Robust Standalone GNSS Navigation

Lorenzo Ortega Espluga, TéSA/ISAE SUPAERO

www.tesa.prd.fr

Content

 \bigcirc

 \bigcirc

1-Introduction to the GNSS Postdoc Research Context

2-Theoretical Limits: Cramér-Rao Bound A simple example: GPS C/A signal GNSS-Signals & GNSS Metasignals: SPP Solution

3-Theoretical Limits: Space Applications High Dynamics (Acceleration parameter) Low SNR

4-Theoretical Limits: Multipath App Reflectometry → Corentin PhD Thesis

Global Navigation Satellite System

- Galileo, GPS, GLONASS, BeiDou-2
- Satellite Based Augmentation Systems (SBAS) : WAAS, EGNOS (GEO satellites and ground stations)
- Regional NAVIC (India), QZSS (Japan), BeiDou-1 (China)
- Ground Based Augmentation Systems (GBAS)

Global Navigation Satellite System

- Galileo, GPS, GLONASS, BeiDou-2
- Satellite Based Augmentation Systems (SBAS) : WAAS, EGNOS (GEO satellites and ground stations)
- Regional NAVIC (India), QZSS (Japan), BeiDou-1 (China)
- Ground Based Augmentation Systems (GBAS)

http://www.emfrf.com/wp-content/uploads/2014/03/spectrum.jpg & Navipedia

Global Navigation Satellite System

Global Navigation Satellite System

Global Navigation Satellite System

Two Steps Estimation Algorithm to maximize the Autocorrelation function \rightarrow Maximum Likelihood Approximation

Global Navigation Satellite System

Two Steps Estimation Algorithm → Maximum Likelihood Approximation

Theoretical Estimation Limits → CRB

Global Navigation Satellite System

Theoretical Estimation Limits → CRB

Why??

Some GNSS applications :

- Air navigation (aircrafts & drones), spacecrafts, autonomous cars, boats and ships
- Mining, precise agriculture
- Leisure (sailing, cycling, hiking, climbing), eHealth, search & rescue (SAR)
- Surveying, mapping, geophysics (ground movement, earthquake prediction, tsunami prediction)
- Archaeology, Earth observation (remote sensing GNSS-R and GNSS-RO)
- Precise timing (synchronisation in power grids, seismology, communications nets)
- IoT, Big Data, augmented reality, smart cities

Global Navigation Satellite System

How is this signal?

Global Navigation Satellite System

$$s_A(t) = s((1-b)(t-\tau))e^{j2\pi f_c(1-b)t}e^{-j2\pi f_c\tau}$$

Narrowband assumption

$$s_A(t) = s((1-b)(t-\tau))e^{j2\pi f_c(1-b)t}e^{-j2\pi f_c\tau}$$

Global Navigation Satellite System

$$x(t) = \alpha s(t; \boldsymbol{\eta}) e^{-j\omega_c b(t-\tau)} + n(t)$$

Global Navigation Satellite System

$$\mathbf{x} = \alpha \mathbf{a} (\boldsymbol{\eta}) + \mathbf{n},$$

$$\mathbf{x} = (x (N_1'T_s), \dots, x (N_2'T_s))^\top,$$

$$\mathbf{n} = (n (N_1'T_s), \dots, n (N_2'T_s))^\top,$$

$$\mathbf{s} (\boldsymbol{\eta}) = (s (N_1'T_s; \boldsymbol{\eta}), \dots, s (N_2'T_s; \boldsymbol{\eta}))^\top,$$

$$\mathbf{a} (\boldsymbol{\eta}) = ((\mathbf{s} (\boldsymbol{\eta}))_1 e^{-j\omega_c b (N_1'T_s - \tau)}, \dots, (\mathbf{s} (\boldsymbol{\eta}))_{N'} e^{-j\omega_c b (N_2'T_s - \tau)})^\top$$

 $\mathbf{x} = \mathbf{A}\left(\boldsymbol{\eta}\right)\boldsymbol{\alpha} + \mathbf{n}, \ \mathbf{x}, \mathbf{n} \in \mathbb{C}^{N}, \ \mathbf{A}\left(\boldsymbol{\eta}\right) \in \mathbb{C}^{N \times Q}, \ \boldsymbol{\alpha} \in \mathbb{C}^{Q}$

Unknown deterministic parameter vector: $\eta \in \mathbb{R}^P$.

