact that this assembly phase family is present indi-
cates that the 3 family pairs are in a different state of wear. This presence could be used as a fault indicator, but it is not the
scope of this paper. The demodulation method described in the previous section is then applied in the band [1291 Hz,
1434 Hz] around the 3rd harmonic. Fig. 3 shows the amplitude and phase responses of the elliptic filter found by the method
[4] and a spectral zoom before and after filtering. In this particular case, the demodulation band is equal to 143 Hz (corre-
sponding to 0.0054 in normalized frequencies which highlights the extreme narrowness of the required filter band). The
algorithm converges in one iteration to an elliptic filter order of 11 and a down sampling factor of 36. The peak-to-peak pass-
band ripple equals 0.005 dB and the stopband attenuation equals 80 dB. These values confirm a challenging design filter.

Fig. 4 (a) shows the estimation of the amplitude modulation over one gear rotation, dAM3 hð Þ, for GOTIX measurement at
6240 h of rotation. This estimated amplitude presents 2 drops in amplitude clearly identifiable and several bumps. A visual
inspection on the GOTIX gearbox confirmed that these shocks are angularly corresponding to the zones of the gear where
spall marks are present. The two most severe spall marks have been observed on teeth 31 and 46. Fig. 4 (c) and (d) show

pictures of these teeth whose numbers remarkably correspond to the two minima of dAM3 hð Þ in Fig. 4 (a). Other spall marks
have been observed, but notably smaller, on tooth 21 in Fig. 4 (b) for example.

The spatial sampling d is the ratio of the gear circumference to the sample number on one gear rotation,
Fig. 3.
measur
d ¼ pMZgear

f s=f
gear ð18Þ
Design of the filter automatically chosen by the multirate technique. (a) Amplitude response. (b) Phase response. (c) Spectral zoom of the GOTIX
ement at 6240 h before filtering (blue) and after filtering (red) around the 3rd harmonic.
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Fig. 4. (a) The estimated amplitude demodulation results dAM3 hð Þ of the 3rd harmonic of f mesh of GOTIX measurement at 6240 h. (b) Gear tooth 21. (c) Gear
tooth 31. (d) Gear tooth 46.
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withM the gear module. Numerical values listed in Appendix give d ¼ 0:14mm. This very low sampling period is the result of
both relatively low rotation speed and high frequency sampling. Nevertheless, this low sampling does not induce a high res-
olution. The contact ratio in the GOTIX bench is 1.526. This ratio is the average number of tooth pairs in contact. This value
greater than 1 necessarily impacts the confidence interval of the tooth position estimation; this interval is then wider than 1
tooth. But the strongest alteration of the spatial resolution comes from the demodulation process, as shown in Section 4.

This preliminary part provides a full spectral estimation of GOTIX measurements, noise line, peaks, harmonic families,
sidebands, and demodulated sidebands, from which the simulated signals are generated. For the sake of clarity, only results
around the 3rd harmonic are described. The same way can be applied for all harmonics. Note that the different behaviors of
all the harmonics are discussed in [30].

3.3. Generation of the simulated signals

Thanks to the analysis of one GOTIX measurement in the previous section, the algorithm provides the amplitude values of
the peaks associated to the harmonic families of gear and pinion shafts, and gearmesh. It thus provides the amplitude terms

Amesh
h , Agear

g , Apinion
p in Eq. (2), which represent the temporal amplitude values of the sine waves that are not corrupted by the

noise level. The following discussion will be focused around the 3rd harmonic. Therefore, given the shape of the transmission
path estimated in the previous section, the convolution in Eq. (3) only impacts the signal of a multiplicative constant ampli-
tude and a linear phase given the operational conditions are constant. This convolution will then have no influence on the
demodulation carried on a very narrow frequency band.

The objective now is to find the other parameters of the model so that the quadratic errors between the model and the

measurement estimations dAMh hð Þ and dPMh hð Þ are minimal. It is an optimization problem impossible to formulate analyti-
cally given that the observation is through an estimation. This error function being scalar-valued and nonlinear, a nonlinear
unconstrained optimization problem is formulated and can be solved thanks to the Nelder-Mead simplex algorithm [25], a
simple and fast method for minimizing a function without any derivative.

First a vibration model is simulated with the amplitude modulation AMf
h hð Þ, modelled as the Fourier series described in

Eq. (4). The sine number L is found equal to 13. A white noise has been added with a signal-to-noise ratio equivalent to the
one estimated on GOTIX measurements and provided by a method based on the autocorrelation function of the signal and
published in [20], that is 10 dB. This value has been chosen for all the simulated signals discussed in this paper.

