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Figure: Basic stages of the Pléiades image processing pipeline1.

1- [Del+19] J.-M. Delvit and others, “A pipeline to improve compressed image quality”. In: ICSO (2018).
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Satellite imaging system: onboard compression

Context:
▶ Increasing spectral and spatial resolution of satellite images.
▶ Limited communications capabilities.
▶ Computational limitations onboard the satellite.

Wavelet-based compression methods:
▶ Consultative committee for space data systems standard (CCSDS) 122.0-B-2:

compromise between complexity and performance2.
▶ CNES-proprietary compressor with fixed quality per block3.

2- [Boo17] B. Book, “Image Data Compression CCSDS 122.0-B-2”, In: CCSDS Secretariat (2017).

3- [Thi+16] C. Thiebaut and others, “Performances of a CCSDS-based algorithm for quality- controlled compression on Earth observation
missions”. In: OBPDC (2016).
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Image compression using wavelet transform

Wavelet transform Quantization Entropy encoding Storage or
transmission

Entropy decodingDequantizationInverse Wavelet
transform

Compression

Decompression

Figure: Block diagram of lossy image compression using wavelet transform.

▶ Good transform:
▶ Decorrelates well4.
▶ Efficient encoding results from the precise estimation of the probability distribution (PDF)

of the quantized coefficients.

▶ Limitations:
▶ Optimal only under strong assumptions about the underlying distribution of image data.
▶ Visual artifacts such as ringing and blur.

4- [TMB05] D. Tretter and others, “Multispectral image coding”, In: The Image and Video Processing Handbook (2005).
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Problematic of the thesis

Motivation:
▶ Machine learning (ML) vs. model-based techniques.
▶ Neural networks (NNs) as powerful data-driven tools.
▶ Non-linear transform.

Methods towards data-driven compression:
▶ Convolutional neural networks (CNNs)5.
▶ Convolutional Autoencoders.

Problems :
▶ High computational complexity.
▶ Particularities of lossy image compression.

5- [Ben09] Y. Bengio, “Learning deep architectures for AI”, In: Foundations and trends in Machine Learning (2009).
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Convolutional neural networks (CNNs)

Principle:
▶ Commonly applied to analyze images6.
▶ Convolution operation.
▶ Shift-invariant, based on the shared-weight architecture.
▶ Widely impacted image processing.

Image  
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Figure: Illustration of the convolutional operation.

6- [Ben09] Y. Bengio, “Learning deep architectures for AI”, In: Foundations and trends in Machine Learning (2009).
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Convolutional autoencoders

Principle:
▶ Learn descriptive representation in lower dimension7.
▶ Non-linear transform.
▶ Output reconstructed images.
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Figure: Illustration of a convolutional autoencoder.

7- [Ben09] Y. Bengio, “Learning deep architectures for AI”, In: Foundations and trends in Machine Learning (2009).
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Outline

1. Learned reduced-complexity onboard satellite image compression

2. Satellite image compression and denoising

3. Conclusion and Perspectives

Vinicius Oliveira — IRIT/INP-ENSEEIHT Deep learning for embedded image compression October 21th, 2022 8 / 47



Introduction Learned reduced-complexity onboard satellite image compression Satellite image compression and denoising Conclusion

Outline

1. Learned reduced-complexity onboard satellite image compression8

1.1 End-to-end learned image compression
1.2 Statistical analysis of the learned transform
1.3 Propositions
1.4 Experimental results

8- [Alv+21] V. Alves de Oliveira and others, “Reduced-Complexity End-to-End Variational Autoencoder for on Board Satellite Image
Compression”, In: Special Issue Remote Sensing Data Compression 13.3 (2021).
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End-to-end learned image compression
▶ Principle: jointly learn a non-linear transform and its underlying

statistical distribution to optimize a rate-distortion trade-off.
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Figure: Architecture of the autoencoder9.

▶ Analysis and synthesis transforms:
▶ Convolutional layers (downsampling: stride convolutions / upsampling: transposed

convolutions).
▶ Activation functions: generalized divisive normalization (GDN) (resp. inverse generalized

divisive normalization (IGDN)).
where:
▶ GDN and IGDN: functions implementing an adaptive normalization.

GDN(vi(k, l)) =
vi(k, l)

(βi +
∑N

j=1 γijv2
j (k, l))

1/2
for i = 1, ..., N,

vi(k, l): spatial location indexed by (k, l) of the output of the ith filter. N : number of channels.