Signal Models:

- <u>Conditional signal model (CSM)</u>
- Unconditional signal model (USM)

Single Source CSM

 $\mathbf{x} = \mathbf{a}(\boldsymbol{\eta}) \alpha + \mathbf{n}, \ \mathbf{x}, \mathbf{n} \in \mathbb{C}^N, \ \mathbf{a}(\boldsymbol{\eta}) \in \mathbb{C}^N, \ \alpha \in \mathbb{C}.$

Single Source CSM

$$\mathbf{x} = \mathbf{a}(\eta) \, \alpha + \mathbf{n}, \ \mathbf{x}, \mathbf{n} \in \mathbb{C}^N, \ \mathbf{a}(\eta) \in \mathbb{C}^N, \ \alpha \in \mathbb{C}.$$

Re-parametrization

$$\mathbf{x} = \mathbf{a}\left(\boldsymbol{\eta}\right)\rho e^{j\varphi} + \mathbf{w}, \ \mathbf{x}, \mathbf{w} \in \mathbb{C}^{N}, \ \mathbf{a}\left(\boldsymbol{\eta}\right) \in \mathbb{C}^{N}, \ \rho \in \mathbb{R}^{+}$$

Goal: compact CRB formula for the joint estimation

$$\boldsymbol{\epsilon}^{\top} = (\sigma_w^2, \rho, \varphi, \boldsymbol{\eta}^{\top}$$

$$\mathbf{x} = \mathbf{a}'(\boldsymbol{\theta}) \boldsymbol{\rho} + \mathbf{n}, \ \mathbf{a}'(\boldsymbol{\theta}) = \mathbf{a}(\boldsymbol{\eta}) e^{j\varphi}, \ \boldsymbol{\theta}^{T} = \left(\varphi, \boldsymbol{\eta}^{T}\right),$$

$$CRB_{\boldsymbol{\rho}} = \frac{\sigma_{n}^{2}}{2\|\mathbf{a}(\boldsymbol{\eta})\|^{2}} + \rho^{2} \frac{\operatorname{Re}\left\{\mathbf{a}^{H}(\boldsymbol{\eta})\frac{\partial \mathbf{a}(\boldsymbol{\eta})}{\partial \boldsymbol{\eta}^{T}}\right\} \operatorname{CRB}_{\boldsymbol{\eta}} \operatorname{Re}\left\{\mathbf{a}^{H}(\boldsymbol{\eta})\frac{\partial \mathbf{a}(\boldsymbol{\eta})}{\partial \boldsymbol{\eta}^{T}}\right\}^{\mathsf{T}}}{\|\mathbf{a}(\boldsymbol{\eta})\|^{4}},$$

$$\mathbf{CRB}_{\boldsymbol{\theta}} = \begin{bmatrix} CRB_{\boldsymbol{\varphi}} & \mathbf{CRB}_{\boldsymbol{\eta},\boldsymbol{\varphi}}^{\mathsf{T}} \\ \mathbf{CRB}_{\boldsymbol{\eta},\boldsymbol{\varphi}} & \mathbf{CRB}_{\boldsymbol{\eta}} \end{bmatrix}, \ \boldsymbol{\theta}^{\mathsf{T}} = \left(\varphi, \boldsymbol{\eta}^{\mathsf{T}}\right),$$

$$CRB_{\boldsymbol{\varphi}} = \frac{\sigma_{n}^{2}}{2\rho^{2}} \frac{1}{\|\mathbf{a}(\boldsymbol{\eta})\|^{2}} + \frac{\operatorname{Im}\left\{\mathbf{a}^{H}(\boldsymbol{\eta})\frac{\partial \mathbf{a}(\boldsymbol{\eta})}{\partial \boldsymbol{\eta}^{\mathsf{T}}}\right\} \operatorname{CRB}_{\boldsymbol{\eta}} \operatorname{Im}\left\{\mathbf{a}^{H}(\boldsymbol{\eta})\frac{\partial \mathbf{a}(\boldsymbol{\eta})}{\partial \boldsymbol{\eta}^{\mathsf{T}}}\right\}^{\mathsf{T}}}{\|\mathbf{a}(\boldsymbol{\eta})\|^{4}},$$

$$\mathbf{CRB}_{\boldsymbol{\eta},\boldsymbol{\varphi}} = -\mathbf{CRB}_{\boldsymbol{\eta}} \frac{\operatorname{Im}\left\{\mathbf{a}^{H}(\boldsymbol{\eta})\frac{\partial \mathbf{a}(\boldsymbol{\eta})}{\partial \boldsymbol{\eta}^{\mathsf{T}}}\right\}^{\mathsf{T}}}{\|\mathbf{a}(\boldsymbol{\eta})\|^{2}}.$$

$$\mathbf{CRB}_{\boldsymbol{\eta}} = \frac{\sigma_{n}^{2}}{2\rho^{2}} \operatorname{Re}\left\{\left(\frac{\partial \mathbf{a}(\boldsymbol{\eta})}{\partial \boldsymbol{\eta}^{\mathsf{T}}}\right)^{H} \mathbf{\Pi}_{\mathbf{a}(\boldsymbol{\eta})}\frac{\partial \mathbf{a}(\boldsymbol{\eta})}{\partial \boldsymbol{\eta}^{\mathsf{T}}}\right\}^{-1},$$

"Compact CRB for Delay, Doppler and Phase Estimation – Application to GNSS SPP & RTK Performance Characterization", **IET Radar, Sonar & Navigation**, vol. 14, no. 10, pp. 1537-1549, September 2020.