Fig. 5 (a) shows the demodulated amplitude dAMf

3 hð Þof the Fourier series model as a function of the gear rotation angle h.
The result is satisfying when comparing with GOTIX demodulation. This result was expected knowing the concept of Fourier
series. Nevertheless, this formalism does not give the possibility to link the model parameters to the physical parameters
such as the number and localization of faulty teeth. This functionality is very useful to validate the demodulation result;
therefore, such a drawback of the Fourier series model was a motivation for a model with physical parameters.

For this reason, the amplitude modulation is then modelled as AMshock
3 hð Þ, the shock series model described in Eq. (10). The

amplitudesm3;s, the shock instants t0;s and the damping factors a3;s are chosen such that the resulting dAMshock

3 hð Þ of the model

demodulation fits the estimated dAM3 hð Þ of the GOTIX measurement demodulation using the same optimization process. But,
for this model, the parameters to set are of 2 kinds, the amplitudes and the damping factors that are continuous, the shock
instants and number that are discrete. The used optimization algorithm does not allow to optimize the discrete parameters,
so they are a priori set, which is a simple task, and the continuous parameters are estimated thanks to the optimization
9



Fig. 5. Comparison of the amplitude demodulation of GOTIX around the 3rd harmonic of f mesh , dAM3 hð Þ at 6240 h (blue), with 2 models (red). (a) dAMf

3 hð Þ from
Fourier series model, (b) dAMshock

3 Hð Þ from shock series model.
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algorithm. In the end, S ¼ 12 shocks have been necessary in order to fit, after demodulation, all variations observed indAM3 hð Þ, including the two important drops in amplitude corresponding to the two minima. Fig. 5 (b) shows that the demod-

ulation of the simulated signal fits quite well with GOTIX demodulation. All the drops and bumps of dAM3 hð Þobserved in the

GOTIX case match this simulation. The identified amplitude modulation, denoted as AMfit
3 hð Þ, is of interest for the following

section due to the physical meaning of its parameters. This model is relevant for studying the impact of demodulation since
the parameter setting of the modal response is possible in terms of number, location and damping factors of faulty teeth.

The phase modulation PM3 hð Þ is estimated with the phase model of Eq. (12), applying the same optimization algorithm.

Fig. 6 shows the result dPMf

3 hð Þwith C ¼ 9 and FMR3 ¼ 0:26%. The identified frequency modulation is denoted as PMfit
3 hð Þ.
4. Fault detection using demodulation

In the previous section, estimation of the model parameters of Eq. (2) is done based on real-world signals of the GOTIX
test bench, using the proposed model of a shock series for the amplitude modulation given by Eq. (10) and the sine model of
Eq. (12) for the phase modulation. Using these model parameters, simulated signals are generated.

The objective of this section is to show how the efficiency of demodulation in fault detection is impacted by the shock
width, strongly dependent on the damping, and the phase modulation, within the context of a very narrow band pass filter
Fig. 6. Comparison of the phase demodulation estimation of GOTIX, dPM3 hð Þ at 6240 h (blue), with a phase model (red) with AMfit
3 hð Þ and dPMfit

3 hð Þ (C ¼ 9,
FMR3 = 0.26%).
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linked to the demodulation process. This study has already been performed in the case of a mono-carrier model [16] in which
only one harmonic of the mesh frequency was considered in the model.

The aim of this section is to consider a more realistic model. The signals simulated are composed of a greater number of
harmonics ðNH ¼ 20). The characteristics of the amplitude and phase modulation of these signals are modified from the

AMfit
h hð Þ and PMfit

h hð Þ identified in the previous section. The modified parameters are: the width of the main shock (fit value:
5.9 pitches) for the amplitude modulation, the number C of sines (fit value: 9) and its FMRh (fit value: 0.26%) for the phase
modulation.

First, in Section 4.1, in order to study the effect of the shock width, simulated signals are generated with amplitude mod-
ulation only (no phase modulation), with different shock widths wa in a range close to the one identified on GOTIX signals.

Second, in Section 4.2, the simulated signals are modulated in both amplitude and phase, while, in order to study the
effect of phase amplitude, different phase model parameters (C, FMRh) are used.

