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Abstract / Résumé

Abstract

This research study is the result of a 3 years CIFRE PhD thesis between the Airbus design office (Aircraft Con-

trol domain) and TéSA laboratory in Toulouse. The main goal is to propose, develop and validate a software

solution for the detection and diagnosis of a specific type of elevator and rudder vibration, called limit cycle

oscillation (LCO), based on existing signals available in flight control computers on board in-series aircraft.

LCO is a generic mathematical term defining an initial condition-independent periodic mode occurring in non-

conservative nonlinear systems. This study focuses on the LCO phenomenon induced by mechanical freeplays

in the control surface of a civil aircraft. The LCO consequences are local structural load augmentation, flight

handling qualities deterioration, actuator operational life reduction, cockpit and cabin comfort deterioration

and maintenance cost augmentation. The state-of-the-art for freeplay induced LCO detection and diagnosis is

based on the pilot sensitivity to vibration and to periodic freeplay check on the control surfaces.

This study is thought to propose a data-driven solution to help LCO and freeplay diagnosis. The goal is to

improve even more aircraft availability and reduce the maintenance costs by providing to the airlines a condition

monitoring signal for LCO and freeplays. For this reason, two algorithmic solutions for vibration and freeplay

diagnosis are investigated in this PhD thesis. A real time detector for LCO diagnosis is first proposed based on

the theory of the generalized likelihood ratio test (GLRT). Some variants and simplifications are also proposed

to be compliant with the industrial constraints. In a second part of this work, a mechanical freeplay detector

is introduced based on the theory of Wiener model identification. Parametric (maximum likelihood estimator)

and nonparametric (kernel regression) approaches are investigated, as well as some variants to well-known non-

parametric methods. In particular, the problem of hysteresis cycle estimation (as the output nonlinearity of a

Wiener model) is tackled. Moreover, the constrained and unconstrained problems are studied.

A theoretical, numerical (simulator) and experimental (flight data and laboratory) analysis is carried out to in-

vestigate the performance of the proposed detectors and to identify limitations and industrial feasibility. The ob-

tained numerical and experimental results confirm that the proposed GLR test (and its variants/simplifications)

is a very appealing method for LCO diagnostic in terms of performance, robustness and computational cost.

On the other hand, the proposed freeplay diagnostic algorithm is able to detect relatively large freeplay levels,

but it does not provide consistent results for relatively small freeplay levels. Moreover, specific input types are

needed to guarantee repetitive and consistent results. Further studies should be carried out in order to compare

the GLRT results with a Bayesian approach and to investigate more deeply the possibilities and limitations of

the proposed parametric method for Wiener model identification.
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Résumé

Cette étude est le résultat d’une thèse CIFRE de trois ans entre le bureau d’étude d’Airbus (domaine du

contrôle de l’avion) et le laboratoire TéSA à Toulouse. L’objectif principal est de proposer, développer et

valider une solution logicielle pour la détection et le diagnostic d’un type spécifique de vibrations des gouvernes

de profondeur et direction, appelée oscillation en cycle limite (limit cycle oscillation ou LCO en anglais), basée

sur les signaux existants dans les avions civils. LCO est un terme mathématique générique définissant un mode

périodique indépendant de conditions initiales et se produisant dans des systèmes non linéaires non conservatifs.

Dans cette étude, nous nous intéressons au phénomène de LCO induit par les jeux mécaniques dans les gouvernes

d’un avion civil. Les conséquences du LCO sont l’augmentation locale de la charge structurelle, la dégradation

des qualités de vol, la réduction de la durée de vie de l’actionneur, la dégradation du confort du poste de pilotage

et de la cabine, ainsi que l’augmentation des coûts de maintenance. L’état de l’art en matière de détection et

de diagnostic du LCO induit par le jeu mécanique est basé sur la sensibilité du pilote aux vibrations et sur le

contrôle périodique du jeu sur les gouvernes. Cette étude propose une solution basée sur les données (issues de

la boucle d’asservissement des actionneurs qui agissent sur les gouvernes) pour aider au diagnostic du LCO et

à l’isolement du jeu mécanique. L’objectif est d’améliorer encore plus la disponibilité des avions et de réduire

les coûts de maintenance en fournissant aux compagnies aériennes un signal de contrôle pour le LCO et les

jeux mécaniques. Pour cette raison, deux solutions algorithmiques pour le diagnostic des vibrations et des jeux

ont été proposées. Un détecteur en temps réel pour la détection du LCO est tout d’abord proposé basé sur la

théorie du rapport de vraisemblance généralisé (generalized likelihood ratio test ou GLRT en anglais). Certaines

variantes et simplifications sont également proposées pour satisfaire les contraintes industrielles. Un détecteur

de jeu mécanique est introduit basé sur l’identification d’un modèle de Wiener. Des approches paramétrique

(estimateur de maximum de vraisemblance) et non paramétrique (régression par noyau) sont explorées, ainsi

que certaines variantes des méthodes non paramétriques. En particulier, le problème de l’estimation d’un cycle

d’hystérésis (choisi comme la non-linéarité de sortie d’un modèle de Wiener) est abordé. Ainsi, les problèmes avec

et sans contraintes sont étudiés. Une analyse théorique, numérique (sur simulateur) et expérimentale (données

de vol et laboratoire) est réalisée pour étudier les performances des détecteurs proposés et pour identifier les

limitations et la faisabilité industrielle. Les résultats numériques et expérimentaux obtenus confirment que le

GLRT proposé (et ses variantes / simplifications) est une méthode très efficace pour le diagnostic du LCO

en termes de performance, robustesse et coût calculatoire. D’autre part, l’algorithme de diagnostic des jeux

mécaniques est capable de détecter des niveaux de jeu relativement importants, mais il ne fournit pas de résultats

cohérents pour des niveaux de jeu relativement faibles. En outre, des types d’entrée spécifiques sont nécessaires

pour garantir des résultats répétitifs et cohérents. Des études complémentaires pourraient être menées afin de

comparer les résultats de GLRT avec une approche Bayésienne et pour approfondir les possibilités et les limites

de la méthode paramétrique proposée pour l’identification du modèle de Wiener.
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1.1. Context

The main sources of airframe vibration on the Airbus A320 Family aircraft are shown in Fig. 1.1

Figure 1.1.: Main sources of vibration on A320 Family aircraft [SAS17].

One can observe that vertical and horizontal tail plane control surfaces (Elevator and Rudder) represent the

major cause of airframe vibrations (72%). These vibrations may have multiple consequences on the aircraft

life cycle from the design to operations. Indeed, spurious oscillations of the control surfaces (C/S) impact both

the structural airframe design and the flight control system design. Undetected oscillations may lead to several

problems including local structural load augmentation, flight handling qualities deterioration, actuator opera-

tional life reduction, cockpit and cabin comfort deterioration as well as maintenance cost augmentation. For
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these reasons, the ability to detect and isolate unwanted oscillations beyond a given amplitude is an important

feature for a fault-tolerant, economically efficient and comfortable aircraft architecture.

1.2. Goals

The main goal of this research study is to propose, develop and validate a software solution for the detection

and diagnosis of a specific type of elevator and rudder vibration based on existing signals available in flight

control computers on board in-series aircraft. In particular, the problem of freeplay induced Limit Cycle

Oscillation (LCO) is tackled based on the signals already available in the actuator control loops that move the

control surfaces. In the next chapter the context and challenges of the technical problem of LCO detection and

diagnosis are clarified.

1.3. Contribution

This research study is the result of a 3 years CIFRE PhD thesis (from 21/03/16 to 20/03/2019) between the

Airbus design office (Aircraft Control domain) and TéSA laboratory in Toulouse. The main contributions of this

study are related to the proposal of two algorithmic solutions for vibration detection and diagnosis and to the

theoretical and numerical validation of their performance. In particular, a real time detector for LCO detection

is proposed in Chapter 3 based on the theory of the Generalized Likelihood Ratio Test (GLRT) [Urb+18b].

A mechanical freeplay detector is introduced in Chapter 4 based on the theory of Wiener model identification

[Urb+19]. A theoretical and empirical analysis of the performance of these two detectors is presented to justify

their choice. It is important to observe that the industrial constraints associated with the technical problem of

LCO detection and diagnosis are functions of the considered aircraft, control surface, airline, available signals,

etc. In order to propose a valuable solution respecting as many constraints as possible, a family of detectors has

been proposed based on the chosen general theory [Urb+18a; Urb+17b]. Chapters 3 and 4 detail the theoretical

contribution of this research study, while Chapter 5 presents the numerical and experimental results.

1.4. Manuscript organization

The manuscript is organized as follows: Chapter 2 presents the context and the state of the art about LCO

detection and diagnosis in the Flight Control System. The LCO problem is analyzed and illustrated with some

examples and the state-of-the-practice is detailed. The technical solutions proposed in this study are put into

context and justified. Chapter 3 investigates a real-time LCO detector based on the GLRT theory. The problem

is modeled as a binary hypothesis testing problem and several detectors are proposed depending on the known

and unknown parameters. A very general formulation is proposed and validated along with some variants and
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simplifications. An important contribution of this chapter is to derive the asymptotic performance of the GLRT

for LCO detection. Chapter 4 studies a freeplay detector based on non linear Wiener model identification. A

well-known method for nonparametric Wiener model identification is adapted to our technical problem and

some variants are proposed (hysteresis non linearity and multiple constraints). The proposed solution can also

be interpreted as a parametric estimator and thus it is compared to the maximum likelihood estimator. The

variance of the estimators is finally compared to some theoretical performance bounds. Chapter 5 presents

the practical implementation and validation of the proposed solutions. The test results on simulated and

experimental data are presented. Chapter 6 summarizes the results, emphasizes the author contribution and

presents the conclusions and perspectives about this study.

1.5. Publications
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pp. 13544–13549 (cit. on p. 25).

[Urb+18a] Simone Urbano et al. “Aircraft Vibration Detection and Diagnosis for Predictive Maintenance
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Processes (IFAC Safeprocess). Warsaw, Poland, Aug. 2018 (cit. on pp. 2, 87).

[Urb+18b] Simone Urbano et al. “On the High-SNR Receiver Operating Characteristic of the GLRT for

the Conditional Signal Model”. In: Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing

(ICASSP). Calgary, Canada, Apr. 2018 (cit. on pp. 2, 29).

[Urb+19] Simone Urbano et al. “On nonparametric identification of Wiener system with deterministic in-

puts”. In: Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing (ICASSP). Brighton, UK,

May 2019 (cit. on pp. 2, 74).

Patents
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2.1. Introduction

This chapter presents the industrial context and the state-of-the-art. The main goal is to introduce the reader

to the problem of freeplay induced limit cycle oscillation in the flight control system of a civil aircraft. Indeed,

as already mentioned in Chapter 1, this research study is intended to propose, develop and validate a software

solution for the detection and diagnosis of LCO based on existing signals in the flight control system. Thus, in

order to propose a reasonable solution, it is important to study more in details the LCO phenomenon and the

flight control system. Section 2.2 presents the electrical flight control system with a particular attention to the

fault tolerance requirements. In Section 2.3 the LCO problem is analyzed and illustrated with some examples.

Section 2.4 introduces the state-of-the-practice to face the LCO problem. The technical solutions proposed in

this study are put into context and justified. Section 2.6 discusses the main challenges for developing a condition

monitoring algorithm in the EFCS. Conclusions about this Chapter are finally reported in Section 2.7.

2.2. Electric Flight Control System

The flight control system (FCS) consists of all the elements between the pilot inputs and the movable surfaces,

including these two elements. This system is used to control the aircraft attitude and trajectory. The first
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Electrical Flight Control System (EFCS) for a civil aircraft was designed by Aerospatiale and installed on the

Concorde. It was an analog system with full-authority on all the control surfaces with a mechanical back-up

system on the three axis. The first generation of digital EFCS appeared on Airbus aircraft with the A320

program and today, the EFCS is a standard for passenger airliners. The EFCS has many advantages compared

to a mechanical system: less weight, less workload for the crew, more comfort for the passengers, more accurate

control of the flight envelope.

The Flight Control System is composed of two main functional sets

• the primary controls: to manage speed, attitude, altitude and trajectory

• the secondary controls: to manage the lift of the aircraft

The primary controls are then composed of the following components

• the pilot inputs (sidestick, rudder pedals, ...)

• the transmission system (mechanical or electrical)

• the control surfaces and their actuators (Figure 2.1)

• the sensors (for the control feedback)

Actuator
Actuator bearing

Hinge line

Control surface

Monitoring
channel

Command
channel

Figure 2.1.: Example of control surface section with actuator.

For the purpose of this study we will consider only the case of the Airbus EFCS and especially its primary

control set (see Figures 2.2 and 2.3)

• pilot control system: sidestick and pedals

• electrical transmission system: on-board computers and electrical wires

• control surfaces: elevator, rudder and ailerons
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• sensors: LVDT (Linear Variable Differential Transducer) and RVDT (Rotary Variable Differential Trans-

ducer) to measure respectively the linear displacement of the actuator rod and the control surface deflec-

tion.

Figure 2.2.: Airbus Electrical Flight Control System (EFCS).

Actuator
Actuator bearing

Hinge line

Control surface

Monitoring
channel

Command
channel

Figure 2.3.: Airbus control surface servo loop.

The EFCS has became a standard in civil aviation. However, this evolution took multiple aircraft generations.

Figure 2.4 displays the historical evolution of the FCS.

7
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Figure 2.4.: Historical evolution of the Flight Control System.

To give an example of EFCS architecture, in Figure 2.5, we can see the full architecture of the A380 EFCS: the

control surfaces, their location, their actuators, the redundancies, the hydraulic circuits, the on-board computers

and the reconfiguration strategy1.

Figure 2.5.: A380 EFCS architecture.

1The system reconfiguration concerns for example a control surface with two actuators. The first one is in active mode and is
controlled by a computer P1. The second one follows the movement of the active actuator and is associated with a computer
P2. In case of failure there is a switch between the actuators.
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Concerning one of the main components of the EFCS, the actuators, we can distinguish (see Figure 2.5) three

main types currently in use (see Figure 2.6):

• HA (Hydraulic Actuator)

• EHA (Electro-Hydraulic Actuator)

• EBHA (Electrical Back-up Hydraulic Actuator)

Figure 2.6.: Hydraulic actuator, Electro-Hydraulic Actuator and Electrical Back-up Hydraulic Actuator.

Hydraulic actuators (HA) have a relatively simple functioning. The command, converted to current, is sent to

the actuator servo-valve which converts this current into an hydraulic fluid movement between the two chambers,

which are separated by a piston, causing, by means of a pressure difference, the displacement of the rod. This

type of actuator, using the hydraulic force, has the advantage of generating high torques, good control of the

shaft speed and a long service life. However, these systems are massive, especially if we consider the required

connection to a complex hydraulic circuit. Following a more electrical approach for the aircraft, one expect to

move from the Fly By Wire (FBW) technology to the Power By Wire (PWB) technology and thus use new

actuators such as EHA or EBHA. The EHA combines an electrical actuator with an hydraulic actuator. The

principle is similar to the HA except that the servo valve is replaced by a pump coupled to an electric motor. The

engine operates the pump which allows the flow of liquid in the chambers. This device includes an integrated

hydraulic circuit, pressurized by an internal electric pump. As a function of the commands from the control

system, the motor will supply more or less electricity in the pump generating a variable flow in the chambers

used to control the surfaces. Such a system allows the actuator systems to be isolated from the hydraulic circuit

of the aircraft, resulting in a gain of mass and dissimilarity. Indeed, even in case of an hydraulic circuit failure,

the EHA or EBHA continue to operate, so the pilot is still able to manage the aircraft. The EBHA, developed
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to bring more redundancy and dissimilarity, represent an hybrid solution: in normal operation it acts like an

HA, while in case of a failure like an EHA. In the future, following the aircraft electrification trend, the direct

use of Electro Mechanical Actuators (EMA) is considered. As the EFCS evolution, the actuator technology

evolution took multiple aircraft generation (see for example Figure 2.7).

Figure 2.7.: Electrification of the FCS on Airbus aircraft.

Fault tolerance and diagnosis in the EFCS

Fault tolerance and fault diagnosis are key points in the EFCS design. Indeed, the EFCS design is based on very

stringent requirements in terms of safety and availability. Moreover, the evolution of the EFCS is related with a

growing complexity of equipments and systems, an increased interaction with flight physics and finally a greater

number of failure cases to be considered. Thus, the relevance of Fault Detection and Isolation (FDI) techniques

is increasing with time. The state-of-practice for aircraft manufacturer for fault tolerance and diagnosis is based

on some specific “golden rules” [Gou11]

• Safety System Assessment (SSA). It is essential to evaluate all the possible combinations of failures and

the probability of occurrence of a certain event.