9- [BLS17] J. Ballé and others, “End-to-end optimized image compression”. In: ICLR (2017).
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End-to-end learned image compression

▶ Quantized representation:
ŷ = Q (Ga(x)) .

Ga: analysis transform.
Q: uniform scalar quantization with quantization step size equals to 1.

▶ Reconstructed image:
x̂ = Gs(ŷ).

Gs: synthesis transform.

▶ pŷ(ŷ): discrete probability distribution of the quantized representation.
▶ Lossless entropy coder encodes ŷ knowing pŷ(ŷ).

Figure: End-to-end autoencoder for learned image compression.

Vinicius Oliveira — IRIT/INP-ENSEEIHT Deep learning for embedded image compression October 21th, 2022 11 / 47



Introduction Learned reduced-complexity onboard satellite image compression Satellite image compression and denoising Conclusion

Problem formulation

Rate-distortion optimization:

θ̂Ga , θ̂Gs , θ̂pŷ = argmin
θGa ,θGs ,θpy

λD(x, x̂) +R(ŷ),

▶ θGa , θGs , θpŷ : set of parameters for the analysis transform, synthesis transform and entropy
model, respectively.

Motivation: rate-distortion trade-off.

D(x, x̂): distortion between the original image and the reconstructed image.

R(ŷ): number of bits/pixel used to encode ŷ.

λ: controls the trade-off.
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Problem formulation

▶ Smallest bit-rate is given by the Shannon cross entropy:

R(ŷ) = H(ŷ) = Eŷ∼m
[
−log2pŷ(ŷ)

]
.

m(ŷ): actual discrete probability distribution of ŷ

▶ Rate increases with the mismatch between pŷ(ŷ) and m(ŷ).

Relaxation to allow optimization (during training):

▶ Quantization approximated using additive uniform noise10:

ỹ = y + η , η ∼ U (−0.5, + 0.5) .

pỹ(ỹ) = py(y) ∗ pη

η: quantization noise.
pη : distribution of the quantization noise.
pỹ(ỹ): continuous approximation of pŷ(ŷ).

10- [BLS17] J. Ballé and others, “End-to-end optimized image compression”. In: ICLR (2017).
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Two reference learning-based architectures
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Figure: Architecture of the autoencoder11 (AE-1) (left) and of the variational autoencoder12 (AE-2)
(right).

11- [BLS17] J. Ballé and others, “End-to-end optimized image compression”. In: ICLR (2017).
12- [Bal+18] J. Ballé and others, “Variational image compression with a scale hyperprior”. In: ICLR (2018).
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Rate estimation for AE-1

Entropy model:
▶ Fully factorized model13:

pỹ|ψ(ỹ|ψ) =
∏
j

∏
i

pỹij |ψj
(ỹij ).

i runs over all spatial locations within a channel j.
ψj : distribution model parameter vector associated with each channel - fixed after training.

▶ Hypothesis:
▶ ỹ assumed independent and identically distributed within each channel.
▶ Channels are assumed independent of each other.

▶ Non-parametric statistical model.

▶ Drawback: not adaptive to different images.

13- [BLS17] J. Ballé and others, “End-to-end optimized image compression”. In: ICLR (2017).
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Rate estimation for AE-2

Entropy model:
▶ Hyperprior model14:

ỹij |z̃ ∼ N
(
0, σij

2
)
∗ U (−0.5, + 0.5) .

▶ Observation: spatial dependency in ỹ.
▶ Auxiliary autoencoder.
▶ z̃: auxiliary random variables.
▶ ỹij conditioned to z̃ is independent.
▶ Advantages:

▶ Better modeling.
▶ Adaptive to different images.

▶ Drawbacks:
▶ Increase in complexity.
▶ Transmission of z̃ as side information.
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14- [Bal+18] J. Ballé and others, “Variational image compression with a scale hyperprior”. In: ICLR (2018).
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Outline

1. Learned reduced-complexity onboard satellite image compression

1.1 End-to-end learned image compression

1.2 Statistical analysis of the learned transform

1.3 Propositions

1.4 Experimental results
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Dataset of simulated images
▶ 12-bit simulated Pléiades panchromatic images (originally of size 586× 586)

provided by the CNES.
▶ Various landscapes (i.e. desert, water, forest, industrial, cloud, port, rural, urban).