In both cases, as explained in Section 3.2, the demodulation of the simulated signals is done around the 3rd harmonic as
for the GOTIX measurement. As the filter does not depend on the signal but on its characteristics and the sampling frequency,
the filter is exactly the same as in Fig. 3 (a) and (b). The performance and the limits of the fault detection using demodulation
are evaluated thanks to well-chosen criteria. A first criterion of comparison is the classical normalized mean square error
(NMSE) between the demodulated result and the original model. Two other criteria are introduced to better characterize
the drop detection, namely the normalized shock amplitude error (SAE) and the shock position error (SPE), which are defined
as follows,
SAE ¼ jAmin � bAminj
Amin

� 100 and SPE ¼ hs � bhs

��� ���; ð19Þ
where Amin ¼ Amesh �min AMshock
h hð Þ

� �
represents the amplitude drop of this shock, bAmin its estimation, and bhs the estimation

of the rotation angle hs of the drop (see Eq. (10)).
4.1. Amplitude modulation only

As explained above, the aim of this section is to study the effect of shock width on the capacity of the demodulation to
detect a fault. Therefore, signals are generated with amplitude modulation only, with different shock widths for the 3rd har-
monic. For the sake of clarity, only the shock width of the strongest drop in amplitude around the tooth 31 in Fig. 4 (a) is
varying. Five values of a3;s are chosen in order to get five angular widths wa which are ð0:25;0:5;1:5;3:5;8:5Þ, expressed
in pitch. No phase modulation is applied to these simulations, referred to as PM0 case.

The demodulation results are presented in Fig. 7 where the comparison is made between the demodulated amplitude and
its corresponding original one. In Fig. 7 (b), the zoom on the drop with different shock widths shows that this drop is no
longer identifiable for the lowest values of wa, concealed by the other shocks. Table 1 gives NMSE, SPE and SAE values cor-
responding to these different shock widths. For the shock widths, wa ¼ 0:25 and 0:5 pitches, the SAE values confirm that the
amplitude drop is too small for being correctly detected, due to the influence of other surrounding shocks. For the other
shock widths, wa ¼ 1:5;3:5;8:5 pitches, the position error SPE increases with wa, until nearly one gear pitch for wa ¼ 8:5
pitches.

These results illustrate the impact of the demodulation as a filtering process, which ‘‘smoothes” the output compared to
the original model, and introduces an estimation error characterized by the NMSE values of Table 1.

Thus, in order to diagnose a tooth fault properly, obviously, the longer the relaxation time compared to the meshing per-
iod, the easier it is to detect. Note that even for the largest shock considered in this study (wa ¼ 8:5), the position error does
not impede diagnosis, as it is still below 1 pitch.
4.2. Both amplitude and phase modulations

Let us now consider the case where both amplitude and phase modulations are present. In this section, the simulated
signals are modulated in amplitude with different shock widths from 0.25 to 8.5 pitches, including the value estimated in
the GOTIX analysis (5.9 pitches). Moreover, to simulate an increasing rate of frequency modulation, ten couples of (C,
FMR3) are used as detailed in Table 2, C being the sine number in the phase modulation and FMR3 the frequency modulation
rate (see Eqs. (12) and (13)).

The demodulation results in the case of a shock width wa ¼ 8:5 are illustrated in Fig. 8, with the demodulated amplitude
in Fig. 8 (a) to (c) and the demodulated phase in Fig. 8 (d) to (f).

Regarding amplitude demodulation, in Fig. 8 (a) where the FMR3 is low (<0.26% corresponding to the GOTIX case) and
Fig. 8 (c) with a higher FMR3 (around 1.2%), whatever the number C of sine components in the phase model is, the amplitude
estimation is mostly impacted by the ‘‘smoothing” effect of the demodulation, as already shown in the previous section.
However, in Fig. 8 (b), showing the results for the highest values of both C and FMR3, the estimated amplitude modulation
becomes useless for PM9 to perform a diagnosis.
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Table 1
NMSE, SAE and SPE values of dAM3 hð Þ for various shock widths (case of amplitude modulation only).

Indicators of the amplitude demodulation wa of the amplitude drop model

¼ pitch ½ pitch 1.5 pitch 3.5 pitches 8.5 pitches

NMSE(%) 11.1 11.4 13.8 14.3 11.0
SAE(%) 79.1 75.0 66.1 54.1 35.9
SPE(degrees) 3.47 2.46 1.57 2.24 5.04
(pitch) (0.55) (0.39) (0.25) (0.35) (0.8)

Table 2
Values of (C,FMR3) for the phase model of the simulated signals.

PM0 PM1 PM2 PM3 PM4 PM5 PM6 PM7 PM8 PM9

C 0 1 5 9 1 5 9 1 5 9
FMR3 0 0.041% 0.22% 0.26% 0.21% 1.1% 1.3% 0.42% 2.19% 2.56%

Note that PM3 corresponds to PMfit
3 hð Þ issued from the GOTIX analysis and that PM0 corresponds to the case without phase modulation (amplitude

modulation only as in previous section).