Cramér-Rao Bound for Band-limited Signals/ Narrowband approx

 $s(t) = c(t) \qquad c(t) = \sum_{n=N_1}^{N_2} c(nT_s) \operatorname{sinc} (\pi F_s (t - nT_s)) \rightleftharpoons c(f) = \left(T_s \sum_{n=N_1}^{N_2} c(nT_s) e^{-j2\pi nT_s}\right) \mathbb{1}_{\left[-\frac{B}{2}, \frac{B}{2}\right]}(f),$

"Compact CRB for Delay, Doppler and Phase Estimation – Application to GNSS SPP & RTK Performance Characterization", **IET Radar, Sonar & Navigation**, vol. 14, no. 10, pp. 1537-1549, September 2020.

2-Theoretical Limits: GPS C/A signal

Time-Delay Estimation of the GPS C/A signal

$$ACF(t) = \int_{-\frac{Br}{2}}^{\frac{Br}{2}} G_s(f) e^{-j2\pi ft} df.$$

$$G_{BPSK}(f_c) = f_c \frac{\sin^2\left(\frac{\pi f}{f_c}\right)}{(\pi f)^2}$$

The PRN correlation is assume ideal !!

 $R_{c_i} \approx \delta(m)$

$$B_{Gabor} = \sqrt{\int_{-\frac{Br}{2}}^{\frac{Br}{2}} f^2 G_s(f) df}.$$

2-Theoretical Limits: GPS C/A signal

Time-Delay Estimation of the GPS C/A signal

"On the Time-Delay Estimation Performance Limit of New GNSS Acquisition Codes", in the Proceedings of the International Conference on Localization and GNSS (ICL-GNSS '20), 2-4 June 2020, Tampere, Finland

ITSC 2020

Maximum Likelihood Estimation

$$\widehat{\tau} = \arg \max_{\tau} \left\{ \left| \left(\mathbf{c} \left(\tau \right)^{H} \mathbf{c} \left(\tau \right) \right)^{-1} \mathbf{c} \left(\tau \right)^{H} \mathbf{x} \right|^{2} \right\},\$$

"Performance Limits of GNSS Code-based Precise Positioning : GPS, Galileo & Meta-Signals", **Sensors**, 20 (8), 2196, April 2020.

Maximum Likelihood Estimation

$$\widehat{\varphi}\left(\widehat{\tau}\right) = \arg\left\{ \left(\mathbf{c}\left(\widehat{\tau}\right)^{H}\mathbf{c}\left(\widehat{\tau}\right)\right)^{-1}\mathbf{c}\left(\widehat{\tau}\right)^{H}\mathbf{x}\right\},$$

"Compact CRB for Delay, Doppler and Phase Estimation – Application to GNSS SPP & RTK Performance Characterization", **IET Radar, Sonar & Navigation**, vol. 14, no. 10, pp. 1537-1549, September 2020.

"Performance Limits of GNSS Code-based Precise Positioning : GPS, Galileo & Meta-Signals", **Sensors**, 20 (8), 2196, April 2020.

Figure 1. PSD for the different GNSS meta-signals.

"Performance Limits of GNSS Code-based Precise Positioning : GPS, Galileo & Meta-Signals", **Sensors**, 20 (8), 2196, April 2020.

"Positioning Performance Limits of GNSS Meta-Signals and HO-BOC Signals", **Sensors**, 20 (12), 3586, June 2020.