▶ Well-known image acquisition parameters15.
▶ Obtained from an airborne in a 10cm resolution, but downsampled to 70cm.
▶ Training dataset (116 images) | test dataset (16 images).

Figure: Simulated 12-bit Pléiades images.

15- [Del+19] J.-M. Delvit and others, “A pipeline to improve compressed image quality”. In: ICSO (2018).
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Statistical analysis of the learned transform

▶ Prior knowledge to simplify the entropy model?

▶ Main autoencoder16 (N = 128 and M = 192) - fully factorized model17.

▶ Kolmogorov-Smirnov goodness-of-fit test18.

▶ Most features follow a Laplacian distribution defined by:

f(ζ, µ, b) =
1

2λ
exp

(
−

|ζ − µ|
b

)
for ζ ∈ R.

▶ As an illustration:

Figure: Simulated 12-bit Pléiades image of Cannes with size 512 × 512 and resolution 70cm.

16- [Bal+18] J. Ballé and others, “Variational image compression with a scale hyperprior”. In: ICLR (2018).
17- [BLS17] J. Ballé and others, “End-to-end optimized image compression”. In: ICLR (2017).
18- [PG81] J. W. Pratt and J. D. Gibbons, “Kolmogorov-Smirnov two-sample tests”. In: Concepts of Nonparametric Theory (1981).
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Statistical analysis of the learned transform

▶ 94% of the features of this image follows a Laplacian distribution with a
significance level α = 5%.

Figure: First feature of Cannes image representation, its normalized histogram with Laplacian fitting.
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Statistical analysis of the learned transform
▶ The remaining non-Laplacian feature maps (6% of the maps for this example) stay

close to the Laplacian distribution.

(a) 19th feature. (b) Normalized histogram and Laplacian fitting.

(c) 55th feature. (d) Normalized histogram and Laplacian fitting.

Figure: Normalized histogram of the jth feature map and Laplacian fitting f(., µ, b).
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Simplified entropy model

▶ Objective:
▶ Compromise between simplicity and performance.
▶ Adaptability to the input image.

▶ Proposal:

▶ Simplified parametric model for all elements yij
of the jth feature for ij ∈ Ij , where Ij

denotes the set of indexes covering the jth feature:

yij
∼ Laplace(0, bj)

with: bj =
√

V ar(yij
)/2

▶ The scale parameter (bj ) is estimated for each feature of each input image.
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Simplified entropy model
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Figure: Proposed architecture after entropy model simplification: main autoencoder19 (AE-2-L)
(left column) and simplified entropy model (right column)20.

19- [Bal+18] J. Ballé and others, “Variational image compression with a scale hyperprior”. In: ICLR (2018).
20- [Alv+21] V. Alves de Oliveira and others, “Reduced-Complexity End-to-End Variational Autoencoder for on Board Satellite Image
Compression”, In: Remote Sensing 13.3 (2021).
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Reduction of the number of filters

▶ N : number of filters/channels (apart from the before-bottleneck layer).

▶ Higher M (bottleneck size) has to be maintained - wide bottleneck strategy21.

▶ Proposal:
▶ Variational autoencoder: AE-2-H-C from N = 128/192 to N = 64.

▶ Bottleneck size maintained (M = 192 or M = 320).

▶ Metrics: number of parameters Np and floating point operations per pixel (FLOPp).

▶ Positive impact on the memory occupancy.

21- [Bal+18] J. Ballé and others, “Variational image compression with a scale hyperprior”. In: ICLR (2018).
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Implementation setup
▶ Two propositions:

1. Entropy model simplification.

2. Reduction of the number of filters composing the convolutional layers.

▶ Simulation experiments using Tensorflow:

▶ Simulated 12-bit Pléiades panchromatic images provided by the CNES.

▶ Rate and distortion measurements averaged on the test dataset for a given value of λ.

▶ Metrics: MSE and multiscale structural similarity index (MS-SSIM).

▶ Proposed/reference methods:
▶ AE-2-L-C22: architecture featuring the simplified entropy model.
▶ AE-2-H-C23.
▶ AE-1-NP-C24.
▶ CCSDS 122.0-B25 / JPEG2000.