Fig. 7. Influence of model parameters of amplitude modulation without phase modulation. (a) Theoretical models AMshock
3 hð Þ with wa varying from 0.25 to

8.5 pitches for the deepest amplitude drop (dashed lines) and the estimated dAM3 hð Þ(solid line). (b) Zoom on the main amplitude drop.
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This behavior is different for phase demodulation. While theoretical and estimated values are almost identical at inter-
mediate and strong FMR3 in Fig. 8 (e) and (f), the strongest errors appear at low FMR3. As can be seen in Fig. 8 (d) for PM1 and
for PM0, the estimated phase modulation is fluctuating with important variations close to the positions of all amplitude
bumps and drops. For PM0, the phase should even be equal to zero. The estimated phase in these cases has errors concen-
trated around the positions of the shocks, especially for the most important one around 200 degrees.

To highlight the influence of both shock widths and frequencymodulation on amplitude demodulation, Fig. 9 presents the
amplitude NMSE values (first row of the figure), SAE values (second row) and SPE values (third row) as a function of the
shock width, at low frequency modulation rates (PM0 to PM3) in the left column (Fig. 9 (a), (d) and (g)), for increasing fre-
quency modulation rate with the same number of components (PM3, PM6 and PM9) in the middle column (Fig. 9 (b), (e) and
(f)) and for an increasing number of components for a comparable FMR3 in the right column (Fig. 9 (c), (f) and (i)).

At low FMR3, amplitude NMSE values in Fig. 9 (a) are below 15%, whatever the shock width is. Moreover, for any given
shock width, the amplitude NMSE values are almost of the same order of magnitude at all FMR3 from PM0 to PM3. This
shows that at low FMR3, the amplitude demodulation error is mainly due to the demodulation process and its corresponding
filtering effect. However, for higher FMR3, in Fig. 9 (b), the amplitude NMSE is increasing with FMR3, going up to more than
50% for PM9 (the strongest FMR3in our simulations), whatever the shock width is. The same holds in Fig. 9 (c) where the
amplitude NMSE is increasing with the number of phase components, for a givenFMR3 greater than 1%. This highlights
the influence of frequency modulation on the amplitude demodulation in the case of a strong frequency modulation.

Fig. 9 (d), (e) and (f) illustrate an expected behavior with a decreasing SAE as a function of the shock width: the larger the
shock width, the easier the detection. This behavior is observed, whatever the frequency modulation.

Regarding the fault localization, SPE values in Fig. 9 (g) are below one pitch, whatever the value of the shock width at all
frequency modulation rates from PM0 to PM3. Moreover, as shown in figures Fig. 9 (a), (d) and (g), for a given shock width,
amplitude NMSE, SAE and SPE values are of the same order of magnitude, regardless of the low modulation rate present in
12



Fig. 8. Impact of phase modulation: theoretical (dashed line) and estimated (solid line). 1st line: AM3 hð Þ. 2nd line: PM3 hð Þ.1st column: low FMR3 and
variable C. 2nd column: increasing FMR3 and C = 9. 3rd column: increasing C and close middle FMR3.

Fig. 9. NMSE, SAE and SPE values for different shock widths and phase modulations.
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the signal of interest. This confirms that in the case of a low frequency modulation rate, the amplitude demodulation is not
influenced by the frequency modulation. However, for a higher frequency modulation or an increasing number of phase
components for a given FMR3 > 1%, Fig. 9 (h) and (i) clearly show the influence of frequency modulation on the result of
the amplitude demodulation and on the fault localization, with SPE values higher than 1 pitch.
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As illustrated in Fig. 8 for a given shock width, the estimation of the phase modulation is also impacted by the amplitude
modulation shape. Unlike the amplitude estimation, the greatest impact is at low FMR3. Table 3 confirms this behavior
through the phase NMSE values. IfFMR3 < 1%, (PM0 to PM4 and PM7), the phase NMSEs are higher than for the other rates,
whatever the number of phase components is. Note that for the clarity, this table is for a shock width wa ¼ 8:5 but the same
behavior has been observed for all tested shock widths. Note also that the case without phase modulation, PM0, is not in this
table, since it cannot be normalized (the reference being zero).