• Stringent development process. See for example [int96] for aircraft system development, [EI92] for software

development and [EI00] for hardware development.

• High level of hardware redundancy. For example the use of multiple control computers, different power

sources, multiple sensors.

• Real-time monitoring. Multiple algorithms run in real time to check all sent and received information in

the on-board computers, but also sensors, actuators, probes, etc.
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• Reconfiguration strategies: system reconfiguration and flight control law reconfiguration. The system

reconfiguration concerns for example a control surface with two actuators. The first one is in active mode

and is controlled by computer P1. The second one is in passive mode (it follows the movement of the

active actuator) and is associated with a second computer P2, in stand-by mode. In case of failure there

is a switch between the actuators (and the related computers) to guarantee the control of the control

surface (See for example Figure 2.8). The flight control law reconfiguration is related to the definition of

multiple levels of control laws (Normal law, alternate laws, direct law) as a function of the EFCS integrity

and redundancy level in order to protect the aircraft from critical events [TLS04]. The reconfiguration

strategy and the flight domain protection are shown in Figure 2.9.

• Dissimilarity. For example there are always at least two types of computers: a PRIMary (PRIM) and a

SECondary (SEC) computer. They have different hardware, software and development teams. Different

actuators technologies are also considered, for example HA and EHA as in Figure 2.8.

• Installation segregation. For example the flight control computers are physically segregated as hydraulic

and electrical routes.

• Flight Control Computer architecture. For example the control (COM) and monitoring (MON) functions

are dissimilar in the flight control computers (Figure 2.10).

Figure 2.8.: Active/Stand-by reconfiguration and example of PRIM/SEC computers.
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Figure 2.9.: Flight control law reconfiguration and flight domain protections [Gou11].

Figure 2.10.: Airbus COM/MON architecture.

12



Chapter 2. Free play induced Limit Cycle Oscillation (LCO)

2.3. Limit Cycle Oscillation (LCO)

In linear dynamics only two system behaviors are possible: stability and instability. In nonlinear dynam-

ics additional behaviors can be encountered as limit cycles and chaos. Limit Cycle Oscillation (LCO) is a

generic mathematical term defining an initial condition-independent periodic mode occurring in dissipative

(non-conservative) nonlinear systems. The LCO appears as an instability phenomenon associated with a nega-

tive damping term in the system dynamic, which causes small perturbations to grow exponentially in amplitude

until nonlinearities become important and limit the amplitude. The LCO amplitude and waveform strongly

depend on the nonlinear characteristic of the system (only a discrete set of limit cycle amplitudes and frequen-

cies may exist in a given system). Considering the complexity of the aircraft system, different LCOs exist as a

consequence of different non-linear phenomena in the system dynamic. In the present study only the LCO of a

generic control surface (C/S) of the aircraft is considered. In this case, the main sources of self-oscillations are

• Aerodynamic non linearity (shock-wave motion)

• Structural freeplay (for example in the control surface hinge line)

• Actuator freeplay (for example in the actuator roller bearings)

• Reduced actuator stiffness due to full/partial actuator failure

• Servo loop perturbations (for example processing delays)

In the present study we are mainly interested in studying the freeplay induced LCO of a C/S with the

purpose of developing a dedicated detection and isolation algorithm. In order to understand the physical

problem and the LCO sensitivity to different parameters, it is interesting to consider the simplified system in

Figure 2.11, which represents the typical section of an aerodynamic surface with unbalanced control surface.

Figure 2.11.: Typical section of airfoil with unbalanced control surfaces.

It is a 2 degrees of freedom (DOF) system where the airfoil bending is called h and the control surface rotation

is called δ. We are considering a 2DOF system instead of a 3DOF (including the airfoil torsion), because the

particular LCO we want to investigate is mainly related to the inertial coupling between the first bending mode

of the aerodynamic surface and the rotational mode of the control surface (see Figure 2.12).
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Figure 2.12.: Example of C/S rotation mode and first bending mode [PB14].

The system equation that describes a linear aeroelastic wing model is usually written as an harmonic oscillator

of the form

MẌ + (ρVB + D)Ẋ + (ρV 2C + K)X = 0

where X is the coordinates components vector, ρ the air density, V the air speed and the matrices M, B, D,

C, K represent the inertia, aerodynamic damping, structural damping, aerodynamic stiffness and structural

stiffness respectively. The structural damping D is often ignored as experience has shown that the aerodynamic

damping B dominate and that such an assumption generally produces conservative estimates of the flutter

speed. So the previous equation reduces to

MẌ + (ρVB)Ẋ + (ρV 2C + K)X = 0

For the simplified 2DOF system in Figure 2.11, it can be easily shown that the previous equation corresponds

to MT −mxg

−mxg I +mx2
g


ḧ
δ̈

+

ρV
S2Czα 0

0 0



ḣ
δ̇

+

ρV 2

0 −S2Czδ

0 −S2 bCmδ

+

kh 0

0 kδ



h
δ

 =

0

0

 (2.1)

whereMT is the total mass of the section, I the C/S rotational inertia, m the C/S mass, xg the distance between

the hinge line and the C/S CG, kh and kδ are the pitch and rotational stiffness, S the airfoil reference surface

and Czα, Czδ, Cmδ the aerodynamic stability derivatives of the aerodynamic force and moment produced by the

airfoil. From the previous equation we can see that the bending and rotational mode are coupled via the term

mxg in the inertia matrix (xg 6= 0 for an unbalanced control surface). Moreover, we can see that the third term

can assume also negative values as the air speed increase. Given that this term represents the system global

stiffness, that implies negative damping values. In this case, damping may destabilize the system by feeding

energy instead of removing it. For a linear system a negative damping will result in a divergent system behavior

(Flutter). However, as in reality there are always some nonlinearities, then other behaviors can be encountered

as limit cycles and chaos (small perturbations grow exponentially in amplitude until the nonlinearities effects

become important and limit the amplitude). Nonlinearities introduce new behaviors between the stability
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and instability domain of the system. For example, for an unbalanced control surface, a freeplay in the C/S

hinge line or in the actuator bearing can be modeled as a nonlinear behavior of the rotational stiffness kδ. This

nonlinearity introduces a particular type of LCO that is usually called freeplays induced LCO. This LCO can be

seen as a periodic switch between a stable state (tightened control surface) and an unstable state (free control

surface). Indeed, the C/S can vibrate inside its freeplay. It should be mentioned that the name “freeplays

induced” is somehow misleading because it is not the freeplay that start the LCO and for an unloaded control

surface, the flow velocity at which LCO begins is independent of the degree of freeplay [Dow15]. However, the

amplitude of the LCO and the amount of loading required to preclude LCO is strongly dependent on the degree

of freeplay (the angle of attack required to totally eliminate freeplay is usually about five times the degree of

freeplay [Dow15]). In other terms, old aircraft (higher freeplay level) triggers LCOs of higher amplitude than a

brand new one, because of the reduced equivalent stiffness (see Figure 2.13). Given that the LCO amplifies the

freeplay, the LCO amplitude will increase each time the phenomenon is triggered. If the nonlinearity (freeplay)

has the desired effect of limiting the oscillation amplitude for air speeds larger than the linear flutter velocity

UF (super-critical LCO), it might have also the undesired effect of inducing oscillation for lower air speeds than

UF (sub-critical LCO) [Lub08]. See also Figure 2.14.

Figure 2.13.: Equivalent C/S rotational stiffness : new/aged aircraft [Loz08].

Figure 2.14.: Sub-critical and super-critical LCO [Dow15].

15



Chapter 2. Free play induced Limit Cycle Oscillation (LCO)

In order to better understand the physical phenomenon, it is interesting to observe the results of some

simulations. In Figure 2.15, 2.16, 2.17 we can observe the initial condition response of a mathematical model

representing a wing section with control surface (flap and control surface rotation as the one in Figure 2.11).

In Figure 2.15 we have the reference initial condition response of the system. In Figure 2.16 it is interesting to

see how the introduction of a small dead zone on the rotational stiffness (representing the freeplay) can lead

to LCO. Moreover, Figure 2.17 confirms that reducing the coupling term mxg the LCO can be avoided for the

considered freeplay level.
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Figure 2.15.: Initial condition response of a wing section with control surface (see (2.1)). A stable convergent response
can be observed.

Figure 2.16.: Initial condition response of a wing section with control surface and freeplay. The same mathematical
model (2.1) of Figure 2.15 is considered, but a symmetric dead zone on the rotational stiffness is considered
to simulate the mechanical freeplay. An LCO-type behavior can be observed due to the freeplay.
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Figure 2.17.: Initial condition response of a wing section with control surface and freeplay. The same mathematical
model (2.1) and the same free play level of Figure 2.16 is considered; but here the center of gravity of
the control surface is five time closer to the hinge line xg = xg/5 . A stable convergent response can be
observed.

In Figure 2.18, 2.19 we can compare frequencies and damping of the wing section models described in [Wri+03].

In Figure 2.18 a 3 degrees of freedom wing section model is considered (flap, torsion, rotation), while in Figure

2.19 a wing section with actuator is considered (both the models are detailed in [Wri+03]).
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Figure 2.18.: Frequency and damping (as a function of the wind speed) for a wing section with control surface (3 degrees
of freedom : flap, twist, rotation) [Wri+03].

It is interesting to observe how the introduction of the actuator model has a strong impact on the system

damping. In Figure 2.20, 2.21, 2.22 we can observe different initial condition responses for the model with

actuator in Figure 2.19. Comparing Figures 2.20 and 2.21 it can be seen how the introduction of a symmetric
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dead zone on the actuator torque (representing the freeplay) leads to an LCO-type behavior. Furthermore,

comparing Figures 2.21 and 2.22 it can be observed that increasing the actuator stiffness we can avoid LCO.
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Figure 2.19.: Frequency and damping (as a function of the wind speed) for a wing section with control surface and
actuator [Wri+03].

Figure 2.20.: Initial condition response at 39 m/s for the model of Figure 2.19. A stable convergent response can be
observed.
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Figure 2.21.: Initial condition response at 39 m/s for the model of Figure 2.19 where a symmetric dead zone has been
considered on the actuator torque to simulate the freeplay. An LCO-type behavior can be observed.

Figure 2.22.: Initial condition response at 39 m/s for the model of Figure 2.20 where an higher actuator stiffness has
been considered (area of pressure stabilization piston is 3 times bigger). A stable convergent response can
be observed.

Observing the LCO phenomenon at aircraft level, it can be seen that for the LCO to start, multiple conditions

have to be met

• Inertial coupling (unbalanced C/S)
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• Particular flight conditions (Speed, altitude, attitude, configuration)

• C/S locally free to rotate with insufficient static loading

A simple way to evaluate if LCO can trigger is to compare the C/S available loading versus the minimum load

to preclude the LCO. If during a particular flight phase the C/S available loading is lower than the minimum

load precluding LCO, than LCO can trigger (see Figure 2.23).

Figure 2.23.: LCO trigger zone, comparison between C/S available load and minimum load to preclude the LCO.

Experience has shown that the most critical maneuvers for LCO triggering on the elevators are the Nz ma-

neuvers (and the airbrakes are an aggravating factor). In particular, the level capturing maneuver at the end

of the climb, the initial descent (with airbrakes partially out) and deceleration phases can be considered as the

flight phases where LCO is more likely to trigger on elevators. The problem is quite different for the rudder.

Considering that the static load is generally close to zero, all the flight phases can lead to LCO. On the other

hand, ailerons are generally more aerodynamically loaded in all the flight envelope and then they are less prone

to vibrations.

For further details on the LCO phenomenon the reader can refer to [Dow15] or to the extensive literature

on the topic concerning theory, modeling and experimental analysis, for example [Dim99] [Kho14][TD11]

[TVD02][GK08][Con+97] [Vas+14] [Sut12][Nob13] [GMM08] [PB14]. Concerning the interaction between wear

process and limit cycle oscillations, the reader can find an interesting description in [SKA02], where wear models

and predictive equations are presented and where it is shown that the sliding wear damage has a predominant

effect compared to the impact wear damage. Moreover, it is observed that, if a vibration occurs, the rate of

development of the freeplay can increase exponentially.

Finally, from a signal analyst point of view, it is interesting to note that

• the LCO behavior can be seen as a pure sinusoidal signal at a given frequency (depending
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on the system dynamic) that can be measured on the flap, twist and control surface rotation

of the wing section (see Figures 2.16 and 2.21).

• the LCO amplitude strongly depends on the freeplay level, but the freeplay alone is not a

sufficient condition for LCO to trigger as multiple conditions have to be met (see Figures 2.23,

2.17 and 2.22).

2.4. State-of-the-art

The first events of control surface flutter occurred during the 1st World War and the most widely adopted

solution was to consider control surface mass balancing [VK23] (xg small or ≤ 0). Indeed, the LCO problem is

critical for unbalanced control surfaces. The static balancing of the control surface that is generally considered

for light aircraft in general aviation and sometimes in commercial aviation (see Figure 2.24) has the advantage

of reducing the LCO probability in the flight domain (see also Figure 2.17). However the weight penalty is

generally high and it is difficult to guarantee the balance during all the operational life of the aircraft. Indeed,

repairs and maintenance operations, but also particular atmospheric conditions (icing) can lead to a balance

modification.

Figure 2.24.: Example of balanced control surfaces (ATR72 and Messerschmitt Bf110).

In 80-90s, the hydraulic actuators, that were introduced to reduce the command effort, became reliable

enough to ensure the aeroelastic stability by their own stiffness (see Figure 2.22) or damping. For this reason,

the C/S mass balancing was given up because of its drag and weight penalty. Unfortunately, the actuator stiff-

ness/damping solution also presents a weak point: with the cumulative wear (aircraft aging), some supporting

elements of the control surface develop mechanical freeplay and so, as explained in the previous section, the

C/S can vibrate inside its freeplay. For this reason, the actuator stiffness/damping solution has to be coupled

with other countermeasures

• Crew sensitivity. The pilot/crew can fill in a so-called “Vibration Reporting Sheet” (Airbus) or a “Flight
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Deck Vibration Event Log” (Boeing) to describe the phenomena felt during the flight (see Figure 2.25).

This process is thought to ease the vibration root cause isolation. However, a lot of dispersion can be

observed on the pilot responses and on the use of this feedback by the airlines.

• Periodic freeplay check (Figure 2.27). Regular check (on ground) of the freeplay level for every actuator

are scheduled in order to verify if it is compliant with the maximum levels fixed for each C/S. The check

is complex and time consuming and the resildual freeplay on other components of the C/S (for example

the hinge line) can leads to vibrations even after an actuator bearing replacement (see Figure 2.26).

Specific devices can be used to automate the freeplay check (see for example Embraer patent [VAO17]),

but generally an expert technician is needed.

• Artificial C/S static loading. To give an example, on the A380 upper rudder there is a device called CAM

[Mor07] creating a static torque in order to reduce the potential freeplay effect and avoid LCO in flight.

The presence of this device can be guessed looking at the A380 upper rudder on ground (deflected when

the actuators are not active). See Figure 2.28.

• Low play articulation technologies. For example roller bearing instead of autolube bearings.

• Active control. There is a wide literature about active control of vibrations like the LCO. However,

there are not a lot of documented real applications in civil aviation. An example is the Boeing outboard

aileron modal suppression (OAMS) system. The OAMS is designed to dampen out a structural sustained

vibration at 2.3Hz of the B747-8 wings, engine pylons and fuselage [Liv17]. The FAA has added OAMS

to the master minimum equipment list, prohibiting the aircraft from being dispatched with the system

inoperative. The OAMS system is built out of the 747-8’s roll-axis fly-by-wire flight control system to

reduces the amplitude of the sustained oscillation. More recently, on the Boeing 787-10 a flaps-up vertical

modal suppression system (F0VMS) has been considered as damping-augmentation system for a low

damped aeroelastic mode at 3Hz. In [Liv17] the state-of-the-art and the technology maturation needs for

aeroelastic active control is addressed. Other interesting references are [CDF00][Bia14][Cas15][MDM17].

• Condition monitoring algorithms. The methods investigated in this study and detailed in

Chapters 3 and 4 are part of this category (Section 2.5 clarifies this choice). A well-known

example in this category is Boeing patent [PK11]. The idea is to analyze the maximum of the frequency

spectrum of the control surface system seen as an hybrid system: free pendulum in the freeplay zone

and constrained pendulum out of the freeplay zone. The lower the frequency of the maximum of the

frequency spectrum, the bigger the freeplay level (free pendulum frequency is lower than constrained

pendulum frequency). Others technical solutions are described in [Sch+18][Bal+09] for Electro-Mechanical

Actuators. Concerning LCO prediction the reader can also refer to [EP13][Ven+16] [Sed+00]. For a general
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survey of time-series methods for fault detection and identification in vibrating structures the reader may

also refer to [FS06].