22- [Alv+21] V. Alves de Oliveira and others, “Reduced-Complexity End-to-End Variational Autoencoder for on Board Satellite Image
Compression”, In: Remote Sensing 13.3 (2021).
23- [Bal+18] J. Ballé and others, “Variational image compression with a scale hyperprior”. In: ICLR (2018).
24- [BLS17] J. Ballé and others, “End-to-end optimized image compression”. In: ICLR (2017).
25- [Boo17] B. Book, “Image Data Compression CCSDS 122.0-B-2”, In: CCSDS Secretariat (2017).
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Performance analysis

Impact of the number of filter reduction on performance for low bit rates:
Apart from the before-bottleneck layer
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Figure: Rate-distortion curves for the considered methods in terms of MSE (log-log scale).
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Performance analysis

Impact of the number of filter reduction on performance for low bit rates:
Apart from the before-bottleneck layer
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Figure: Rate-distortion curves for the considered methods in terms of MS-SSIM (dB) (derived
as−10 log10(1−MS-SSIM)).
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Performance analysis

Impact of the number of filter reduction on performance for high bit rates:
Apart from the before-bottleneck layer
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Figure: Rate-distortion curves for the considered methods in terms of MSE (log-log scale).
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Performance Analysis

Impact of the number of filter reduction on performance:
The before-bottleneck layer
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Figure: Impact of the bottleneck size in terms of MSE in (log-log scale).
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Performance analysis

Impact of the number of filter reduction on complexity:
Apart from the before-bottleneck layer

Table: Comparative complexity of the global architectures - low rates (up to 2 bits/pixel).

Method Parameters FLOPp Relative
AE-2-H-C (N=128, M=192) 5.0551 × 106 1.9115 × 105 1.00
AE-2-H-C (N=64, M=192) 1.6839 × 106 5.2264 × 104 0.27
AE-2-L-C (N=64, M=192) 1.0527 × 106 5.0774 × 104 0.265

Table: Comparative complexity of the global architectures - high rates (above 2 bits/pixel).

Method Parameters FLOPp Relative
AE-2-H-C (N=192, M=320) 11.7852 × 106 4.3039 × 105 1.00
AE-2-H-C (N=64, M=320) 1.6840 × 106 5.6966 × 104 0.13
AE-2-L-C (N=64, M=320) 1.0527 × 106 5.4774 × 104 0.1273
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Performance analysis

Impact of the entropy model simplification on complexity:

Table: Reduction of the encoder complexity induced by the Laplacian entropy model on the coding
part - low rates (up to 2 bits/pixel).

Method Parameters FLOPp Relative
AE-2-H-C (N=64, M=192) 1.1577 × 106 1.25 × 104 1
AE-2-L-C (N=64, M=192) 0.5264 × 106 1.09 × 104 0.87

Table: Reduction of the encoder complexity induced by the Laplacian entropy model on the coding
part - high rates (above 2 bits/pixel).

Method Parameters FLOPp Relative
AE-2-H-C (N=64, M=320) 1.7150 × 106 1.3979 × 104 1
AE-2-L-C (N=64, M=320) 0.7314 × 106 1.1787 × 104 0.8432
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Performance analysis

Subjective image quality assessment:

(a) Original image. (b) Zoom on the original image.

(c) Zoom on the CCSDS compressed image. (d) Zoom on the end-to-end compressed image.

Figure: Subjective image quality analysis (R = 2.02 bits/pixel).
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Outline

2. Satellite image compression and denoising26

2.1 Combining compression and denoising

2.2 Experimental results

26- [Alv+22] V. Alves de Oliveira and others, “Satellite Image Compression and Denoising With Neural Networks”, In: IEEE Geoscience and
Remote Sensing Letters, vol. 19 (2022).
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Combining compression and denoising
▶ Onboard compression | on ground denoising.

Instrumental
Noise

Restitution

NL-
Bayes Deconvolution

Onboard
Satellite

Ground

Denoising

Transform-based
compression

algorithm 

Modulation
transfer function

Figure: Pléiades image processing pipeline27.

▶ Noise: acquisition + compression.
▶ Non Local (NL) Bayes denoising:

▶ Hypothesis: standard additive noise model.
▶ Variance stabilizing transform (VST) + instrumental noise restitution.

▶ Patch-based method.
▶ Estimate the variability in a group of similar patches to denoise.
▶ Computationally expensive.

▶ Optimizations proposed by the CNES28 .