4.3. Conclusions

As it is well-known, applying a Hilbert demodulation with a strong filtering alters the estimated amplitude and phase
modulations. This alteration comes from the removal of distant sidebands, which contain information about both modula-
tions. However, as shown in the two previous sections, even with the observed degradations on the demodulation results,
the detection and the localization of the faulty teeth are still possible, except for the cases where phase modulation is too
important or when the relaxation time of the modal response is shorter than the meshing period. The dual interpretation
in the frequency domain is easily understandable since it means that the frequency response of the modal response, linked
to the inverse of the relaxation time, is greater than the meshing frequency over 2, the limit of the filtering bandwidth.

For a test bench as GOTIX with a PGCDðZgear; ZpinionÞ > 1, that is the possible existence of an assembly frequency, when this
frequency is not present in the spectrum, the filter is correct given that the band can be equal to �Zgear=2 sidebands. The
presence of this assembly frequency, which in itself is a sign of wear, makes the spectrum more complex as the sidebands

are potentially overlapping. Therefore, the filter band should be drastically reduced to �Zgear=2PGCDðZgear; ZpinionÞ sidebands.
This section copes with this case where the filter band equals to 0.0554 in normalized frequency. The used multi-rate filter-
ing method succeeded in designing such a filter with a low passband ripple and a high stopband attenuation. This narrow
filtering band makes the demodulation performance worse in terms of NMSE, with an aggravation increased for a complex
phase modulation. Nevertheless, it allows an interesting fault detection.

This section comments the cross-influence between amplitude and phase modulation. The sidebands out of the filter
band contain information from both modulations. Their numbers and energies are troublesome to calculate theoretically.
The more components, the wider the spectrumwill be. In some particular cases, not illustrated in this paper, the distant side-
bands may have higher amplitude values than the first ones. For example, a centrifugal compressor with Zgear ¼ 375 teeth
was found to have a bh;1 ¼ 50. In these cases, the previous drastic filter will produce much worse results.

In the case of a localized fault, the relaxation time of the modal response is an important characteristic to define the
demodulation performance. The shorter it is as compared to the meshing period, the lower is the demodulated amplitude,
making it possible to miss a fault. The longer it is, the less accurate is the maximum position, influencing the determination
of the faulty tooth.

A high relaxation time coupled with a low amplitude of the modal response (e.g. a mild fault affecting several teeth) may
have the same demodulated shape as a severe fault located on one tooth. This limitation of the demodulation regardless of
the used method, is due to the non-unity of the amplitude-phase decomposition of the analytic signal as developed in the
next section.

5. Demodulation of the residual signal

Some papers, such as [35,36], report on the demodulation on the residual signal. The residual signal is obtained after
applying a time synchronous average with the gearmesh frequency to remove the gearmesh harmonics and enhance the sig-
nal to noise ratio. However, in this case, fault detection on the demodulation result has to be done, considering some possible
ambiguities, as detailed hereafter.

5.1. The ambiguity of the analytic signal and its polar decomposition

In 1946, Gabor [19] has proposed a definition of the analytic signal zðtÞ such that the real part equals the analyzed signal
denoted here by xðtÞ and the imaginary part equals the Hilbert transform of this signal
Table 3
NMSE v

Phas

NMS
z tð Þ ¼ x tð Þ þ iH x tð Þð Þ; ð20Þ
alues of dPM3 hð Þ for wa ¼ 8:5 and different frequency modulation rates.

e model PM1 PM2 PM3 PM4 PM5 PM6 PM7 PM8 PM9

E 1.9% 0.8% 0.4% 0.03% 0.02% 0.06% 0.01% 0.02% 0.1%
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with H �ð Þ the Hilbert operator. The Hilbert transform of a real-valued function is a real-valued function. The analytic signal
zðtÞ is complex and unique by definition. As it is the case in the demodulation process, it is often interesting to write z tð Þ in
polar coordinates,
z tð Þ ¼ AMðtÞeiWðtÞ; ð21Þ

with AMðtÞ being the instantaneous amplitude of zðtÞ and WðtÞ its instantaneous phase. Unlike representation in Cartesian
coordinates of Eq. (20), the representation in polar coordinates of Eq. (21) is not unique. It means that the decomposition of
the analytic signal in amplitude and phase is not unique as mentioned in former papers [12,14]. Commonly, the instanta-
neous amplitude of the analytic signal is defined as
AM tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðtÞ2 þH x tð Þð Þ2

q
; ð22Þ
and the instantaneous phase as
W tð Þ ¼ arctan H x tð Þð Þ=xðtÞð Þ: ð23Þ