Figure 2.25.: “Vibration Reporting Sheet” (Airbus) and “Flight Deck Vibration Event Log” (Boeing).

Figure 2.26.: Effect of the residual play on long term.
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Figure 2.27.: Freeplay check operation.

Figure 2.28.: CAM device on the A380 upper rudder.

The need for a careful handling of freeplays and LCO vibrations is emphasized also by the authorities. The

Federal Aviation Administration (FAA) policy for the design, certification, and continued airworthiness of un-

balanced or partially balanced control surfaces is expressed in the Memorandum ANM-05-115-019 [Adm07].

The freeplay levels recommended by the FAA to preclude LCO are still the values established in 1993 in the

military report MIL-A-8870C [Air93]. The FAA can also consider special amendments for specific aircraft

models (see for example [FAA02][FAA15]). Concerning LCO it is mentioned that “recurring LCO must not

be allowed within the airplane normal operating envelope (at speeds less than or equal to VC/MC). However,

LCO is not itself aeroelastically unstable, and accelerated wear may not be an issue for short exposure periods ”.
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2.5. LCO and freeplay condition monitoring

In the Airbus architecture, the servo loop that moves the control surface (see Fig. 2.3) is already monitored by

several fault detection algorithms [Gou10][Zol+13]. Indeed, there are numerous studies related to a different

C/S oscillation problem, the Oscillatory Failure Case (OFC). OFC is mainly related to internal faults of the

FCS as faulty behaviour of an electronic component or a mechanical failure (while the LCO is related to non

linear aeroelasticity) and OFC has a relatively wide frequency band (compared to LCO). OFC is generally

tackled using analytical redundancy approaches [Gou10], but other studies [Zol+13][Sim11] [GUT16][Urb+17a]

have also considered data-driven approaches (fault modelling strategy based on Kalman filtering or using a

specific observer, selective filtering, correlation methods, synchronous detection, distance methods). Inspired

by the literature on OFC detection and observing that: (i) LCO detection still depends almost entirely on

crew sensitivity to vibrations (ii) LCO prevention is based on complex and tricky maintenance operations (to

verify the freeplay level); we have decided to investigate the possibility of developing simple software solutions for

LCO detection and freeplay estimation (condition monitoring countermeasure) based on existing measurement

and compliant with real-time implementation constraints in the Airbus architecture.

In Chapter 3 and Chapter 4 two specific methods will be presented for LCO detection and freeplay estimation:

the Generalized Likelihood Ratio Test for LCO detection (Chapter 3) and the Wiener model identification for

freeplay estimation (Chapter 4). This choice is based on the following observations (that will be recalled and

deepened in the next chapters)

• The LCO detection problem can be modeled as a binary hypothesis testing problem. Indeed, the LCO

appears like an additive oscillation on the control surface position measure. Thus, we can model the

detection problem as


H0 : y(n) = P [x(n)] + w(n), w(n) ∼ N (0, σ2)

H1 : y(n) = P [x(n)] + s(n) + w(n), s(n) = A cos(2πfn+ φ)
(2.2)

where n = 0, 1, ..., N − 1, x represents the signal from the flight control computers sent to the actuator,

P the actuator dynamic, y the control surface rotation measure, w a white Gaussian noise of known

variance2 and s the anomaly that we want to detect: the LCO. For this problem, if no a priori

information about the probability of each hypothesis is available, the likelihood ratio test (LRT) in the

Neyman-Pearson sense maximizes the probability of detection for a given probability of false alarm [Kay98].

Finally, in case of unknown parameters in the observation model, a very common approach is to consider

the GLRT, which replaces the unknown parameters by their estimates under both hypotheses.

2the noise variance can be derived from flight data
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• In the literature the most common approaches for freeplay estimation are based on load/displacements

plots (Figure 2.29) and spectral analysis [PK11][KDP06].

Figure 2.29.: Example of freeplay estimation via load/displacement plot [Lub08].

However, this type of methods requires specific additional sensors and specific constraints on the test

configuration (sampling, input type). In the same way, a model based approach would require a long

validation process and it is generally hard to generalize to different aircraft and control surfaces. For

these reasons, we have decided to investigate the theory of nonlinear block-structured model identification

(in particular Wiener models) for the purpose of freeplay estimation. Indeed, we are interested in a

method that does not require additional sensors, has less constraints on sampling frequency and input

type (compared to spectral methods) and that can be easily generalized to different control surfaces. A

nonlinear Wiener model can be defined as

yn = g (ωn) + zn, ωn =
P∑
p=0

λpxn−p, 1 ≤ n ≤ N (2.3)

where y represents the control surface rotation measure, xn the signal from the flight control computers

or the rod position measure, zn white Gaussian noise, λp the coefficients of the impulse response of the

linear subsystem and g() the output nonlinear function representing the freeplay effect. Thus,

26



Chapter 2. Free play induced Limit Cycle Oscillation (LCO)

the free play monitoring can be accomplished through the estimation of g(). In Chapter 4 we will see that

it is very interesting to consider a nonparametric model for the static nonlinearity in order to extend the

applicability of the Wiener model.

2.6. Challenges

Receiving and hosting a growing amount of data, thanks to the evolution of the acquisition, communication

and storing chain and the development of new specific on-board systems like the ACMS (Aircraft Condition

Monitoring System), new services can be proposed to the airlines, as for example predictive maintenance solu-

tions (see Figure 2.30). Furthermore, the growing amount of data enables also the pertinent use of data-driven

techniques that have an higher level of genericity and do not require any physical model development and

validation process.

Figure 2.30.: Predictive maintenance.

The present study is thought to bring a contribution in the specific domain of data-driven solutions for

condition monitoring. Indeed, the methodologies presented in Chapter 3 and 4 can be adapted to several similar

applications. However, considering the study case of LCO detection and diagnosis in the Airbus architecture,

some additional constraints have to be taken into account and this can lead to substantial modifications of the

final solution (see for example Chapter 5). The main challenges in the development of a feasible solution for

LCO detection and diagnosis in the EFCS are

• Genericity. The heterogeneity of the EFCS among aircraft types and generations makes it difficult to

define a generic method. For example the available signals and their sampling frequencies may vary

considerably among aircraft generation and control surface direction. Moreover, as previously explained,

the EFCS is a system in continuous evolution.
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• The hardware capacity. As a function of the system where the software solution would be hosted, different

solution have to be proposed. Solutions hosted on a server on-ground (no/few RAM and CPU limitations)

or running on-board in real time have to be completely different.

• The lack of information. To give an example, generally we do not have accelerometers or load data on the

tail plane or on the control surfaces of commercial aircraft. Moreover, the EFCS has not been originally

thought for LCO detection. As a consequence, the sampling frequency may not be adapted for the purpose.

• Robustness. Commercial aircraft as the A320 have a really high level of reliability and availability. In

order to improve the state of the art it is essential to guarantee at least the same level of reliability and

availability (being able at the same time to detect the anomaly).

2.7. Conclusions

This chapter presented the EFCS, the LCO phenomenon, the state-of-the-art and the challenges related to LCO

detection and diagnosis. From this short introduction to the problem of freeplay induced limit cycle oscillation

detection in the flight control system, the reader should remember the following points

• the LCO is an aeroelastic vibration that concerns unbalanced C/S of the aircraft.

• an augmented mechanical freeplay in the actuator bearings or hinge line of the C/S is an aggravating

factor for LCO. The LCO amplitude strongly depends on the freeplay level, but the freeplay alone is not

a sufficient condition for LCO to trigger.

• the LCO consequences are local structural load augmentation, flight handling qualities deterioration, actu-

ator operational life reduction, cockpit and cabin comfort deterioration, maintenance cost augmentation.

• the state-of-the-art for LCO detection and prevention is mainly based on the pilot sensitivity to vibrations

and to regular freeplay check on ground.

• this study is thought to propose a data-driven condition monitoring solution to help LCO diagnosis and

freeplay isolation. The goal is to improve even more aircraft availability and reduce the maintenance costs.

Indeed, a condition monitoring signal would enable the airlines to ease the troubleshooting and to simplify

the maintenance tasks.

• the LCO can be seen as a pure sinusoidal signal at a given frequency (depending on the system dynamic)

that can be measured on the flap, twist and control surface rotation of the wing section.

• the development of a data-driven condition monitoring algorithm in the EFCS has to face multiple chal-

lenges: robustness, lack of information, hardware capacity, hardware heterogeneity and evolution.
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3.1. Introduction

The purpose of this Chapter is to study a suitable test statistic for Limit Cycle Oscillation (LCO) detection.

The definition of the detector is achieved using an incremental approach: (i) the problem is modeled as a binary

hypothesis testing problem (as already mentioned in Section 2.5); (ii) several simple detectors are proposed

where one or more parameters are known; (iii) a very general formulation is proposed and validated. (iv) some

variants and simplifications of the general formulation are proposed. A particular attention is dedicated to the

derivation of the asymptotic performance in the general case with the purpose of simplifying the tuning process.

The main theoretical contributions of this chapter have been published in [Urb+18b].

3.2. Binary Hypothesis testing

In a binary hypothesis testing problem, if no a priori information about the probability of each hypothesis is

available, the likelihood ratio test (LRT) in the Neyman-Pearson sense maximizes the probability of detection

for a given probability of false alarm [Kay98]. Unfortunately, optimal statistical tests such as the LRT cannot

always be implemented since there are often some unknown parameters in the observation model, leading to the
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so-called composite hypothesis testing problem (CHTP) [Van68] (also referred to as joint detection estimation

problem [GCL10]). A very common approach in this situation is to replace the unknown parameters in the

LRT by their maximum likelihood estimators (MLEs), following the ideas of the generalized likelihood ratio

test (GLRT) [Van68]. It is known that the GLRT does not generally preserve the optimal properties of the

LRT. However, the GLRT approach has several advantages for common linear models: 1) the test is often easy

to derive, 2) the distribution of the GLRT statistics can often be determined analytically [Kay98], 3) the GLRT

is known to be the uniformly most powerful (UMP) test for some classes of problems in the asymptotic region

[SF94], 4) the distribution of the GLRT can be determined analytically for a class of linear observation models

with a known observation matrix and it is known to perform as well as the optimal LRT in this particular case

[Kay98]. It is important to mention that there exist different MLEs, depending on the considered observation

model. In particular, if the vector of observations is formed from a linear superposition of several signal sources

to Gaussian noisy data, one has to make the difference between the conditional model (CM), which assumes the

sources amplitude to be deterministic, and the unconditional model (UM), which assumes the sources amplitude

to be Gaussian. These two different models will generally lead to different detection performance, as explained

in [SN90b]. There is a wide literature about the GLRT [Kay98; Van68; Sch91; Lev08], its condition of optimality

[SF94; ZZM92], its distribution in some specific cases especially in the large sample regime [Kay98][MJ15][Wil38],

its behavior for the CM and UM [SN90b; SN90a].

It is important to keep in mind that in nonlinear estimation problems three distinct regions of operation

can be observed (Figure 3.1), namely the a priori region, the threshold region and the asymptotic region

[VB07][Ath05][RB74][Ric05][Ren+06]. The a priori region is the performance region where the observations

provide little information and the Mean Square Error (MSE) of the MLE is close to that obtained from the

prior knowledge about the problem (low number of independent observations and/or low Signal-to-Noise-Ratio

(SNR)). The threshold region is a transition region where the MSE of the MLE deteriorates rapidly with respect

to the Cramér-Rao bound (CRB). The asymptotic region is the performance region where the MSE of the MLE

is small, generally close to the CRB, where the consistency of the MLE can be invoked. The asymptotic region

of the MLE generally corresponds to multiple cases: large sample size and/or high-SNR.

In Section 3.5 a GLRT detector is investigated (for a very general form of the conditional signal model) and a

special case of this formulation is applied to LCO detection. However, before presenting the general formulation,

it is interesting to introduce in Section 3.4 some very simple and well known detectors that can be used for

LCO detection (that are based on the simple model presented in the next Section 3.3).
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Figure 3.1.: Regions of operations of a nonlinear estimation problem [VB07].

3.3. LCO detection

In order to define a suitable model to derive the detector it is important to note that

• The LCO appears as a pure sinusoidal signal at a given frequency (depending on the system dynamic)

that can be measured on the flap, twist and control surface rotation of the wing section.

• In the Airbus EFCS architecture we have two signals representing the movement of the control surface:

the actuator rod position (measured via a LVDT sensor) and the control surface rotation (measured via

a RVDT sensor). Between these signals, the more pertinent for LCO detection is the RVDT.

• The LCO is generally characterized by frequencies higher than the pilot and the control law bandwidth.

However, this has to be verified case by case. Indeed, if a periodic signal appears at very low frequency

on the control surface, the control law may react to compensate the oscillation.

• The amplitude of the LCO is generally much smaller than the control surface maximum rotation amplitude.

• The limitation of the computational burden of the detector is a priority in order to be compliant with an

on-board real-time application.

Considering that the LCO is an additive oscillation on the control surface position measure, we can model the

detection problem as in Figure 3.2 where x represents the signal from the flight control computers sent to the

actuator, P the actuator dynamic, y the control surface rotation measure, w a white Gaussian noise of known

variance1 and s the anomaly that we want to detect: the LCO. We assume that s does not depend on the input
1the noise variance can be derived from flight data
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signal x.


x

+ +

y
0

w

y

: s = 00

: s ≠ 01

Figure 3.2.: Model of the detection problem.

If there is no signal from the control law (x = 0), the detection problem can be modeled using a binary

hypothesis test of the type

x = 0→


H0 : y(n) = w(n), w(n) ∼ N (0, σ2)

H1 : y(n) = s(n) + w(n), s(n) = A cos(2πfn+ φ)
(3.1)

where n = 0, 1, ..., N − 1. The model in (3.1) is the well known problem of periodic signal detection in Gaussian

noise. However, if x 6= 0, the detection problem is quite different, because we have to detect a periodic signal

contaminated by another signal and Gaussian noise. In this case, the binary hypothesis test can be written

x 6= 0→


H0 : y(n) = λx(n− p) + w(n) = y0(n) + w(n), w(n) ∼ N (0, σ2)

H1 : y(n) = λx(n− p) + s(n) + w(n) = y0(n) + s(n) + w(n), s(n) = Acos(2πfn+ φ)
(3.2)

where the system P in Figure 3.2 has been modeled as a first order system that introduces only a time delay

p and an attenuation/expansion λ on the input signal x. On the other hand, the anomaly is modeled as a

simple sinusoidal signal with amplitude A, phase φ and frequency f . Concerning the system model it can be

observed that a very rough approximation of P is considered in order to limit the number of unknown parameters

(computational burden).

3.4. Matched filter and GLRT special cases

Starting from the previously presented model 3.2 and as a function of our a priori knowledge on the signal y0

and s, several very simple detectors can be defined. These detectors are very interesting for their performance,

simplicity and low computational cost. For these reasons, they are relevant for the practical application we are

considering. These well known results are derived from [Kay98]. For the general formulation of the GLRT and
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the scientific contribution of this chapter, the reader may skip this section and go directly to Section 3.5.

y0 known and s known

If the signal y0 is known, we can always define a signal y′ = y− y0 and then solve directly the simple problem

(3.1). In this section we will use indistinctly y′ and y.

Starting from the two hypotheses H0 and H1 in (3.1), if the signal s is completely known, the likelihood ratio

test (LRT)

L(y) = p(y|H1)
p(y|H0)

H0
≶
H1

γ (3.3)

leads directly to the following sufficient statistic [Kay98]

T (y) =
N−1∑
n=0

y(n)s(n)
H0
≶
H1

σ2 ln(γ) + 1
2

N−1∑
n=0

s2(n) = γ′ (3.4)

It is the well-known matched filter (see Figure 3.3).
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Figure 3.3.: Matched filter for the case of a known signal y0 = λx(n− p).