27- [Del+19] J.-M. Delvit and others, “A pipeline to improve compressed image quality”. In: ICSO (2018).
28- [Mas+18] A. Masse and others, “Denoising very high resolution optical remote sensing images: Application and optimization of non
local bayes method”. In: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 11.3 (2018).
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Combining compression and denoising
▶ Data-driven approaches for satellite image compression and denoising.
▶ Objective:

▶ Improve performance.
▶ Dispensing from:

▶ Manual parameter setting.
▶ A priori knowledge of the noise model.
▶ Intermediary steps such as variance stabilizing transform (VST) or instrumental noise

restitution29.

▶ Realistic simulations provide both In and Inf for the same scene.
In: noisy image.
Inf : noise-free image.

29- [Del+19] J.-M. Delvit and others, “A pipeline to improve compressed image quality”. In: ICSO (2018).
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Selected methods from state-of-the-art

End-to-end trainable autoencoder for image compression:
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Figure: Architecture of the variational autoencoder30.

▶ Relatively shallow architecture.
▶ Rate-distortion optimization: λD(x, x̂) +R(ŷ).

30- [Bal+18] J. Ballé and others, “Variational image compression with a scale hyperprior”. In: ICLR (2018).
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Selected methods from state-of-the-art
Denoising with BRDNet:
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Figure: Architecture of the BRDNet network31.

▶ Can adapt to non-standard noise statistical models.

▶ Deep CNN.

▶ Batch renormalization (BRN).

▶ Residual learning (RL) to predict a residual image: f(In) ⋍ In − Inf .
In: noisy image.
Inf : noise-free image.
f(In): noise prediction by the DNN.

▶ Distortion criterion:
J(θ) = D(Inf , Înf ).

31- [TXZ20] C. Tian and others, “Image denoising using deep CNN with batch renormalization”. In: Neural Networks 121 (2020).
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Combining compression and denoising

Proposals:
▶ Joint compression and denoising (onboard):

▶ Compression-dedicated architecture AE-2-H.
▶ D(Inf , Gs(Ga(In))): distortion between Înf = Gs(Ga(In)) and Inf .

Joint compression
and denoising

▶ Sequential compression (onboard) and denoising (on ground):
▶ Two architectures: the compression-dedicated one and the denoising-dedicated

architecture BRDNet.

Compression Denoising

▶ Denoising as a post-processing (on ground) after joint compression and denoising
(onboard):
▶ Combines both joint and sequential approaches.

Joint compression
and denoising Denoising

post-treatment
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Implementation setup

▶ Simulation experiments using Tensorflow:

▶ Image pairs In/Inf .
▶ Metrics: PSNR (dB) and MS-SSIM (dB).

▶ The reference CNES imaging system32 - our baseline for compression and
denoising performance.

▶ Proposed/adapted methods:
▶ AE-2-H-CD (N=64, M=320): joint compression and denoising.
▶ BRDNet: BRDNet denoising architecture33.

▶ Reference methods:
▶ CNES-C: CNES compression algorithm34.
▶ NL-Bayes-CNES: NL-Bayes denoising algorithm parametrized by the CNES35.

32- [Del+19] J.-M. Delvit and others, “A pipeline to improve compressed image quality”. In: ICSO (2018).
33- [TXZ20] C. Tian and others, “Image denoising using deep CNN with batch renormalization”. In: Neural Networks 121 (2020).
34- [Thi+16] C. Thiebaut and others, “Performances of a CCSDS-based algorithm for quality- controlled compression on Earth observation
missions”. In: OBPDC (2016).
35- [Mas+18] A. Masse and others, “Denoising very high resolution optical remote sensing images: Application and optimization of non
local bayes method”. In: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 11.3 (2018).
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Performance analysis

Compression and denoising performance:
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Figure: PSNR (dB) between the output image and the noise-free image (Inf ).
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Performance analysis

Compression and denoising performance:
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Figure: MS-SSIM (dB) between the output image and the noise-free image (Inf ).
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Performance analysis

Compression and denoising performance:

Table: Comparative complexity of the considered architectures

Method Parameters FLOPp
AE-2-L-C (N=64, M=320) 1052737 5.4774 × 104

BRDNet36 1186816 1.1868 × 106

▶ BRDNet, benefiting from the GPU, is 30 times faster than the NL-Bayes-CNES.

Subjective image quality analysis:

Figure: Result on a test image. (a) CNES-C+NL-Bayes37. (b) AE-2-H-C+BRDNet. (c)
AE-2-H-CD. (d) Noise-free image (Inf ).