By doing this, AM tð Þ is implicitly constrained to be nonnegative. The ambiguity occurs when the amplitude of the signal

x tð Þ is negative at some instants. For example, consider the following signal
x tð Þ ¼ a tð Þcos xtð Þ; ð24Þ

where a tð Þ is a function negative at some instants andx the pulsation of the signal. The unique corresponding analytic signal
zðtÞ is
z tð Þ ¼ a tð Þcos xtð Þ þ ia tð ÞsinðxtÞ ð25Þ

Computing the polar form that is to say the amplitude and phase decomposition using the definitions of Eq. (22) and (23)

gives
AM tð Þ ¼ aðtÞj j;W tð Þ ¼ xt; ð26Þ

which are not correct. As written, the complex signal aðtÞj jeixt does not equal to Eq. (25). Indeed, in this case, the two fol-
lowing decompositions
z tð Þ ¼ a tð Þeixt ¼ aðtÞj jei xtþ1
2p 1�sgn a tð Þð Þð Þ½ �; ð27Þ
are correct (the function sgn :ð Þ taking �1 values depending on the sign of aðtÞ). In the first expression, the instantaneous
amplitude is negative, a choice rarely used in practice. In the second expression, the added phase is a function of time to
compensate for the rectification of the amplitude constrained to be positive. By convention, this second expression is com-
monly used. In this second case, whereas the amplitude is rectified at each time the value is negative and aliased around the
horizontal time axis, at the same instants, the instantaneous phase presents jumps, and the instantaneous frequency, defined
as the derivative of the phase, presents spikes.

5.2. The case of residual signal demodulation

It turns out that this ambiguity problem occurs when demodulating the residual signal. To the best of our knowledge, this
problem is not mentioned in the literature. This rectification can lead to a wrong interpretation of both the instantaneous
amplitude and the phase. The observed jumps of the phase should not be interpreted as a fault but only as a mathematical
artefact. The objective of the following discussion is to illustrate this problem when demodulating a residual signal knowing
that an amplitude modulation index lower than 1 is the most frequent case.

The residual signal is obtained by removing the time-synchronous averaged signal at the gearmesh frequency from the
vibration signal. This approach is frequently used in vibration analysis and was first proposed by [21]. It is used either to
process the obtained time average signal, or to process the residual signal. Details and performances of this method are
not the scope of the paper and can be found in many published papers such as [22,23]. This process is different from the
one used in the demodulation process described in Section 3.1, where modulation frequency is used instead of the gearmesh
frequency.

After removal of the synchronous part, the amplitude modulation of the residual signal denoted in that case by AMres
h hð Þ is
AMres
h hð Þ ¼ Amesh

h mh hð Þ; ð28Þ

given that the gearmesh frequencies and their harmonics have been removed. This removal keeps only the sidebands of
interest, as shown in Fig. 10. The residual amplitude AMres

h hð Þ is necessarily lower than AMh hð Þ and may be close to zero, even
negative, particularly in the presence of a fault.

Processing the demodulation of the residual signal is usually justified by the strong amplitude influence of the tooth
meshing vibration. Indeed, these vibrations are not only important but also positively correlated to their modulation side-
15



Fig. 10. Spectrum (a) of a simulated signal and (b) of its residual signal around the 3rd harmonic.
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bands [24]. However, in that case, it is worth pointing out the ambiguity brought by the amplitude and phase decomposition
of the Hilbert-based demodulation, as detailed in the previous Section 5.1.

Fig. 11 (a) compares both the estimated amplitude of a simulated signal and its residual signal which should almost be
the same, up to an additive constant. For the sake of clarity, the simulated signal is simply designed with only one shock in

the amplitude and, what is very important to notice, without phase. dAMres

3 hð Þ is clearly rectified at the shock location in order

to respect the positivity constraint. Without this constraint, the estimation would have been as a translation of dAMres

3 hð Þ, this
expected curve is represented by a dashed curve in Fig. 11 (a).

This amplitude rectification has also a strong impact on the phase, knowing that the simulated signal has no phase mod-
ulation. As shown in Fig. 11 (b), phase jumps occur at each amplitude rectification. As explained above, these phase jumps of
value p are equivalent to a negative sign and thus preserve the unicity of the analytic signal. Furthermore, the unwrapping of
the phase becomes trickier, and leads to a drift. The positions of the phase jumps are clearly visible in the instantaneous fre-
quency, derivative of the phase, and represented in Fig. 11 (c). The reading of the phase or instantaneous frequency can
incorrectly conclude to the presence of more than one fault.