This detector is characterized by the following false alarm probability PFA and detection probability PD

PFA = Pr[T > γ′|H0] = Q(γ′/
√
σ2ε) (3.5)

PD = Pr[T > γ′|H1] = Q((γ′ − ε)/
√
σ2ε) (3.6)

where Q is the Q-function defined as

Q(x) =
∫ ∞
x

1√
2π
e−

1
2 t

2
dt (3.7)

and ε is the mean of the test statistic under the hypothesis H1, i.e.,

ε = E(T |H1) = E

(
N−1∑
n=0

(s(n) + w(n))s(n)
)

=
N−1∑
n=0

s2(n) (3.8)
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y0 known and s partially known

A unknown

In this case the sufficient statistic becomes [Kay98]:

T (y) =
(
N−1∑
n=0

y(n) cos(2πfn+ φ)
)2
H0
≶
H1

2σ2 ln(γ)
N−1∑
n=0

s2(n) = γ′ (3.9)

The performance of the detector in Figure 3.4 is

PFA = Qχ2
1
(γ′) (3.10)

PD = Qχ2
1(ε/σ2)(γ′) (3.11)

with the assumption ε/σ2 ≈ NA2/2σ2 and where Q is the complementary cumulative distribution function of

a chi-squared random variable [Kay98].
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Figure 3.4.: GLRT for an unknown amplitude A.

A, φ unknown

In this case the GLRT is a quadrature matched filter on y (see Figure 3.5), which is equivalent to computing

the periodogram I(f) at the known frequency f (see Figure 3.6). In other terms we decide H1 if

I(f) > σ2 ln(γ) = γ′ (3.12)

≶
0

1
∑ ()2

y(n) T(y)

cos(2πf n + ϕ)

≶
0

1
∑

y(n) T(y)

s(n)

≶
0

1

∑ (
1

N
)2

y(n)
I(f )

cos(2πf n)

∑ (
1

N
)2

sin(2πf n)

+

≶
0

1
∑ |

1

N
|2

y(n) I(f )

exp(−j2πf n)

≶
0

1
∑ |

1

N
|2

y(n) I(f )

exp(−j2πf n)

max
f

≶
0

1
∑

y(n) − (n)ŷ T(y)
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Figure 3.5.: GLRT for A, φ unknown: the quadrature matched filter.
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Figure 3.6.: GLRT for A, φ unknown: Periodogram.

This detector is characterized by the following detection performances

PFA = e−
γ′

σ2 (3.13)

PD = Q
χ2

2(NA2
2σ2 )(2 ln( 1

PFA
)) (3.14)

A, φ, f unknown

In this case, the GLRT searches for the peaks in the periodogram of y, peaks that correspond to the MLE of

the frequency f̂ (see Figure 3.7). In other terms we decide H1 if

max
f

I(f) > σ2 ln(γ) = γ′ (3.15)
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Figure 3.7.: GLRT for A, φ, f unknown: peaks of the periodogram.

In analogy with the previous one, this detector is characterized by the following detection performances

[Kay98]

PFA ≈ Le−
γ′

σ2 (3.16)

PD = Q
χ2

2(NA2
2σ2 )(2 ln(N/2− 1

PFA
)) (3.17)

where L is the number of tested frequency bins.

y0 unknown and s known

If there are some unknown parameters among λ, p and s, as already done for case (3.1), a GLR test can be

used.
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λ, p unknown and s known

The test can be written as

p(y, θ̂1|H1)
p(y, θ̂0|H0)

= e−
1

2σ2

∑N−1
n=0

(y(n)−λ̂1x(n−p̂1)−s(n))2

e−
1

2σ2

∑N−1
n=0

(y(n)−λ̂0x(n−p̂0))2
> γ (3.18)

where

θ̂1 = (λ̂1, p̂1) = arg max
θ

(p(y, θ1|H1))

θ̂0 = (λ̂0, p̂0) = arg max
θ

(p(y, θ0|H0))

it can be shown that θ̂0 and θ̂1 can be computed as

λ̂0 =
∑N−1
n=0 y (n)x (n− p̂0)∑N−1
n=0 x (n− p̂0)2 , p̂0 = arg max

p0


(∑N−1

n=0 y (n)x (n− p0)
)2

∑N−1
n=0 x (n− p0)2



λ̂1 =
∑N−1
n=0 (y (n)− s(n))x (n− p̂1)∑N−1

n=0 x (n− p̂1)2 , p̂1 = arg max
p1


(∑N−1

n=0 (y (n)− s(n))x (n− p1)
)2

∑N−1
n=0 x (n− p1)2


It is interesting to observe that if y(n) � s(n), we can consider that y(n)− s(n) ≈ y(n) and thus p̂1 = p̂0 = p̂

and λ̂1 = λ̂0 = λ̂. In this case, the estimation of λ and p and the detection of s can be decoupled. The LCO

detector in (3.18) is simply the combination of an estimator of λ and p and a matched filter on the residuals

between y and y0 (see Figure 3.8).
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Figure 3.8.: Detector for λ and p unknown: estimation of λ and p + matched filter (between s and the residuals
y − y0)

y0 unknown and s partially unknown

If (λ,p) and some parameters of s are unknown, the detection problem is more difficult. This is the case of

interest for real applications. Different approaches have been considered for its resolution.
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Decoupled approach

If we consider that the estimation of λ and p and the detection of s can be decoupled, an approach similar to

CLEAN algorithm [TS88] can be used to tackle the problem2. In figure 3.9 we can see an example of detector

for λ, p, A and φ unknown.
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Figure 3.9.: Example of detector for λ, p, A and φ unknown: estimation of λ and p + periodogram of the
residuals y − y0

Joint Detection and Estimation

If we consider that the estimation of λ and p and the detection of s cannot be decoupled, a joint estimation and

detection problem has to be solved. In the next section we will see more in details how one can approach this

problem.

3.5. Deterministic signal detection in interference

Detecting a deterministic signal corrupted by an additive deterministic interference and additive noise of known

power can be written as the following binary hypothesis test


H0 : y = i+w

H1 : y = i+ s+w
(3.19)

where w is a white Gaussian noise (whose variance σ2 is known), s is the deterministic signal that we want to

detect and i is the interference. Considering the conditional observation model for (3.19), we obtain



H0 : y = H0(α0)β0 +w

H1 : y = [H0(α0)Hs(αs)]︸ ︷︷ ︸
H1(α1)

β0

βs


︸ ︷︷ ︸
β1

+w (3.20)

2CLEAN algorithm assumes that there are weak signal sources in the presence of strong signal sources that are well estimated
(hence sufficiently “orthogonal”). In this case, we can subtract the well estimated sources from the mixture in order to better
estimate the weak sources. This avoids doing a multi-source MLE. In our case, we should assume that ‖s‖2 << λ2 ‖x‖2.
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where y ∈ RN is the vector of observations , w = [w(1), ..., w(N)]T ∼ N (0, σ2IN ) is a noise vector of Gaussian

distribution with known variance σ2 and H0(α0) ∈ RN×m0 , H1(α1) ∈ RN×m1 are two nested observation

matrices that depend on the unknown parameter vectors α0 ∈ Rn0 and α1 ∈ Rn1 . The interference and signal

terms have been expressed as i = H0(α0)β0 and s = Hs(αs)βs. By definition of “conditional observation

model” [SN90b], we mean that all the unknown parameter vectors β0 ∈ Rm0 , α0 ∈ Rn0 , β1 ∈ Rm1 and α1 ∈ Rn1

are deterministic. Note that the detection problem under consideration (3.20) is more general than the classical

linear model studied in [Kay98, Theorem 7.1], where the same known observation matrix is considered for

the two hypotheses and where the unknown parameter vector β1 is related to β0. Thus, the test statistics of

the detection problem (3.20) will differ from the one derived in [Kay98]. We will see how the detection problem

(3.20) can be used for LCO detection in Section 3.7 and 3.8. The GLRT requires to estimate the unknown

parameter vectors α and β under both hypotheses (i.e., for i = 0, 1) using the maximum likelihood principle.

Considering the hypothesis of additive white Gaussian noise of known variance3 σ2, i.e. w(n) ∼ N (0, σ2), we

have

p(y;α,β) = 1
(2πσ2)N2

exp
(
− 1

2σ2 ‖y −H(α)β‖2
)
.

The GLRT for the detection problem (3.20) can be written as

p(y; α̂1, β̂1|H1)
p(y; α̂0, β̂0|H0)

=
exp

(
− 1

2σ2

∥∥∥y −H1(α̂1)β̂1

∥∥∥2
)

exp
(
− 1

2σ2

∥∥∥y −H0(α̂0)β̂0

∥∥∥2
) H0

≶
H1

γ′ (3.21)

where γ′ is a constant threshold. The estimation problem, considering a general notation that is true for both

hypotheses H0 and H1, reduces to the minimization of the following least squares (LS) criterion [Kay93]

J(α,β) = ‖y −H(α)β‖2 = (y −H(α)β)T (y −H(α)β).

Introducing the orthogonal projection matrix ΠH(α) = H(α)(H(α)TH(α))−1H(α)T , that projects a vector

onto the columns of H(α), and Π⊥H(α) = I −ΠH(α), that projects a vector onto the space orthogonal to the

columns of H(α), the LS criterion can be rewritten as

J(α,β) = ‖y −H(α)β‖2

=
∥∥ΠH(α)(y −H(α)β)

∥∥2 +
∥∥∥Π⊥H(α)(y −H(α)β)

∥∥∥2

=
∥∥∥H(α)[(HT (α)H(α))−1HT (α)y − β]

∥∥∥2
+
∥∥∥Π⊥H(α)y

∥∥∥2
.

3This study has been motivated by a real aeronautical application where the noise variance can be determined using signals that
are not affected by any anomaly.
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The value of β that minimizes J(α,β) for a given value of α is thus classically obtained as

β = (HT (α)H(α))−1HT (α)y (3.22)

that corresponds to the classical unconstrained LS estimator of β for a known vector α. The MLE of α is then

obtained as the solution of the following optimization problem

α̂ = argmin
α

∥∥∥Π⊥H(α)y
∥∥∥2

= argmax
α

∥∥ΠH(α)y
∥∥2 (3.23)

where we have used the properties of projection matrices4. Of course, there is no analytical solution for the

MLE of α in the general case. However, this MLE can be obtained numerically using for example a grid search

approach (in general via a multivariate optimization problem). Once the MLE of α (denoted as α̂) has been

determined, β can be estimated as

β̂ = (HT (α̂)H(α̂))−1HT (α̂)y. (3.24)

From the expressions of the MLEs (3.23) and (3.24), the GLRT sufficient statistic T can be written as

T = 1
2σ2

(∥∥∥y −H0(α̂0)β̂0

∥∥∥2
−
∥∥∥y −H1(α̂1)β̂1

∥∥∥2
)

(3.25)

= 1
2σ2

(∥∥∥Π⊥H0(α̂0)y
∥∥∥2
−
∥∥∥Π⊥H1(α̂1)y

∥∥∥2
)

(3.26)

or considering that Π⊥H(α) = I −ΠH(α), we obtain the following equivalent detector

T = 1
2σ2

(∥∥ΠH1(α̂1)y
∥∥2 −

∥∥ΠH0(α̂0)y
∥∥2
) H0

≶
H1

γ′′ (3.27)

or

T ′ = 1
σ2

(∥∥ΠH1(α̂1)y
∥∥2 −

∥∥ΠH0(α̂0)y
∥∥2
) H0

≶
H1

γ

where γ′′ = log(γ′) and γ = 2γ′′. It is important to note that the numerator of the test statistics in (3.21)

is computed by assuming the hypothesis H1 is true, whether the denominator is computed by assuming the

hypothesis H0 is true. Even if the two hypotheses are never true simultaneously, the principle of

the GLRT is to compare the ratio of the estimated densities of the observations under both

hypotheses. Unfortunately, the detection performance of the GLRT (3.27) is difficult to be studied in the

4Π is symmetric (ΠT = Π) and idempotent (Π2 = Π)
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general case. For this reason, we have decided to investigate another test, that we will call “approximate

GLRT”, for which the performance can be computed exactly and that, under some particular assumptions,

behaves almost like the GLRT (3.21) under both hypotheses H0 and H1.

3.6. Approximate GLRT

The GLRT can be rewritten as

TGLRT =
supα1 exp

(
− 1

2σ2

∥∥∥Π⊥H1(α1)y
∥∥∥2
)

supα0 exp
(
− 1

2σ2

∥∥∥Π⊥H0(α0)y
∥∥∥2
) H0

≶
H1

γ (3.28)

or equivalently

TGLRT =
exp

(
− 1

2σ2

∥∥∥Π⊥
H1(α̂1)y

∥∥∥2
)

exp
(
− 1

2σ2

∥∥∥Π⊥
H0(α̂0)y

∥∥∥2
) H0

≶
H1

γ. (3.29)

Under each hypothesis (H0 or H1), one can invokes the consistency and asymptotic efficiency of the conditional

MLE for high signal to noise ratio (SNR) [Ren+06] and using a Taylor expansion around the true value of α,

it can be shown (see Appendix A.1) that one can consider the following approximation (considering a general

notation for the two hypotheses)

∥∥∥Π⊥
H(α+d̂α)

y
∥∥∥2
≈
∥∥∥Π⊥DΠ⊥H(α)y

∥∥∥2
+
∥∥∥ΠDΠ⊥H(α)y −Dd̂α

∥∥∥2
(3.30)

where d̂α = α̂−α and D = Π⊥H(α)
∂H(α)β
∂α . (3.30) leads to the following expression of the approximate GLRT

T̂GLRT =
exp

(
− 1

2σ2

∥∥∥Π⊥D1
Π⊥H1(α1)y

∥∥∥2
− 1

2σ2

∥∥∥ΠD1Π⊥H1(α1)y −D1d̂α1

∥∥∥2
)

exp
(
− 1

2σ2

∥∥∥Π⊥D0
Π⊥H0(α0)y

∥∥∥2
− 1

2σ2

∥∥∥ΠD0Π⊥H0(α0)y −D0d̂α0

∥∥∥2
) H0

≶
H1

γ.

Since by hypothesis the MLE of α satisfies

ΠDΠ⊥H(α)y = Dd̂α⇔ d̂α = (DTD)−1DTΠ⊥H(α)y,
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hence

T̂GLRT =
exp

(
− 1

2σ2

∥∥∥Π⊥D1
Π⊥H1(α1)y

∥∥∥2
)

exp
(
− 1

2σ2

∥∥∥Π⊥D0
Π⊥H0(α0)y

∥∥∥2
) H0

≶
H1

γ (3.31)

or equivalently

T̂GLRT =
exp

(
− 1

2σ2y
TL⊥1 y

)
exp

(
− 1

2σ2yTL
⊥
0 y
) H0

≶
H1

γ′ (3.32)

where

L⊥0 = Π⊥H0(α0)Π⊥D0
Π⊥H0(α0), L

⊥
1 = Π⊥H1(α1)Π⊥D1

Π⊥H1(α1).

The approximate detector (3.32) cannot be implemented (contrary to the GLRT (3.28)) as it depends on α.

However, its performance can be computed exactly as detailed in Section 3.7.

In real applications (LCO detection in the Airbus EFCS) we generally have some a priori information about

the parameters α. Thus, we can evaluate the MLE (3.23) using a grid search approach only on a subset of

values belonging to an interval ]αmin,αmax[ resulting from this prior information. Defining a relatively small

grid around a first guess value α0 (that is a priori known based on the considered control surface) we are able

to implement the GLRT defined in (3.28). Under this particular assumption, we have empirically verified that

the approximate GLRT behaves almost like the GLRT under both the hypotheses H0 and H1. Figure 3.10

compares the empirical distributions of the GLRT and the approximate GLRT for a specific test case (described

in Section 3.8).
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Figure 3.10.: Comparison of the empirical distributions of the GLRT (TGLRT ) and the approximate GLRT (Ta)
under the hypotheses H0 and H1 for the test case described in Section 3.8.

We can observe that the distributions of the test statistics under both hypotheses are very similar as the

corresponding histograms are superimposed. Thus, the exact asymptotic performance that can be derived for

(3.32) (see Section 3.7) can be used as a reference for (3.28).

3.7. Detection performance

β and α unknown

In the general case where the parameter vectors α0 and α1 are unknown, it is not possible to obtain a simple

analytic expression of the GLRT performance for all regions of operations of the MLEs. However, a reference

can be derived in the asymptotic region, where we can write the approximate GLRT sufficient statistic as

1
σ2y

T
[
Π⊥H0(α0)Π⊥D0

Π⊥H0(α0) −Π⊥H1(α1)Π⊥D1
Π⊥H1(α1)

]
y

= 1
σ2y

TKay

where Ka = L⊥0 − L
⊥
1 . The particular relationship between the observation matrices (nested model) leads to

a matrix Ka which is a projection (see Appendix A.3). Moreover, since Ka is symmetric, Ka is the matrix of

an orthogonal projection whose eigenvalues are {0, 1}. As a consequence, the distribution of T ′ is a chi-square
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distribution [Mui09, Theorem 1.4.5] and the detection performance can be expressed as 5

PFA = P (T ′ > γ|H0) = P (χ2
r > γ) = Qχ2

r
(γ)

PD = P (T ′ > γ|H1) = P (χ2
r(k) > γ) = Qχ2

r(k)(γ) (3.33)

where the degree of freedom of the chi-square distribution is

ra = rank(Ka) (3.34)

and its non-centrality parameter is

ka = βT1H
T
1 (α1)L⊥0 H1(α1)β1

σ2 . (3.35)

The functions Qχ2
r
and Qχ2

r(k) are the complementary cumulative distribution functions of central and non

central chi-square distributions, whose closed-form expressions can be found for example in [Kay98, Chap. 2].