36- [TXZ20] C. Tian and others, “Image denoising using deep CNN with batch renormalization”. In: Neural Networks 121 (2020).
37- [Del+19] J.-M. Delvit and others, “A pipeline to improve compressed image quality”. In: ICSO (2018).
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Outline

3. Conclusion and perspectives

3.1 Conclusion

3.2 Perspectives

3.3 List of publications
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Conclusion

Learned reduced-complexity satellite image compression:
▶ Different approaches to adapt the reference learned image compression

frameworks3839 to onboard satellite image compression:
▶ Reduction of the number of filters.
▶ Simplified entropy model.

▶ Outperform the CCSDS standard.

Satellite image compression and denoising with neural networks:
▶ Data-driven advantages:

▶ In terms of performance.
▶ Allow to suppress intermediary steps existing in the current CNES imaging system.

▶ Two approaches:
▶ Joint approach performs compression and denoising with a single architecture.
▶ Sequential approach compatible with all the architecture simplifications designed for

onboard compression.

38- [BLS17] J. Ballé and others, “End-to-end optimized image compression”. In: ICLR (2017).
39- [Bal+18] J. Ballé and others, “Variational image compression with a scale hyperprior”. In: ICLR (2018).
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Perspectives

Feature-dependent entropy model:
▶ Combine entropy models to handle the diversity of the feature maps.

Desymmetrize the autoencoder to reduce onboard complexity:
▶ Lighten the analysis transform and eventually compensate by increasing

complexity on the synthesis transform.

Hardware implementation:
▶ Implement and test the new propositions on real satellite hardware.
▶ Dedicated inference platform/hardware such as Xilinx FPGAs - Vitis™ AI.

Extend the ML-based approaches to other functionalities of a typical satellite
imaging system:
▶ Use the features extracted for image compression in other ML-based

functionalities onboard the satellite, such as classification or detection.
▶ Prospects for extending the ML to the on ground segment.
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Thank You!
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Appendix References

Satellite imaging system

Instrumental noise model:
▶ Acquired images are affected by an instrumental noise with a pixel-dependent

variance defined, in the spatial domain, as [Mas+18]:

σ2
n(x, y) = A2 +B · Inf (x, y)

(A,B) are known model parameters.

Instrumental noise restitution:
▶ Idea: compare each quantized transformed wavelet coefficient to the local

expected instrumental noise level computed in the transformed domain and
restitute noise [Mas+18].

Variance stabilizing transform:
▶ To use a model-based denoising method that assumes an additive noise, a

variance stabilizing transform (VST) [MF12; Ans48] may also be applied to the
noisy image:

f(Ir(x, y)) = 2

√
A2

B2
+

In(x, y)

B
+

3

8
,
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Appendix References

Performance Analysis

Impact of the GDN/IGDN replacement and of the filter kernel support in the main
autoencoder on performance:
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Figure: Impact of the GDN/IGDN replacement and of the filter kernel support on performance in
terms of MSE in log-log scale.
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Appendix References

Performance Analysis

Impact of the number of layer reduction in the main autoencoder:
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Figure: Impact of the number of layer reduction on performance in terms of MS-SSIM (dB) (derived
as −10 log10(1−MS-SSIM)).

Table: Comparative complexity of the considered architectures - Case of reducing the number of
layers.

Method Parameters FLOPp Relative to FLOPp
AE-2-H-C (N=128, M=192)-4-layers (original) 5055105 1.9115 × 105 1.00
AE-2-H-C (N=64, M=192) -4-layers 1683969 5.2264 × 104 0.27
AE-2-H-C (N=128, M=192)-3-layers 4202625 2.0732 × 105 1.08
AE-2-H-C (N=64, M=192) -3-layers 1470721 6.6605 × 104 0.34
AE-2-H-C (N=128, M=192)-2-layers 3350145 2.7201 × 105 1.42
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Appendix References

Performance Analysis

Impact of the simplified Laplacian entropy model in the joint compression and
denoising:

▶ AE-2-L-CD: joint learned method featuring the simplified Laplacian entropy model [Alv+21].

1.5 2 2.5 3 3.5 4

bit rate [bit/pixel]

32

33

34

35

36

37

38

39
M

S
-S

S
IM

 (
d

B
)

Figure: MS-SSIM (dB) between the output image and the noise-free image (Inf ).
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Appendix References

Performance analysis

Lower average luminance images:
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Figure: MS-SSIM (dB) between the output image and the noise-free image (Inf ).
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