Consequently, this amplitude rectification and these phase jumps can clearly induce a wrong interpretation of the
demodulation functions. In particular, it might be tempting to conclude that the phase is more meaningful than the ampli-
Fig. 11. Comparison of the demodulation of a model (blue) for a one-shock model without phase modulation (PM0) with its residual (red). (a) dAM3 hð Þ anddAMres

3 hð Þ. The dashed red line is a translation of the model to be at the same level as the residual, for comparison purpose. (b) dPM3 hð Þ and dPMres

3 hð Þ. (c):
Corresponding instantaneous frequencies.
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tude. However, in this example, the strong impacts in the phase come from a processing artefact when demodulating the
residual.

This problem of the residual signal demodulation, highlighted in Fig. 11 on a simulated signal, has been often observed
when processing real-word signals with or without time synchronous averaging. Indeed, when comparing both results of
demodulation applied directly on the GOTIX measurement or on its residual signal, the rectification of the residual ampli-
tude estimation is clearly visible, as shown in Fig. 12 (a) where the dashed red curve corresponds to what should be obtained.
The difference in the phase estimations or instantaneous frequencies in Fig. 12 (b) and (c) is really striking.

The ambiguity inherent to the demodulation process when applied to the residual signal is explained in this section and
illustrated on simulated as well as real signals. This leads us to conclude that, to avoid false detection, the demodulation
should be applied on the signal and not on the residual signal.
6. Surveillance: Results of a continuous monitoring

The interest of demodulation is not only for analyzing one signal but also for a continuous preventive surveillance of a
system. In a continuous monitoring, successive signals are analyzed by the same approach described in Section 3.1. A ded-
icated time–frequency tracking over all previous time stamps [7] builds trajectories of peak, harmonic and sideband families
that generate continuous system health indicators. This tracking is of interest to evaluate the evolution of the system health.

In that context, the GOTIX test bench provides a sequence of measurements regularly updated with new ones. The objec-
tive of this section is to show the demodulation results of a sequence of 427 measurements during the last 3200 h of rotation.
At the beginning of this sequence, the GOTIX bench has already been running for over 3000 h, but with a change in an oper-
ational parameter, a decrease in the braking torque. Hence the choice to consider only the signals after this change. This
means that the gear on the first analyzed signals in Fig. 13 was already slightly worn. Each signal is synchronized thanks
to a top-tour connected to the gear. Thus, each signal begins at the same gear angular position, and the amplitude modula-
tions correspond to one rotation starting always from the same point.

The used method is able to automatically compute the demodulation of the measurements in all the sequence of mea-
surements The demodulation is done around the third harmonic for each signal. Fig. 13 shows the 3D representations of
Fig. 12. Comparison of the demodulation of GOTIX measurement (blue) at 6240 h and around the 3rd harmonic and its residual (red). (a) dAM3 hð Þ, dAMres

3 hð Þ
and dAM3 hð Þ � Amesh

3

� �
(dashed red) (b) dPM3 hð Þ and dPMres

3 hð Þ. (c) Corresponding instantaneous frequencies.

Fig. 13. Monitoring of GOTIX based on the estimated demodulations around the 3rd harmonic between 0 and 3200 h. (a) Normalized amplitude
modulations dAM3 hð Þ. (b) dPM3 hð Þ. (c) Instantaneous frequency. All measurements were synchronized with reference to a top-tour encoder. The red lines
show the 2 main worn teeth, gear teeth 31 and 46.
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the amplitude in (a), of the phase in (b) and of the instantaneous frequency obtained by derivative of the phase in (c). Thanks
to synchronization and constant operating conditions, these functions show a very continuous evolution. The two red lines in

the 3 representations track the position of tooth 31 and tooth 46 respectively. In Fig. 13 (a), the variations of dAMh hð Þ shows a
bump just before tooth 31 at the beginning of the test. This bump disappears after a few hours of rotation. Then, an increas-
ingly large drop in amplitude is clearly initiated at tooth 31. At tooth 46, a drop in amplitude occurs after about 1000 h of

rotation only. In contrast, in Fig. 13 (b) and (c), the trends of dPMh hð Þ and of the instantaneous frequency are not as easily

interpreted as those of dAMh hð Þ. Nevertheless, it is remarkable that the two areas around teeth 31 and 46 are the only ones
that show significant variations during the test.
Fig. 14. Cross-sections in Fig. 13 over 3200 h of rotation. (a) At tooth 31. (b) At tooth 46.