β unknown and α known

If α is known, an exact expression of the GLRT performance is obtained for all regions of operations of the

MLE6. Indeed, if β is unknown and α is known, we can express the sufficient statistic as

T ′ = 1
σ2

(∥∥∥Π⊥H0(α0)y
∥∥∥2
−
∥∥∥Π⊥H1(α1)y

∥∥∥2
)

or equivalently

T ′ = 1
σ2y

T
[
Π⊥H0(α0) −Π⊥H1(α1)

]
y = 1

σ2y
TKy.

Since it is easy to prove that

K = Π⊥H0(α0) −Π⊥H1(α1) = ΠΠ⊥
H0
Hs

5A quadratic form of the type xT Πx, where x ∼ N (µ,Σ) and Π is a symmetric and idempotent matrix, is χ2
k(δ), where k = rank(Π)

and δ = µT Πµ.
6i.e., the a priori region, the threshold region and the asymptotic region [Ath05].
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is symmetric and idempotent (see Appendix A.3), the detection performance can be computed as in (3.33)

where r is the rank of K

r = rank(K) = rank(H1)− rank(H0) = rank(Hs) (3.36)

and the non centrality parameter is

k =
βT1H

T
1 (α1)

[
Π⊥H0(α0) −Π⊥H1(α1)

]
H1(α1)β1

σ2

=
βT1H

T
1 (α1)Π⊥H0(α0)H1(α1)β1

σ2 . (3.37)

Section 3.8 studies the interesting problem of detecting a deterministic sinusoidal signal embedded in a deter-

ministic interference (for a known noise level), which can be formulated as (3.20).

Remark

It is interesting to observe that for this particular case, the same results in terms of detection performance can

be obtained using Theorem 7.1 of [Kay98]. Indeed, following the notations in [Kay98], one can simply choose

H = [H0(α0);Hs(αs)],θ = [βT0 ;βTs ],A = [0ms×m0 ; Ims ], b = 0 and after some calculations one can obtain

Tσ2 = β̂
T

1A
T (A(HTH)−1AT )−1Aβ̂1 = yTΠΠ⊥

H0
Hs

y

= yTΠ
H1

y− yTΠ
H0

y.

Unfortunately the case of an unknown vector α is not covered by the theorem.

3.8. Sinusoidal signal detection in deterministic interference

This section considers the following problem


H0 : y(nTs) = λx(nTs − p) + w(nTs)

H1 : y(nTs) = λx(nTs − p) + l1 cos(2πfnTs) + l2 sin(2πfnTs) + w(nTs)
(3.38)

where n = 0, 1, ..., N − 1 and Ts is the sampling time. This problem is equivalent to (3.20) with the following

unknown parameter vectors α0 = [p] ∈ R, β0 = [λ] ∈ R, α1 = [p, f ]T ∈ R2, β1 = [λ, l1, l2]T ∈ R3 and the
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observation matrices

H0(α0) = [x(p)] =


x(−p)

x(Ts − p)
...

x((N − 1)Ts − p)



H1(α1) = [x(p), c(f), s(f)] =


x(−p) 1 0

x(Ts − p) cos(2πfTs) sin(2πfTs)
...

...
...

x((N − 1)Ts − p) cos(2πf(N − 1)Ts) sin(2πf(N − 1)Ts).


The signal to detect s is a classical sinusoidal signal of the type A cos(2πfnTs + φ) that can be decomposed as

s(nTs) = l1 cos(2πfnTs) + l2 sin(2πfnTs) (3.39)

allowing the non-linear dependency with respect to φ to be removed. In this case A =
√
l21 + l22 and φ =

arctan (−l2l1 ). On the other hand, the interference i is a function of the known signal x and of the unknown

parameters λ and p. It is interesting to observe that this very simple model can be used for the detection of

spurious sinusoidal signals possibly affecting the output of a system P7, as illustrated in Fig. 3.2.

3.8.1. Maximum Likelihood Estimators and Test Statistic

The MLEs and the test statistic for this particular case directly result from (3.24), (3.23) and (3.27), leading

to (3.40),(3.41),(3.42),(3.43) and (3.44),

α̂0 = p̂0 = argmax
p

(yTH0(α0)(HT
0 (α0)H0(α0))−1HT

0 (α0)y) = argmax
p

(
(xT (p)y)2

xT (p)x(p)

)
(3.40)

β̂0 = λ̂0 = (HT
0 (α̂0)H0(α̂0))−1HT

0 (α̂0)y = xT (p̂0)y
xT (p̂0)x(p̂0) (3.41)

7The system P can be approximated by a delay p∈ R and an attenuation/amplification effect λ∈ R applied to a known signal x
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α̂1 =

p̂1

f̂

 = argmax
p,f

(yTH1(α1)(HT
1 (α1)H1(α1))−1HT

1 (α1)y)

=
N→∞

argmax
p,f

 (xT (p)y)2 + 2(xT (p)x(p))Iy(f)− 4(xT (p)y)Re[Ixy(f)]− 4(Im[Ixy(f)])2

(xT (p)x(p))− 2Ix(f)

 (3.42)

β̂1 =


λ̂1

l̂1

l̂2

 = (HT
1 (α̂1)H1(α̂1))−1HT

1 (α̂1)y

=



xT (p̂1)y−2Re[Ixy(f̂)]
xT (p̂1)x(p̂1)−2Ix(f̂)

(
2
N (xT (p̂1)x(p̂1))cT (f̂)(y − r′(p̂1)x(p̂1)) + 4

N (xT (p̂1)s(f̂))Im[Ixy(f̂)]
)

xT (p̂1)x(p̂1)−2Ix(f̂)

(
2
N (xT (p̂1)x(p̂1))sT (f̂)(y − r′(p̂1)x(p̂1))− 4

N (xT (p̂1)c(f̂))Im[Ixy(f̂)]
)

xT (p̂1)x(p̂1)−2Ix(f̂)


(3.43)

T = 1
2σ2

(∥∥ΠH1(α̂1)y
∥∥2 −

∥∥ΠH0(α̂0)y
∥∥2
)

= 1
2σ2

 (xT (p̂1)y)2 + 2(xT (p̂1)x(p̂1))Iy(f̂)− 4(xT (p̂1)y)Re[Ixy(f̂)]− 4(Im[Ixy(f̂)])2

(xT (p̂1)x(p̂1))− 2Ix(f̂)
− (xT (p̂0)y)2

xT (p̂0)x(p̂0)


(3.44)

where

r′(p) = xT (p)y
xT (p)x(p)

and where the terms Ix(f) and Iy(f) are the periodograms of x and y

Ix(f) = 1
N

[(cT (f)x)2 + (sT (f)x)2]

Iy(f) = 1
N

[(cT (f)y)2 + (sT (f)y)2].
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Note that Re[Ixy(f)] and Im[Ixy(f)] are the real and imaginary parts of the cross-periodogram Ixy(f) (also

referred to as co-periodogram and quadrature periodogram)

Ixy(f) = 1
N

[(cT (f)x− isT (f)x)(cT (f)y + isT (f)y)]

Re[Ixy(f)] = 1
N

[(cT (f)x)(cT (f)y) + (sT (f)x)(sT (f)y)]

Im[Ixy(f)] = 1
N

[(cT (f)x)(sT (f)y)− (sT (f)x)(cT (f)y)].

Note also that a large sample approximation has been considered for the derivation of β̂1 and α̂1. In this case,

when f is not too close to 0 or 1/2 (otherwise the parameters are not identifiable), the following approximations

can be made cT c/N ≈ 1/2 , sTs/N ≈ 1/2 and cTs/N ≈ 0.

3.8.2. Theoretical performance

The performance of the corresponding approximate GLRT can be computed using (3.33), where the chi-square

non-centrality parameter can be obtained from (3.37) and (3.35)

k =
βT1H

T
1 (α1)Π⊥H0(α0)H1(α1)β1

σ2 , α known

ka = βT1H
T
1 (α1)L⊥0 H1(α1)β1

σ2 , α unknown

and the chi-square degree of freedom can be obtained from (3.36) and (3.34)

r = rank(Hs) = 2, α known

ra = rank(Ka) = 3, α unknown

Note that, for a known vector α, k reduces to

k = NA2

2σ2 −
(l1(cT (f)x(p)) + l2(sT (f)x(p)))

x(p)Tx(p)σ2

that can be considered as a signal to noise ratio

SNR1 = NA2

2σ2 .

Interpretation and comments

It is interesting to observe that if the signal x does not contain any signal component at the frequency f̂

(Re[Ix(f̂)] = 0 and Im[Ix(f̂)] = 0), the test statistic reduces to the simple periodogram of y (indeed, we would
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have Ix(f̂) = 0, p̂0 = p̂1, Re[Ixy(f̂)] = 0 and Im[Ixy(f̂)] = 0). In this case, the signal x does not bring any

useful information for the detection of s, and the power spectrum of y is all we need to detect the presence of

the signal s.

If we cannot guarantee the absence of signal power at the frequency f̂ in x, but we can consider that the power

of the anomaly is small compared to the energy and covariance terms xT (p̂)x(p̂) and xT (p̂)y, we can assume

that p̂0 ≈ p̂1 ≈ p̂, (Im[Ixy(f̂)])2 ≈ 0 being a second order term in Re[Ix(f̂)] and Im[Ix(f̂)]. The sufficient

statistic of our detection problem can then be written as

T = 1
σ2

(
Iy(f̂)− 2r′(p̂)Re[Ixy(f̂)]

)

whose dominant term is still the periodogram of y, but corrected by an additional term depending on the

correlation between x and y (in the time and frequency domains).

It is also important to mention that when the hypothesis p̂0 ≈ p̂1 ≈ p̂ is valid, the MLEs of p and f can be

obtained via two 1-dimensional optimization problems8. Moreover, the estimation of the system dynamic P

and the detection of the anomaly s can be decoupled9.

Closed form expressions for the MLEs and the test statistic have been presented as a complement to the matrix

form in Section 3.8.1. Indeed, this simple expression for our detector is very appealing if we are looking for a

recursive online implementation of the detector. Moreover, the analytic expression of the detector performance,

as derived in Section 3.8.2, is a clear advantage in the threshold tuning process for a constant false alarm rate

detector. We mention here that only one observation window has been considered in our analysis. However,

our results can be easily extended to non-overlapping sliding windows10.

3.8.3. Synthetic data

The theoretical performance determined in Section 3.8 has been validated numerically by means of Monte Carlo

simulations using synthetic data. More precisely, x and w were generated according to the model discussed in

Section 3.8, with a white Gaussian input signal x. Figs. 3.11 and 3.12 compare the theoretical performance

of the approximate GLRT with the empirical performance of the GLRT for unknown vectors β and α. The

estimation of the unknown parameters α is carried out considering a grid search optimization, varying the

parameters (p, f) in a priori known ranges [pa, pb] and [fa, fb]. Fig. 3.11 shows PFA as a function of the

threshold γ for a particular grid associated with (p, f), where (∆p = 1e−5s,∆f = 1e−4Hz). For an unknown

vector α, we have shown that the asymptotic performance presented in Section 3.8.2 is valid for a specific value
8If we do not have any hypothesis on p̂0 and p̂1 we can still reduce the 2-dimensional optimization problem with respect to p, f
by using the so-called Alternating Projection (AP) approach as in [ZW88].

9This approach can be very interesting to reduce the computational cost of the algorithm.
10For M non-overlapping windows (white noise) one can simply consider PFA = ΠM

i=1P
i
F A, where PFA << 1. The overlapping

windows case (colored noise) is more difficult to handle. However, the case of non-overlapping windows can be considered as a
reference in terms of detection performance.
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of d̂α (see (3.31)).
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Figure 3.11.: Empirical (NMC = 104 realizations, ∆p = 1e−5s,∆f = 1e−4Hz) and theoretical PFA as a function
of the threshold γ. SNR1 = SNR2 = 20dB.
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Figure 3.12.: Empirical (NMC = 105 realizations, ∆p = 1e−5s,∆f = 1e−3Hz) and theoretical ROC curves.
SNR1 = SNR2 = 13dB.

Finally, the empirical results computed with Monte Carlo runs confirm that the theoretical performance of

the approximate GLRT can be used as a reference for the GLRT for the considered test case. Note that the
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theoretical curve corresponding to known values of α is also shown in Fig. 3.12 for comparison. Indeed, it is

interesting to observe the performance loss induced by the lack of knowledge about α.

3.9. Conclusions and perspectives

This chapter investigate LCO detection and diagnostic via GLR tests proposing several solutions. The GLRT

is derived for the conditional observation model in the general case of parameter dependent observation ma-

trices. The GLRT performance cannot be analytically computed. Thus, we have proposed and analyzed the

performance of a test called approximate GLRT, for which the performance can be computed exactly in the

hign-SNR region. Indeed, the approximate GLRT can be used as a reference for the GLRT. The specific case

of deterministic signal detection in deterministic interference has been considered with a specific attention.

The main scientific contributions of this work are the considered general form of the conditional observation

model and the proposed procedure to derive the approximate GLRT performance. More precisely, a closed

form expression of the approximate GLRT performance is obtained in the asymptotic region by using a Taylor

expansion of the test statistic. Indeed, while there exist some interesting results when the asymptotic region

is attained through the large sample size hypothesis [MJ15][Wil38], these results cannot be applied in the

high-SNR regime for small sample size. The results obtained in this high-SNR regime were compared to those

obtained with known observation matrices. We showed that the approximate GLRT test statistic for the condi-

tional observation model can always be expressed as a linear combination of variables distributed according to

chi-square distributions, depending on the existing relationship between the observation matrices. Monte Carlo

simulations have been considered to compare the empirical GLRT performance and the theoretical approximate

GLRT performance (signal detection in deterministic interference case). The results confirm that the approxi-

mate GLRT theoretical performances in the asymptotic region are a good reference also for the GLRT.

Multiple research paths can be identified starting from the contribution presented in this chapter.

• this study considered a particular interference model related to our application and a known noise variance.

It would be interesting to extend our derivations to different interference models11 with a possible unknown

noise variance.

• the considered composite hypothesis testing problem involves an estimation scheme intrinsically and hence

suffers from the curse of dimensionality and a zone of indifference. Indeed, with a high-dimensionality of

the unknown parameters, there is a zone in terms of the geometry of the unknown parameters where a

detector is rendered inconclusive. In order to face this type of issue, there exists different tools that can

be used to transform a problem with a large number of dimensions into an equivalent problem involving

11For example, the first order model considered for the actuator system is an approximation that is quite accurate only for low
input frequencies, for higher frequencies we should consider also the effect of higher order dynamics.
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only a small number of dimensions [Lev08]. This is another interesting research path for further studies.

• The Alternating Projection approach (see Appendix A.4) could be considered to simplify the test compu-

tation.

• Having some a priori information about our problem and willing to introduce these information in the

detector, a Bayesian approach can be considered for the derivation of the test statistic.

• for some application a different noise model can be more relevant. For example a Laplacian noise model

(w(n) ∼ L(0, b)) could be closer to reality [Lav+14].

• In case we have multiple observation of the signal y, the presented formulation can be easily modified

yt = H(α)βt + wt, 1 ≤ t ≤ T, wt i.i.d

J(α,β)T =
T∑
t=1
‖yt −H(α)βt‖

2
βt = (HT (α)H(α))−1HT (α)yt

α = argmax
α

T∑
t=1
‖ΠH(α)yt‖

2 = argmax
α
{tr(ΠH(α)R̂y)}, R̂y = 1

T

T∑
t=1

ytyTt

The direct application of this estimator is often computationally expensive. In the literature other methods

have been proposed to solve the problem in more efficient way, avoiding the full search procedure [Chu10].