30

 $\hat{\rho}_i = c\hat{\tau}_i = \rho_i(\mathbf{p}_R) + c\left(\delta t_r - \delta t_i\right) + \epsilon_i$

$$\hat{\rho}_{i} = c\hat{\tau}_{i} = \rho_{i}(\mathbf{p}_{R}) + c\left(\delta t_{r} - \delta t_{i}\right) + \epsilon_{i}$$

$$y_{i} = \hat{\rho}_{i} + c\delta t_{i} - \epsilon_{i}^{iono} - \epsilon_{i}^{tropo} = ||\mathbf{p}_{T_{i}} - \mathbf{p}_{R}|| + c\delta t_{r}$$

$$\hat{\rho}_{i} + c\delta t_{i} - \epsilon_{i}^{iono} - \epsilon_{i}^{tropo} \approx \rho_{i}(\mathbf{p}^{0}) - \mathbf{u}_{i}(\mathbf{p}^{0})\delta_{p} + \epsilon_{i}$$

$$\mathbf{y} = \mathbf{H}\delta + \epsilon$$

Weighted LS (WLS) problem :

 $\hat{\boldsymbol{\delta}}_{WLS} = \arg\min_{\boldsymbol{\delta}} \{ ||\mathbf{y} - \mathbf{H}\boldsymbol{\delta}||_{\mathbf{W}}^2 \} = \arg\min_{\boldsymbol{\delta}} \{ (\mathbf{y} - \mathbf{H}\boldsymbol{\delta})^T \mathbf{W} (\mathbf{y} - \mathbf{H}\boldsymbol{\delta}) \}$

$$\hat{\mathbf{p}}_{R} \\ \widehat{c\delta t}_{r} \ \ \right) = \left(\begin{array}{c} \mathbf{p}^{j} \\ 0 \end{array} \right) + \left(\mathbf{H}^{T} \mathbf{W} \mathbf{H} \right)^{-1} \mathbf{H}^{T} \mathbf{W} \mathbf{y}$$

"Compact CRB for Delay, Doppler and Phase Estimation – Application to GNSS SPP & RTK Performance Characterization", **IET Radar, Sonar & Navigation**, vol. 14, no. 10, pp. 1537-1549, September 2020.

34

"Positioning Performance Limits of GNSS Meta-Signals and HO-BOC Signals", **Sensors**, 20 (12), 3586, June 2020.

SUPAERO

"Positioning Performance Limits of GNSS Meta-Signals and HO-BOC Signals", **Sensors**, 20 (12), 3586, June 2020.

SUPAERO

Conclusions of Section 2.

- Derivation of CRB for Band limited signals. The latter CRB is particularly useful because it is expressed only from the signal samples.
- **Evaluation of the time-delay and phases estimation of the GNSS** Signals and GNSS Meta-signals.
- Evaluation of the SPP solution of the GNSS Signals and GNSS Metasignals.
- Large Bandwidth GNSS Meta-Signals can have possible false locks due to high secondary correlation peaks. This issue can degraded the time-delay estimation performance. Evaluate the threshold through the MLE is required.
- **RTK Theoretical Limits Collaboration with the DLR (Daniel Medina)** "Compact CRB for Delay, Doppler and Phase Estimation – Application to GNSS SPP & RTK Performance Characterization", IET Radar, Sonar & Navigation, vol. 14, no. 10, pp. 1537-1549, September 2020. "Positioning Performance Limits of GNSS Meta-Signals and HO-BOC Signals", Sensors, 20 (12), 3586, June 2020.

- Space missions: Launch, orbits
- Orbits: LEO, GEO, HEO, LTO
- Orbital parameters: Acceleration!
- Receivers require a minimum Carrier-noise density ratio *CIN*₀

W. Enderle et al. Space Service Volume Booklet: The Interoperable Global Navigation Satellite Systems Space Service Volume. 2018

Distance of 60 R_E is approximately in Lunar orbit / This gives most restricting case: 15 dB-Hz

W. Enderle et al. Space Service Volume Booklet: The Interoperable Global Navigation Satellite Systems Space Service Volume. 2018

$$\begin{aligned} x(t) &= x_A(t) e^{-j2\pi f_c t} = \alpha a(t;\eta) + n(t), \\ a(t;\eta) &= e^{-j2\pi f_c(b(t-\tau)+d(t-\tau)^2)} s\left((1-b)(t-\tau)\right) \\ d &= a/2c \end{aligned}$$

Delay Estimation

Doppler Estimation

Acceleration Estimation

$$\begin{aligned} x_R(t) &= d_R(t; \eta_0, \rho_0, \phi_{R,0}) + d_R(t; \eta_1, \rho_1, \phi_{R,1}) + w_R(t), \\ d_R(t; \eta_i, \rho_i, \phi_{R,i}) &= \rho_i e^{j\phi_{R,i}} s((1 - b_i)(t - \tau_i)) e^{j\omega_c(1 - b_i)t} e^{-j\omega_c\tau_i}, \end{aligned}$$

 $\mathbf{x} = \mathbf{A}(\boldsymbol{\eta}_0, \boldsymbol{\eta}_1) \boldsymbol{\alpha} + \mathbf{w}, \ \mathbf{w} \sim \mathcal{CN}(0, \sigma_n^2 \mathbf{I}_N) \ ,$