Fig. 15. Tracking of GOTIX measurements between 3012 h and 6245 h through demodulation around 1st (top) and 4th (bottom) harmonics. (a) Normalized
amplitude modulations dAMh hð Þ. (b) Phase modulation dPMh hð Þ. (c) Instantaneous frequency (derivative of dPMh hð ÞÞ. All measurements were synchronized
with reference to a top-tour encoder. The red lines show the 2 main wear teeth, gear teeth 31 and 46.
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Cross-sections of these 3 estimators, amplitude, phase and instantaneous frequency, represented in Fig. 14 at two posi-
tions, teeth 31 and 46, illustrate clearly a noticeable decreasing trend in the amplitude for these two faulty teeth.

The demodulation amplitudes decrease consistently over time, featuring an aggravation of the spalls. Thus, the choice of
the 3rd harmonic for the demodulation is a posteriori justified by the good results on its long-term monitoring. In order to
compare with other harmonics, the monitoring is performed on harmonics 1 and 4, as shown in Fig. 15.

This extended monitoring also shows signs of faults around teeth 31 and 46, in particular with the appearance of shocks
in the amplitude modulation. However, the trends are not as clear as around the 3rd harmonic, and these shocks are now
positive. In order to increase the reliability of the detection in a continuous automatic monitoring context, the demodulation
should thus be performed around several different harmonics.
7. Conclusions

In the context of automated monitoring for preventive maintenance purposes, this paper explores the steps of demodu-
lation or so-called ‘envelope analysis’, an essential process for an earlier detection and localization of faults in the analysis of
vibrations generated by rotating machines. This paper focuses on the well-known and often used method based on the Hil-
bert transform. The main objective is to quantify the performance of the demodulation process by comparing analyses of
real-world vibration measurements and models. Results are computed from the database of a natural wear test of a parallel
straight-teeth multiplier on the GOTIX test bench. At the test beginning, the multiplier was a new-build gear without fault
initiation. This wear test is carried out at a point where several spalls of different wear degrees are observed.

A performance assessment requires simulated signals and then a model is used for this purpose only. A shock series func-
tion models the amplitude modulation. The model parameters are set thanks to an experimental fitting with the measure-
ment analysis. Such a parametrization is expressed directly in terms of physical parameters. These parameters are then
tuned to simulate a variety of failures in terms of number of faulty teeth, their position, and the severity of their degradation.
The phase modulation is modeled with a sum of harmonic sine waves.

The main trouble in the Hilbert demodulation is the filter bandwidth around the carrier frequency; this bandwidth could
not be wide enough due to aliasing with the other harmonics. The performance is discussed in the case of a strong filtering,
which necessarily impacts the modulation estimation. Nevertheless, the results show that a detection and localization of the
failure are still possible except for the cases where phase modulation is too important or when the relaxation time of the
modal response is shorter than the meshing period. In the paper context, the fault detection based only on the phase is
not performing, whereas the amplitude modulation is able to highlight the presence of several faults.

This paper comes back to the non-unicity of the amplitude and phase decomposition of the analytic signal. A demodula-
tion process based on Hilbert transform needs a polar transform of the analytic signal. This decomposition being not unique,
it can lead to misinterpretation when the amplitude modulation index is lower than the unity. An example is illustrated
when demodulating a residual signal obtained after the removal of all gearmesh harmonics.

In the end, a sequence of measurements is automatically demodulated for a continuous preventive surveillance of the
GOTIX bench. The 3D or 2D representation of the amplitude and phase modulations may be of a great help for detecting
the faulty tooth positions. Further works are in progress for defining new condition monitoring features from these
representations.
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Appendix. GOTIX test bench

	 Driving three-phase asynchronous motor Leroy-Somer P280 S-8, 55 kW. f gear ¼ 474rpm
	 Braking DC generator Leroy-Somer 54.3 kW, commanded by a Leroy-Somer DMV 2342 inverter. The motor is powered
either by Altivar 66 inverter. Parallel straight teeth in case-hardened steel.

	 Module M = 2.5 mm, Tooth number: Zgear ¼ 57, Zpinion ¼ 15
	 OROS acquisition system, f s ¼ 25600Hz, data length 10 s, 18 synchronous channels: 6 accelerometers, 3 phase current &
voltage sensors, 1 torquemeter, 1 tachometer and 2 optical encoders with top-tour.
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Fig. 16. Synoptic view of the test bench GOTIX.

X. Laval, C. Mailhes, N. Martin et al. Mechanical Systems and Signal Processing 150 (2021) 107321
See the synoptic view in Fig. 16. Further details can be found in GOTIX website [5] where data used in this paper can also
be downloaded. 0 to 3200 h of rotation correspond to 3012 h and 6245 h timestamps.
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