• Other signals can be used for LCO detection or to complement the information provided by the signal x

and y. It is the case for some accelerometers information available in the Flight Control Computers (for

example the aircraft Nz and Ny measured in the air data inertial reference unit (ADIRU)). A data fusion

algorithm or a multiple hypothesis testing algorithm might be investigated for LCO detection.
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4.1. Introduction

The purpose of this chapter is to study a suitable method for mechanical free play estimation and as a con-

sequence for LCO diagnosis/prevention. The basic idea is to model the control surface servoloop as a block

model where the free play (that we want to measure) is an unknown that can be estimated from the system

input/output signals (as already mentioned in Section 2.5). The chosen approach is based on the theory of

Wiener system identification. Inspired by the work of Pawlak [PHW07] on nonparametric Wiener model
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identification, we have tried to adapt this solution to our technical problem defining some variants to the orig-

inal algorithm (hysteresis non linearity and multiple constraints) and we have compared this solution to the

maximum likelihood estimator and to some theoretical performance bounds.

4.2. Introduction to Kernel Regression

4.2.1. Kernel density estimation

The oldest and most widely used non parametric density estimator is the histogram. This is usually formed

by dividing the real line into equally sized intervals, often called bins. The histogram is then a step function

whose heights are the proportions of the sample contained in that bin divided by the width of the bin. Kernel

density estimates are closely related to histograms, but can be endowed with properties such as smoothness or

continuity by using a suitable kernel (see Figure 4.1).

Figure 4.1.: Comparison of the histogram and kernel density estimate on the same data [Wik19a].

The expression of the simplest univariate kernel density estimator is

f̂h(x) = 1
n

n∑
i=1

Kh(x− xi) = 1
nh

n∑
i=1

K
(x− xi

h

)
(4.1)

where K is the kernel (a non-negative function that integrates to one) and h > 0 is a smoothing parameter

called the bandwidth. The bandwidth of the kernel is a free parameter which exhibits a strong influence on the

resulting estimate. It can be used as a trade-off parameter allowing the bias and variance of the estimator to

be controlled.

4.2.2. Kernel regression

In this section the Kernel regression approach is presented as in [Wik19b], for more information the reader my

refer to [WJ94].
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In a non parametric regression, the conditional expectation of a variable Y relative to a variable X may be

written as

E(Y |X) = m(X) (4.2)

where m is an unknown function. Nadaraya and Watson, both in 1964, proposed to estimate m as a locally

weighted average, using a kernel as a weighting function. Indeed, considering that

E(Y |X = x) =
∫
yf(y|x)dy =

∫
y
f(x, y)
f(x) dy (4.3)

and using the following kernel density estimators

f̂(x, y) = 1
n

n∑
i=1

Kh (x− xi)Kh (y − yi) (4.4)

f̂(x) = 1
n

n∑
i=1

Kh (x− xi) (4.5)

one can obtain

Ê(Y |X = x) =
∫
y
∑n
i=1Kh (x− xi)Kh (y − yi)∑n

j=1Kh (x− xj)
dy

=
∑n
i=1Kh (x− xi)

∫
yKh (y − yi) dy∑n

j=1Kh (x− xj)

=
∑n
i=1Kh (x− xi) yi∑n
j=1Kh (x− xj)

(4.6)

which is the Nadaraya–Watson Kernel estimator. Note that the Gaussian kernel is one of the most widely used.

It can be expressed as

Kh(x) = exp
(
− x2

2h2

)
(4.7)

where h is a bandwidth parameter allowing the variance of the Gaussian to be adjusted.

4.2.3. Bandwidth selection

The bandwidth of the kernel is a free parameter which exhibits a strong influence on the resulting estimate.

The most common criterion used to select this parameter is the mean integrated squared error (MISE)

MISE(h) = E
[ ∫

(f̂h(x)− f(x))2dx

]
.
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A problem with the MISE expression is that it depends on the bandwidth in a complicated way. A way of

overcoming this problem is to derive a large sample approximation for the leading variance

MISE(h) = AMISE(h) + o((nh)−1 + h4) (4.8)

where the AMISE (Asymptotic MISE) is

AMISE(h) = (nh)−1R(K) + 1
4h

4µ2
2(K)R(f ′′). (4.9)

where the notation R(g) =
∫
g2(x)dx is considered. In the AMISE expression the integrated squared bias

is proportional to h4 and the integrated variance is proportional to (nh)−1. So, there exists a variance-bias

trade-off that defines the optimal bandwidth parameter h. Setting AMISE(h) to zero leads to

hAMISE =
[

R(K)
µ2

2(K)R(f ′′)n

]1/5
(4.10)

Unfortunately, a direct use of the previous expression is not possible since R(f ′′) is unknown. There exists

several ways for selecting a suitable value of h as plug-in methods and cross validation methods [JMS96][WJ94].

The plug-in methods are among the simpler and most adopted methods for bandwidth selection. To give an

example, if Gaussian basis functions are used and the univariate density to be estimated is Gaussian, the optimal

choice [Sil18] for h is

hS ≈ 1.06σ̂n−1/5 (4.11)

where σ̂ is the standard deviation of the samples. This value can be used as a reference for the selection of

h and is referred to as Silverman’s rule of thumb. While this rule is easy to compute, it should be used with

caution as it can yield inaccurate estimates when the density is not normal.

Kernel density estimator variants

Two variants of the aforementioned kernel density estimator are often considered to tackle specific issues

• Variable kernel density estimators [WJ94, Section 2.10.2]. When the bandwidth is not a constant pa-

rameter and depends on the location of either the estimate (balloon estimator) or the samples (pointwise

estimator), we obtain adaptive kernel density estimators also referred to as variable bandwidth estimators.

• Transformation kernel density estimator [WJ94, Section 2.10.3]. If the random sample X1, . . . , Xn has a

density f that is difficult to estimate, a possibility is to apply a transformation to the data to obtain a

56



Chapter 4. Freeplay estimation via Wiener model identification

new sample Y1, . . . , Yn having a density g that can be more easily estimated using the basic kernel density

estimator. One would then back-transform the estimate of g to obtain the estimate of f . The resulting

estimator is called the transformation kernel density estimator.

4.3. Non-parametric Wiener system identification

4.3.1. Nadaraya-Watson kernel estimator

Many nonlinear models such as Wiener and Hammerstein models are composed by a combination of a linear

filter and a static nonlinearity (see Fig. 4.2). The combination of these very simple structures is known

to approximate a wide range of nonlinear processes [GS01][Nel01][GP08][GB10][Gir+13]. In particular, these

models become particularly attractive if one considers a general class of nonlinearities that are not assumed to be

parametric and smooth, providing better results than a simple polynomial of finite order [MS00]. It is possible

to extend even more their applicability to nonlinear system identification if one assumes a nonparametric model

for the static nonlinearity, as introduced in [GP08][Gre92] for nonlinear Wiener models (NWMs) and extended

in [GP08][PHW07] for noninvertible nonlinearities. A nonparametric identification algorithm was proposed in

[PHW07] for NWMs. The convergence of this algorithm relies on the following assumptions: (i) the input

signal {xn} is a sequence of i.i.d. random variables with known probability density function (pdf) and finite

first and second order moments, (ii) the noise process {zn} is an i.i.d. sequence with zero mean and finite but

unknown variance σ2
z , (iii) the noise {zn} and the input signal {xn} are mutually independent. The above basic

assumptions imply that both the interconnecting signal {ωn}1 and the output signal {yn} are second-order

stationary stochastic processes. The nonlinear Wiener model shown in Fig. 4.2 is defined as

yn = g (ωn) + zn, ωn =
P∑
p=0

λpxn−p, 1 ≤ n ≤ N (4.12)

where g (.) is an unknown deterministic function of Ω → R, Ω ⊂ R, λ = (λ0, λ1, . . . , λP ) ∈ RP+1 is an

unknown deterministic vector and y = (y1, . . . , yN )T , ω = (ω1, . . . , ωN )T , g (ω) = (g (ω1) , . . . , g (ωN ))T , z =

(z1, . . . , zN )T , x = (x1, . . . , xN )T .

Figure 4.2.: Wiener Model.

1System identification algorithms assume that the input and output sequences {xn} and {yn} are available. However, the so-called
interconnecting signal {ωn} is not observed.
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It is important to observe that the pairs (g (ω) ,λ) and (g (λ0ω) ,λ/λ0) generate the same observations. In-

deed, the pair (g (ω) ,λ) can be identified up to an homothetic transformation affecting g (.). This identifiability

problem can be bypassed by assuming λ0 = 1, leading to

yn = g (ωn) + zn, ωn = xn +
P∑
p=1

λpxn−p, 1 ≤ n ≤ N (4.13)

where λ = (λ1, . . . , λP ) ∈ RP . In [PHW07] the identification of the model 4.13 is accomplished in three steps:

(i) Partitioning of the training set T into two non overlapping subsets T1, T2 as in Figure 4.3. T1 is used to

estimate the non linearity g(.), while T2 is used to recover the impulse response sequence λ. (T1, T2 are chosen

statistically independent in order to achieve the separation of the linear and non linear estimation problems).

Figure 4.3.: Partition of the training set T.

(ii) Estimation of λ by a nonlinear least-squares method utilizing a pilot non-parametric estimate of g(.),

where the Nadaraya-Watson kernel estimate is considered [WJ94] and h > 0 is a smoothing parameter. More

precisely, the filter coefficients are estimated as the solution of the following optimization problem

λ̂ = argmin
λ
Q̂(λ) (4.14)

where

Q̂(λ) = 1
n2

∑
i∈I2

{yi − ĝ(ωi(λ);λ)}2 (4.15)

ĝ(ω;λ) =
∑
j∈I1

yjKh(ω − ωj(λ))∑
j∈I1

Kh(ω − ωj(λ)) (4.16)

(iii) Estimation of g(.) by using a non parametric kernel regression estimate of the regression function of yn

with the weights ω̂n(λ̂), i.e.,

ĝ(ω, λ̂) =
∑
j∈I1

yjKh(ω − ωj(λ̂))∑
j∈I1

Kh(ω − ωj(λ̂))
. (4.17)

The least-squares method previously proposed yields an implicit estimator of λ. However, if we limit the class

of input signals to be white and Gaussian, then it can be shown [PHW07] that the following explicit estimator
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of λ can be considered

λ̂i =
∑n
j=i+1 xj−iyj∑n
j=1 xjyj

, i = 1, 2, ..., p. (4.18)

In [PHW07] the following measures of performance are considered

E(λ̂) = 1
L

L∑
i=1

‖λ̂
i
− λ‖
‖λ‖

MISE = 1
LT

L∑
i=1

T∑
j=1

(g(ωj)− ĝi(ωj , λ̂))2

where L and T are the number of realizations and the number of points that approximate the non linearity. In

the next sections we will consider also the normalized mean square error (NMSE) as index of performance (the

true values of λ and g() are generally unknown) defined as

NMSE = 1− ‖y− ŷ‖2

‖y− y‖2 ∈ [−∞, 1] (4.19)

where y is the actual system output, ŷ the estimated output from the Wiener model and y = 1
N

∑N
i=1 yi.

Example on synthetic data

This section considers an example of application of the algorithm proposed by Pawlak [PHW07] on synthetic

data in order to get familiar with the method and understand the influence of some specific parameters on the

estimator performance. Figure 4.4 shows the input/output signals of a Wiener system. Figure 4.5 displays the

histograms of the signals {xn}, {ωn}, {yn}, where we emphasize that {xn} and {yn} are observed, while {ωn}

is unknown.
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Figure 4.4.: Example of input/output data of a Wiener model. SNR = 20dB.
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Figure 4.5.: Histograms of the synthetic data of Fig. 4.4.

Figure 4.6 compares the output of the algorithm (estimated parameters λ and estimated non linearity g) with

the true simulated values. For the considered input signal and system dynamic, Pawlak’s method [PHW07]

(called PM1 in Figure 4.6) performs very well.
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Figure 4.6.: Estimated Linear and Nonlinear subsystems from the synthetic data of Fig. 4.4. h = hS/4.

It is also interesting to have a look to the variance of the estimator. In Figure 4.7, fifty identified models are

superimposed and compared to the true system. It can be seen that all identified models are close to the true

system. Table 4.1 provides some quantitative results in terms of NMSE. Note that the estimated response is

always very close to the true response.
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Figure 4.7.: Different realizations of the estimator for the set in Fig. 4.4. h = hS/4. 50 identified models are superim-
posed in the figure (red) compared to the true system (blue).
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Table 4.1.: NMSE for 50 runs on the set in Fig. 4.4.

NMSE

Mean 96.9%

Median 98.9%

σ 6.4%

Bandwidth selection

In Section 4.2.3 we have mentioned that the bandwidth of the kernel can have a strong influence on the resulting

estimator. The previous Figures 4.6 and 4.7 were obtained with a specific bandwidth parameter (h = hS/4).

This value of the bandwidth was chosen in order to maximize the NMSE; Indeed, the value h = hS/4 is close

to the optimum (in terms of NMSE) for the considered example, as shown in Figure 4.8. The Silverman’s rule

of thumb (h = hS) is slightly sub-optimal2 in terms of NMSE for our test case (and for higher values of h the

NMSE tends to decrease further).

Bandwidth parameter h
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Figure 4.8.: Normalized Mean Square Error (NMSE) as a function of the bandwidth parameter h for the set in Fig. 4.4.

Filter order selection

The filter order was supposed to be known in [PHW07], which is often not the case in practical applications.

Figure 4.9 shows the effect of mispecifying the value of p for a true filter order equal to ptrue = 3. It can be seen

that overestimating the value of p leads to good estimations of the filter response. However, underestimating p

provides a significant drop of the estimator performance.

2Silverman’s rule has been obtained for Gaussian density estimation. There are no guarantees to obtain optimal results applying
the same rule to the considered Kernel regression problem (Wiener model identification).
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Figure 4.9.: Normalized Mean Square Error (NMSE) as a function of the filter order p for the set in Fig. 4.4. h = hS .
Actual order ptrue = 3.

Effect of the number of samples and SNR

The considered number of samples has also a strong impact on the estimator performance. It can be seen that,

for the considered example, there is a strong threshold effect around 200 samples (see Figure 4.10).
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Figure 4.10.: Normalized Mean Square Error (NMSE) as a function of the number of samples N for the set in Fig. 4.4.
h = hS/4.

The additive noise z has also a strong influence on the estimation performance. Figure 4.11 displays the NMSE

as a function of SNR for the previous examples. A higher noise power yields reduced estimation performance.
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Figure 4.11.: Normalized Mean Square Error (NMSE) as a function of the Signal to Noise Ratio (SNR) for the set in
Fig. 4.4. h = hS/4.

The effect of the initialization on the optimization algorithm used to solve (4.14) needs to be studied. If the

input signal is Gaussian, as in Figure 4.4, one can choose to initialize the vector λ directly via (4.18). However,

if the input is not Gaussian, initialization deserves a more specific attention. It is important to observe that the

optimization problem in (4.14) is nonconvex and can thus be characterized by several local minima [PHW07].

In addition to sensitivity to initialization, it is important to observe that kernel density estimators may perform

very poorly for some particular density shapes. Indeed, densities close to the Gaussian one are easier to estimate

than other densities having large skeweness or kurtosis or being multimodal. To give an example, it can be

shown that estimating the log-normal density with the same accuracy as for the normal density requires a

number of samples 15 times larger [WJ94].

Note:

The optimization routine considered in this study to solve (4.14) is the Levenberg–Marquardt algorithm

[Lev44][Mar63][Mor78] (i.e., lsqnonlin function in MATLAB).

4.3.2. Wiener model identification for hysteresis non linearity

This section investigates the problem of Wiener model identification when the system is subjected to hysteresis

phenomena. Indeed, play and backlash may induce hysteresis phenomena in the control surface position measure,

which needs to be handled for the proposed application. Hysteresis is the dependence of the state of a system on

its history. A loop or hysteresis curve can be observed when there are different values of one variable depending

on the direction of change of another variable, as illustrated in Figure 4.12.
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Figure 4.12.: Hysteresis effect.

There exists a wide literature about hysteresis modeling [Vis96]. However, for the purpose of this study we

will consider the simple model (due to the physicist P. Duhem) where for any differentiable input function u(t)

and output function w(t) we have

dw

du
=


g1(u,w) if du > 0

g2(u,w) if du < 0
(4.20)

The curves g1 and g2 respectively represent the paths of evolution of the pair (u,w) for increasing and decreasing

u. The method presented in Section 4.3.1 can be easily adapted to tackle this type of nonlinearity considering

a four step procedure: (i) partitioning of the training set T into two non overlapping subsets T1, T2 as in Figure

4.3; (ii) Partitioning of the test set Ti in two subsets T+
i , T

−
i such as


T+
i , ∆ωn = ωn(k)− ωn(k − 1) > 0

T−i , ∆ωn < 0
(4.21)

(iii) Linear sub-system estimation from T2 and (iv) estimation of the non linearity from T1.

Finally, we can observe that the algorithm is the same as in Section 4.3.1 except that the function g is now

composed of two functions g+ and g− resulting from T+
i and T−i .

Example on synthetic data

This section studies an example of application of the proposed algorithm for synthetic data subjected to hys-

teresis. Figures 4.13 and 4.14 displays the input/ouptut data and the histograms of the signals {xn}, {ωn}, {yn}
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for this example.
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Figure 4.13.: Example of Input/Output data that can be related via a Wiener model with hysteresis non linearity.
SNR = 40dB.

-10 -5 0 5 10
0

50

100
hist (X)

-15 -10 -5 0 5 10 15 20
0

50

100
hist (W)

-3 -2 -1 0 1 2 3
0

50

100
hist (Y)

Figure 4.14.: Histograms of the synthetic data of Fig. 4.13.

Figure 4.15 compares the true and estimated Wiener system as in Figure 4.6. The estimated nonlinearity is

very close to the true simulated hysteresis cycle confirming the applicability of the method.
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Figure 4.15.: Estimated Linear and Nonlinear subsystems from the synthetic data of Fig. 4.13. h = hS/4.

Due to the presence of hysteresis, the density to be estimated is a bimodal distribution (see Figure 4.14). The

multimodality generally raises an additional difficulty to the estimation problem. However, in the considered

example the algorithm still performs very well3 (see Figure 4.16).
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Figure 4.16.: Histograms of the actual and estimated outputs.

Analyzing the variance of the estimator (Figure 4.17), we can observe (as in Figure 4.7) that all identified
3This is also possible thanks to the larger number of samples (N = 1000) and the higher SNR when compared to the case in
Figure 4.4.
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models are close to the true system. Table 4.2 provides some quantitative results of this analysis in terms of

NMSE, which confirm that the estimated nonlinearity is always very close to the true system response.

Figure 4.17.: Different realizations of the estimator for the set in Fig. 4.13. h = hS/4. 50 identified models are
superimposed in the figure (red) that can be compared to the true system (blue).

Table 4.2.: NMSE for 50 runs on the set in Fig. 4.13

NMSE

Mean 99.8%

Median 99.9%

σ 0.5%

Effect of the number of samples and SNR

The influence of the number of samples and the noise level is shown in Figures 4.18 and 4.19 that are similar

to Figures 4.10 and 4.11.
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Figure 4.18.: Normalized Mean Square Error (NMSE) as a function of the number of samples N for the set in Fig. 4.13.
h = hS/4.
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Figure 4.19.: Normalized Mean Square Error (NMSE) as a function of the Signal to Noise Ratio (SNR) for the set in
Fig. 4.13. h = hS/4.

4.3.3. Constrained Kernel Regression

In our application (free play estimation in the control surface servo loop) the practitioner may have some a

priori information about the nonlinearity shape. Thus, it is interesting to be able to integrate this information

in the estimation process.

In [RPD09] a general approach to consider different types of constraints on a kernel estimator is proposed. In

order to consider this constrained regression estimation method, it is interesting to observe that the estimator
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of g(.) can be written as

ĝ(ω|q) =
n∑
i=1

qiAi(ω)yi (4.22)

where the parameters qi = 1/n (i = 1, 2, ..., n) and

Ai(ω) = nKh(ω − ωi)∑n
j=1Kh(ω − ωj)

(4.23)

lead to the unconstrained Nadaraya-Watson kernel estimator of Section 4.3.1. At this point, it is easy to see that

when qi 6= 1/n for some i, we attribute more or less importance to some of the samples yi, yielding a constrained

Nadaraya-Watson kernel estimator. The next part of this section considers some specific constraints applied to

our estimation problem.

Constraints on g(ω)

If our purpose is to impose some constraints on the non linearity of the form

g1(ω) ≤ g(ω) ≤ g2(ω) (4.24)

then we would have

g1(ω) ≤
n∑
i=1

qiAi(ω)yi ≤ g2(ω) (4.25)

Considering the L2 metric between the parameters qi and 1/n (unconstrained case) as in [RPD09], the con-

strained kernel density estimator can be written as

q̃ = argmin
q
D(q) (4.26)

where

D(q) =
n∑
i=1

(
1
n
− qi

)2
(4.27)

n∑
i=1

qi = 1, −1 ≤ qi ≤ 1 (4.28)

g1(ω) ≤
n∑
i=1

qiAi(ω)yi ≤ g2(ω) (4.29)
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This is a quadratic programming problem that can be conveniently written as (see quadprog function in Matlab):

q̃ = argmin
q

(qu − q)T (qu − q) = argmin
q

1
2q

Tq− qTuq (4.30)
n∑
i=1

qi = 1, −1 ≤ qi ≤ 1 (4.31)

n∑
i=1

q̃iAi(ω)yi ≤ g2(ω) (4.32)

−
n∑
i=1

q̃iAi(ω)yi ≤ −g1(ω) (4.33)

where qu is an n× 1 vector whose components are equal to 1/n. Figure 4.20 shows an example of application

of the constrained estimator for synthetic data. The method called PM1 is based on (4.14) while PM1C is the

constrained version.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

-0.5

0

0.5

1
Linear Subsystem

True
Estimated(PM1)
Estimated(PM1C)

-15 -10 -5 0 5 10 15
-1

-0.5

0

0.5

1
Non Linear Subsystem

True
Estimated(PM1)
Estimated(PM1C)
upper bound
lower bound

Figure 4.20.: Estimated linear and nonlinear subsystems from the synthetic data of Fig. 4.4 considering a constrained
kernel estimator. PM1C (yellow) is the constrained version.

71



Chapter 4. Freeplay estimation via Wiener model identification

Constraints on g(s)(ω)

In this section we use the notation g(s)(ω) = ∂gs(ω)
∂ωs , such that, e.g., for s = 1, we have g(1)(ω) = ∂g(ω)

∂ω . With

this notation, the estimator of g(s)(.) can be written as

ĝ(s)(ω|q) =
n∑
i=1

qiA
(s)
i (ω)yi (4.34)

where

A
(s)
i (ω) = ∂Asi (ω)

∂ωs
. (4.35)

As an example, for s = 1, we have A(1)
i (ω) = ∂Ai(ω)

∂ω . At this point, we can express our restrictions as follows

l(ω) ≤
n∑
i=1

qi

[∑
s∈S

αsA
(s)
i (ω)

]
yi ≤ u(ω) (4.36)

where αs is a set of positive constants used to generate various constraints where l(ω) and u(ω) are known

functions. As an example, for s = 1, we obtain

l(ω) ≤
n∑
i=1

qi

[
α1
∂Ai(ω)
∂ω

]
yi ≤ u(ω). (4.37)

Moreover, for s = 1 and α1 = 1 we have

l(ω) ≤
n∑
i=1

qi

[
∂Ai(ω)
∂ω

]
yi ≤ u(ω). (4.38)

For a Gaussian kernel of the type (as in [PHW07])

Kh(ω, ωi) = exp
(
− (ω − ωi)2

2h2

)
(4.39)

straightforward computations lead to

∂Ai(ω)
∂ω

= ∂

∂ω

(
nKh(ω, ωi)∑n
j=1Kh(ω, ωj)

)
(4.40)

= n

h2

(
−(ω − ωi)Kh(ω, ωi)

∑n
j=1Kh(ω, ωj) +Kh(ω, ωi)

∑n
j=1(ω − ωj)Kh(ω, ωj)

(
∑n
j=1Kh(ω, ωj))2

)
(4.41)

= −
(
ω − ωi
h2

)
Ai(ω) +Ai(ω)

∑n
j=1(ω−ωih2 )Kh(ω, ωj)∑n

j=1Kh(ω, ωj)
. (4.42)
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Thus, the constraints on the first derivative of g(ω) can be rewritten as

n∑
i=1

q̃i

(
∂Ai(ω)
∂ω

)
yi ≤ u(ω) (4.43)

−
n∑
i=1

q̃i

(
∂Ai(ω)
∂ω

)
yi ≤ −l(ω). (4.44)

In Figure 4.21 we can see an example of application on synthetic data considering only bounds on the first

derivative of the nonlinear characteristic.
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Figure 4.21.: Example of constrained kernel estimator considering bounds on the first derivative of the nonlinear char-
acteristic. PM1C (yellow) is the constrained version.

It is clear that the constrained estimator introduced in Section 4.3.3 can be used to add multiple constraints

on the unknown function g(ω). In Figure 4.22 an example of application is shown considering bounds on both

the shape and the first derivative of the nonlinear characteristic.
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Figure 4.22.: Example of constrained kernel estimator considering bounds on the shape and the first derivative of the
nonlinear characteristic. PM1C (yellow) is the constrained version.

The same approach can be used on the algorithm introduced in Section 4.3.2 for hysteresis nonlinearity.

Figure 4.23 shows some results obtained with bounds on the first derivative of the hysteresis cycle.

The previous sections generalized Pawlak’s method for hysteresis estimation (see Section 4.3.2) and studied

a variant accounting for constraints on the nonlinearity shape or its derivatives (see Section 4.3.3). The next

section studies another approach to the problem of Wiener system identification that is based on the maximum

likelihood estimator [Urb+19]. The idea is to exploit the fact that in many applications the input signal x is

not a sequence of i.i.d. random variables, which may be a problem for Pawlak’s method.
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Figure 4.23.: Example of constrained kernel estimator considering bounds on the first derivative of the nonlinear char-
acteristic (Hysteresis type). PMH1C (red) is the constrained version.

4.4. Parametric estimation

In many applications, the input signal of the Nonlinear Wiener Model (NWM) is not a sequence of i.i.d. random

variables, but rather a deterministic time series, and the noise sequence is simply an additive i.i.d. Gaussian

noise with zero mean and finite but unknown variance σ2
z . In the next sections we will see that the nonparamet-

ric kernel regression estimation of the nonlinear function g (.) proposed in [PHW07], i.e., the Nadaraya-Watson

kernel estimator [WJ94], can also be regarded as a parametric estimator, which is associated with the Gaussian

conditional observation model [SN90b][Ott+93]. Indeed, it amounts to estimating a parameter vector γ associ-

ated with a given nonparametric kernel estimator of the nonlinearity g (.), as well as the weights λ associated

with the filter relating xn and ωn and the unknown noise variance σ2
z .

By using the well-known Slepian-Bangs formula [Kay93], we will derive the deterministic Cramér-Rao (CR)

bound (CRB) for the NWM parameters, i.e., γ, λ and σ2
z . Furthermore, we will also derive an asymp-

totic CR-like bound on the global mean squared error (MSE) of the estimated nonlinearity g (.;γ) for con-

sistent and locally unbiased estimators of γ. An interesting property of this bound is its relation with the

MISE criterion introduced in [PHW07]. Since we consider a conditional signal model, the maximum likeli-
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hood estimator (MLE) of the NWM parameters have variances converging to the corresponding CRBs at high

signal-to-noise-ratio (SNR) [Ren+06]. Therefore we derive the associated MLEs and compare their perfor-

mance with the estimators proposed in [PHW07] (based on the Nadaraya-Watson kernel estimator), which are

shown to be sub-optimal when the input signal xn is not stationary. We introduce the following notations:

y = (y1, . . . , yN )T , ω = (ω1, . . . , ωN )T , g (ω) = (g (ω1) , . . . , g (ωN ))T , z = (z1, . . . , zN )T , x = (x1, . . . , xN )T ,

x =
(
(x1−P , . . . , x0) ,xT

)T , and
Tx =


x0 . . . x1−P
...

...
...

xN−1 . . . xN−P


where y,ω,g (ω), z,x ∈ RN , x ∈ RN+P , Tx ∈ RN×P . The nonparametric kernel regression estimation proposed

in [PHW07], based on the Nadaraya-Watson kernel estimator of the nonlinearity g (.) [WJ94], is defined as

ĝ (ω) = ĝ
(
ω; λ̂

)
, ĝ (ω;λ) =

∑
i∈I1

yiKh (ω − ωi (λ))∑
i∈I1

Kh (ω − ωi (λ)) , (4.45)

Kh (ω) =
K(ωh )
h

, λ̂ = arg min
λ

{ ∑
n∈I2

(yn − ĝ (ωn (λ) ;λ))2

}
,

where ωj (λ) = xj +
∑P
p=1 λpxj−p, N = card (I1) + card (I2) + 2P and K(ω) is a positive symmetric function

(kernel) such that
∞∫
−∞

Kh (ω) dω =
∞∫
−∞

K (u) du = 1. (4.46)

Let GI (γ) be the set of parametric functions g (.;γ) defined as

g (ω;γ) =

I∑
i=1

αiKh (ω − βi)

I∑
i=1

Kh (ω − βi)
, γ =

 α

β

 ∈ R2I . (4.47)

From a broader perspective, (4.45) can also be regarded as an estimator of g (.;γ) defined in (4.47) where

I = card (I1), α̂i = yi, β̂i = ωi

(
λ̂
)
. Therefore the nonparametric kernel regression estimation of the nonlinearity

g (.) defined in (4.45) can be recast as a parametric estimation problem. The observation model (4.13) can be

rewritten as follows

zn = yn − g

(
xn +

P∑
p=1

λpxn−p

)
, 1 ≤ n ≤ N.

If x is a known deterministic vector, the pdf of y conditionally on x with parameters λ ∈ RP is

p (y|x;λ) = pz
(
y− g

(
x + Txλ

))
. (4.48)
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If pz (z) depends on a vector of unknown deterministic parameters µ, then pz (z) , pz (z;µ) and (4.48) becomes

p (y|x;λ,µ) = pz
(
y− g

(
x + Txλ

)
;µ
)
. (4.49)

At this point, if g (.) , g (.;γ) ∈ GI (γ) and if we consider θT =
(
µT ,λT ,γT

)
, then (4.49) becomes

p (y|x;θ) = pz
(
y− g

(
x + Txλ;γ

)
;µ
)

(4.50)

where g (.;γ) is an unknown parametric deterministic function.

Finally, if z ∼ N
(
0, σ2

zIN
)
then (4.50) is a Gaussian pdf as well and thus (4.13) defines a Gaussian conditional

observation model.

4.4.1. Deterministic Cramér-Rao bounds

The general theory about lower bounds on the MSE of estimators of deterministic parameters is detailed in

[Cha+08, Section II & III][TT10] (and summarized in [Kba+17, Section II] ). In particular, if x is a known

deterministic vector, the inverse CRB of θ is [Kay93]

CRB−1
θ (x) = Fθ (x) = −Ey|x;θ

[
∂2 ln p (y|x;θ)

∂θ∂θT

]
(4.51)

where Fθ (x) is the Fisher information matrix (FIM). Under the hypothesis that y , y|x ∼ N (m (θ) ,C (θ)),

the FIM (4.51) is obtained from the Slepian-Bangs formula [Kay93, (3.31)]

(Fθ)i,j = ∂m (θ)T

∂θi
C (θ)−1 ∂m (θ)

∂θj
+ 1

2tr
(

C (θ)−1 ∂C (θ)
∂θi

C (θ)−1 ∂C (θ)
∂θj

)
. (4.52)

In the Gaussian case considered in this work, θT =
(
σ2
z ,λ

T ,γT
)
, C (θ) = σ2

zIN and m (θ) = g
(
x + Txλ;γ

)
.

As a consequence, the FIM of θ is

Fθ (x) =


1
2
N
σ4
z

0 0

0 Fλ (x) Fλ,γ (x)

0 FTλ,γ (x) Fγ (x)


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where

Fλ (x) = 1
σ2
z

(
∂g
(
x + Txλ;γ

)
∂λT

)T
∂g
(
x + Txλ;γ

)
∂λT

Fγ (x) = 1
σ2
z

(
∂g
(
x + Txλ;γ

)
∂γT

)T
∂g
(
x + Txλ;γ

)
∂γT

Fλ,γ (x) = 1
σ2
z

(
∂g
(
x + Txλ;γ

)
∂λT

)T
∂g
(
x + Txλ;γ

)
∂γT

which leads to
CRB−1

λ (x) = Fλ (x)− Fλ,γ (x) F−1
γ (x) FTλ,γ (x)

CRB−1
γ (x) = Fγ (x)− FTλ,γ (x) F−1

λ (x) Fλ,γ (x) .
(4.53)

With a few additional computations, it is easy to show that

∂g
(
x + Txλ;γ

)
∂λT

=
(
∂g
(
x + Txλ;γ

)
∂ω

1TP

)
�Tx

∂g (ω;γ)
∂αi′

= Kh (ω − βi′)∑I
i=1Kh (ω − βi)

∂g (ω;γ)
∂βi′

= K
(1)
h (ω − βi′)

∑I
i=1 (αi − αi′)Kh (ω − βi)(∑I

i=1Kh (ω − βi)
)2

where � denotes the Hadamard product, 1TP = (1, . . . , 1) ∈ RP , K(1)
h (ω) = ∂Kh (ω) /∂ω and

∂g (ω;γ)
∂ω

=
∑I
i=1 αiK

(1)
h (ω − βi)∑I

i=1Kh (ω − βi)
−
∑I
i=1K

(1)
h (ω − βi)∑I

i=1Kh (ω − βi)
g (ω;γ) .

4.4.2. A lower bound on the global estimation error

The quality of the estimation of g (.;γ) ∈ GI (γ) based on the estimator g (.; γ̂) can be measured via the global

estimation error

‖g (.;γ)− g (.; γ̂)‖2 =
∫
Ω

(g (ω;γ)− g (ω; γ̂))2
dω. (4.54)

From a theoretical point of view, (4.54) is a random variable whose distribution is difficult to determine in the

general case. As a consequence, we consider a simpler performance criterion, i.e., its mean value which equals

the global MSE defined as

C (γ,γ̂) = Ey|x;θ

[
‖g (.;γ)− g (.; γ̂)‖2

]
=
∫
Ω

Ey|x;θ

[
(g (ω;γ)− g (ω; γ̂))2

]
dω. (4.55)
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It is interesting to note that C (γ,γ̂) in (4.55) is the limiting value for T, L → ∞ of the MISE performance

criterion [PHW07, (28)] (weak law of large numbers)

MISE (ĝ (.)) = 1
LT

L∑
l=1
‖g (ωT ;γ)− g (ωT ; γ̂l)‖

2 (4.56)

where L is the number of independent observations, Ω = [a, b] is the compact interval containing the possible

values of ω (ωt = a + b−a
T (t− 1)), and g (ωT ;γ′) = (g (ω1;γ′) , . . . , g (ωT ;γ′))T . Under the assumption that

γ̂ , γ̂ (y|x) is a consistent estimator of γ, i.e., provided that γ̂ = γ + dγ̂ with dγ̂T dγ̂ → 0 when σ2
z → 0, then

g (ω; γ̂)− g (ω;γ)→ ∂g(ω;γ)
∂γT

dγ̂ when σ2
z → 0 leading to

C (γ,γ̂) −→
σ2

z→0

∫
Ω

∂g (ω;γ)
∂γT

C
dγ̂

(x) ∂g (ω;γ)
∂γ

dω = tr

C
dγ̂

(x)
∫
Ω

∂g (ω;γ)
∂γ

∂g (ω;γ)
∂γT

dω

 .

Moreover, if γ̂ is a locally unbiased estimator of γ, then C
dγ̂

(x) ≥ CRBγ (x) [Kay93] (in the sense that the

difference between the two matrices is positive) and

∂g (ω;γ)
∂γT

C
dγ̂

(x) ∂g (ω;γ)
∂γ

≥ ∂g (ω;γ)
∂γT

CRBγ (x) ∂g (ω;γ)
∂γ

which allows us to define the following CR-like bound

C (γ,γ̂) ≥ tr

CRBγ (x)
∫
Ω

∂g (ω;γ)
∂γ

∂g (ω;γ)
∂γT

dω

 . (4.57)

4.4.3. Maximum Likelihood estimator

When g (.) is an unknown parametric deterministic function, i.e., g (.) , g (.;γ) ∈ GI (γ), the analysis can be

conducted by rewriting (4.13) as

yn =
I∑

i′=1

 Kh (ωn (λ)− βi′)
I∑
i=1

Kh (ωn (λ)− βi)

αi′ + zn

which leads to the well known conditional Gaussian linear model [SN90b][Ott+93][Kay93]

y = Hx (β,λ)α+ z, Hx (β,λ) =
∂g
(
x + Txλ;γ

)
∂αT

, (4.58)
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for which the MLE of θT =
(
σ2
z ,λ

T ,γT
)
is

σ̂2
z (y|x) = 1

N

∥∥∥y−Hx

(
β̂, λ̂

)
α̂
∥∥∥2

(4.59)(
α̂, β̂, λ̂

)
(y|x) = arg min

α,β,λ

{
1
N

∥∥y−Hx (β,λ)α
∥∥2
}
.

Straightforward computations lead to [SN90b][Ott+93][Kay93]:

α̂ (y|x) =
(
Hx (β,λ)T Hx (β,λ)

)−1
Hx (β,λ)T y (4.60)(

β̂, λ̂
)

(y|x) = arg max
β,λ

{
yTΠHx(β,λ)y

}
. (4.61)

We can observe that the MLE of α (4.60) is different from the Nadaraya-Watson kernel estimator (4.45) [PHW07,

(11)]. In [Ren+06] it is shown that when σ2
z → 0, the MLEs

(
α̂, β̂, λ̂

)
(y|x) (4.60-4.61) are consistent, Gaussian,

locally unbiased and efficient (minimum variance). As a consequence, when σ2
z → 0, for a given pair

(
β̂, λ̂

)
(y|x),

(4.45)[PHW07, (11)] leads likely to a biased estimator which is sub-optimal (in the MSE sense) compared to

the MLE (4.60). In a nutshell, the following results can be obtained asymptotically (when σ2
z → 0): (i) the

proposed MLEs
(
α̂, β̂, λ̂

)
(y|x) are efficient; (ii) g (.; γ̂ (y|x)) reaches (4.57).

To summarize the MLE of the unknown parameters can be determined by solving the optimization problem

(4.61) with respect to β and λ and then to estimate the unknown parameters σ2
z and α using (4.59) and (4.60).

Example on synthetic data

We consider a synthetic scenario based on a pulse wave input signal x as displayed in Fig. 4.24 (N = 100),

and a dynamical system defined by λ = (1/2, 1/2)T , α = (6,−2)T , β = (−1/4, 1/4)T . A Gaussian kernel with

bandwidth h = 1 is considered. The nonlinearity g (.) resulting from this choice is shown in Fig. 4.24, where

Ω = [a, b] = [−20, 20] and T = 800. Note that all the results presented in this section have been obtained by

averaging L = 5000 Monte Carlo runs. In Fig. 4.25 and 4.26 we compare the MSE of the MLEs (4.60-4.61)

to the CRBs (4.53) as a function of the SNR defined as SNR =
(

1
N

∥∥g (x + Txλ;γ
)∥∥2
)
/σ2

z . Fig. 4.25 also

compares the performance of two estimators of λ, i.e., the MLE defined in (4.61) and Pawlak’s estimator defined

in (4.45) where card (I1) = 51 and card (I2) = 47. We can observe that the MLEs (4.60-4.61) converge to the

CRBs (4.53) when the SNR increases, as expected [Ren+06]. Moreover, we can note that the MLE outperforms

the kernel estimator of g (.) proposed in [PHW07]. Fig. 4.27 displays the estimated global estimation error, i.e.,

MISE(ĝ (.)), of the two estimators versus SNR, which is compared with the proposed CR-like bound (4.57). As

already mentioned for the estimation of λ, the global estimation error of the MLE converges to the bound and

outperforms the kernel estimator(4.45)[PHW07]. These observations are confirmed in Fig. 4.28 showing the

estimator of the nonlinearity g (.) in both cases (for a given SNR), with a biased kernel estimator, as anticipated.
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Figure 4.24.: Input signal x (left) and non linearity g(.) (right)

Figure 4.25.: MSEs of the MLE (4.61) and of Pawlak’s estimator (4.45) for λ versus SNR, and the corresponding
CRB(λ) (4.53).
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Figure 4.26.: MSE of the MLEs of (α,β) (4.60-4.61) versus SNR, and the corresponding CRB (α,β) (4.53).

Figure 4.27.: MISE(ĝ (.)) (4.56) of the MLE (4.60-4.61) and of Pawlak’s estimator (4.45) versus SNR, compared
with the lower bound (4.57).
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Figure 4.28.: Estimated nonlinearity ĝ (.) obtained with the MLEs (4.60-4.61, in black) and Pawlak’s estimators
(4.45, in red) of (λ,α,β), compared to the ground truth g (.) (in blue) at SNR = 52dB.

4.5. Conclusions and Perspectives

This chapter addressed the problem of Wiener model identification for free play estimation. The main contri-

butions are the proposed variants to Pawlak’s method [PHW07] (hysteresis cycle estimation and constrained

kernel regression) and the derivation of the deterministic CRBs, the MLE and an asymptotic CR-like bound for

the global estimation error of the estimated nonlinearity. Furthermore, some simulation results confirmed that

the maximum likelihood estimator of the nonlinearity has a global estimation error closer to the corresponding

Cramér-Rao bound when compared to Pawlak’s estimator [PHW07] (when the input is not stationary and the

additive noise is Gaussian). Based on the obtained results, further studies can be carried out to

• evaluate the optimal input signal for Wiener system identification

• evaluate the influence of the bandwidth parameter h and the kernel type on the MLE performance

• adapt the MLE to hysteresis cycle estimation and constrained estimation

• evaluate the sensitivity of the MLE to its initialization.
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5.1. Introduction

This chapter presents the industrial validation of the most promising methods (from an industrial point of

view) proposed in Chapter 3 and Chapter 4. In particular, from Chapter 3 we have selected two very simple

detectors for LCO detection and diagnosis, the ones described in Figures 3.7 and 3.9. The choice of these

detectors is mainly based on the limited computational capacity currently available in the EFCS computers.

From Chapter 4 we have decided to test the modified version of Pawlak’s method for hysteresis nonlinearity, as

described in Section 4.3.2, for freeplay detection and diagnosis. The choice of this detector is mainly related to

the industrial constraints already mentioned in Sections 2.5 and 2.6. Based on the current hardware of in-series

aircraft, one of the best solution that can be proposed for LCO condition monitoring is an hybrid approach:

a simple real-time on-board LCO detector based on the command and control surface position (RVDT), plus

an offline freeplay detector based on the rod and control surface positions (LVDT and RVDT, see Figure 2.3).

This approach is interesting because the two algorithms are complementary and their combination represents a

more robust and powerful method for LCO detection and diagnostic. For example in Table 5.1 the logic table

for LCO troubleshooting is presented for a generic C/S (active/standby scheme as in Figure 2.8). It can be

seen that the isolation of the LCO cause can be achieved by mixing the information from the two algorithms

and monitoring only the active actuator control loop (the reader may refer to Figures 2.3 and 2.8 to recall the

control architecture of the C/S).
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Table 5.1.: LCO troubleshooting on a C/S as in Figure 2.8 (active/passive scheme).

Troubleshooting table case 1 case 2 case 3 case 4

Vibration detection 1 1 0 0

Freeplay detection 1 0 1 0

Component to inspect active actuator standby actuator active actuator none

The on-board hardware capacity imposes very stringent constraints in terms of computational burden. Thus,

the general form of the GLRT is tricky to implement. However, thanks to a few very reasonable hypothesis

(LCO bandwidth is known and LCO amplitude is “small”) the detector described in Figures 3.7 and 3.9 can

be used. Thanks to their simplicity these detectors can be easily rewritten with an auto recursive scheme.

Moreover, the Goertzel algorithm (see Appendix A.5) can be used for the computation of the periodograms to

reduce even more the computational burden.

Concerning the method for freeplay detection and diagnosis, we assume that the freeplay induces an hysteresis

cycle between the LVDT and RVDT measurements. Thus the method described in Section 2.6 is the most

suitable. Furthermore, considering an offline application, the freeplay detector is affected by less hardware

and robustness constraints. Indeed, the method can be directly implemented on a dedicated mean on ground

(without the need for any simplification or approximation).

It is important to remember that, for both LCO and freeplay diagnostic, the final goal is to generate a condition

monitoring signal (Figure 5.1) that can be communicated to the airlines in order to avoid unscheduled (really

expensive) maintenance task.

Nominal

I(t)

t

Short term action

Long term action

Figure 5.1.: Example of condition monitoring signal.

In the next sections the results obtained on simulated and experimental data applying the proposed methods

will be presented.
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5.2. LCO diagnostic

The idea is to detect and diagnose the LCO using a GLR test and then to estimate the amplitude and duration

of the oscillation to derive a condition monitoring signal [Urb+18a]. Indeed, knowing the status and trend of

the LCO energy, one can estimate the degradation of the system due to LCO (wear process) and finally propose

to the airlines a maintenance action on the short or long term.

Condition monitoring signal

The GLRT defined in Chapter 3 implicitly involves the estimation of the LCO amplitude Â =
√
l̂21 + l̂22 and

duration1 ∆̂T (see Section 3.8). This means that we can estimate the energy produced by the vibration as

ÊLCO =
∫

∆̂T
Â2dt.

Based on this observation, a very simple method for vibration diagnostic can be proposed. Indeed, if we consider

that only a fraction of ELCO is dissipated through wear process2 that increases the freeplay level, we can define

a simple diagnostic index I (for a given flight F ) as

I(F ) = kw

∫
∆̂TF

Â2
F dt

where kw is a wear severity coefficient. At this point, this definition of I can be easily extended to n flights by

considering a recursive expression of the type

I(Fn) = λfI(Fn−1) + kw

∫
∆̂TFn

Â2
Fndt (5.1)

where λf is a forgetting factor adjusted to reduce the undesired effects of estimation errors. The vibration

diagnostic signal (5.1) provides a rough estimate of the system deterioration due to vibrations (freeplay increase)

and thus it can be used for diagnostic purpose on a control surface. However, it is important to observe that

the simple expression (5.1) has to be coupled with a relevant threshold to be meaningful, which may be a tricky

task. Indeed, one can choose to link empirically the index I with an acceptable level of cabin and cockpit

comfort. However, this concept may vary between pilots and airlines. For this reason, from now we will focus

only on the estimation accuracy in terms of LCO amplitude and duration, leaving the computation of I and

the associated threshold tuning to further studies. Note also that the parameters kw and λf may be considered

as time-varying for a more accurate prediction of the vibration evolution.

1The signal is detected in M observation windows of dimension N . If Ts denotes the sampling period, we can approximate the
duration as ∆̂T = MNTs.

2Concerning the interaction between wear process and limit cycle oscillations, the reader can find an interesting description in
[SKA02].
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5.2.1. Example of LCO detection

Fig. 5.2 (top) shows the input and the output of the actuator control loop of the Control Surface (C/S) of

an Airbus aircraft. Having only the command for the actuator from the flight control laws (signal x) and the

measured position of the C/S (signal y), the objective is to detect the possible presence of an undesired oscillation

on the measured position. Note that one cannot guarantee a priori that the frequency of the anomaly is not

superimposed with the bandwidth of the known signal x. Thus, we need to determine whether the oscillation

appearing in the measurement vector y is “desired” by the control laws or if it is an anomaly. Considering

that the actuator dynamic can be approximated by a signal model of the type λx(n − p) (where p ∈ R is the

delay and λ∈ R the attenuation/amplification induced by the actuator), we can apply directly the test derived

in Section 3.8 using sliding non-overlapping windows to detect the presence of a potential anomaly. Fig. 5.2

(bottom) shows the successful detection of the anomalies (undesired oscillations) that correspond to the two

undesired resonance peaks affecting the signal y (the input signal x is a specific chirp signal whose parameters

cannot be provided for confidentiality reasons). Note that the detection threshold has been tuned using (3.33)

for a constant false alarm rate (e.g., equal to 10−t per flight hour, where t ∈ [3, 6]), considering an observation

window tuned to achieve a detection probability close to 1 (in the example of Fig. 5.2 a window of 3 seconds is

enough to meet the objective).

0 20 40 60 80 100 120 140
-0.5

0

0.5

Input x
Output y

time [s]
0 20 40 60 80 100 120 140

0

0.2

0.4

0.6

0.8

1
Test Statistic
Threshold

Figure 5.2.: Application of the GLRT for the detection of an undesired oscillation affecting a control surface of
a civil aircraft. Please note that for confidentiality reasons the oscillation amplitude is not shown.

The reader should observe that in order not to reduce the reliability of the system under surveillance (e.g.,

the actuator of a civil aircraft), the false alarm rate of the detection algorithm must be lower than the mean

time between failure (MTBF) of the system. Moreover, a given detection probability is always required in order
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to comply with the industrial operational constraints to detect the vibrations before it impacts the comfort

of the flight. In this context, the performance analysis carried out in chapter 3 is important. Indeed, the

MTBF constraint (or equivalently PFA) and industrial PD constraints can be used to tune directly the detector

parameters (threshold and observation window), reducing considerably the time needed to develop and test

the new monitoring algorithm. For example, one can choose the threshold directly as γ = Q−1
χ2
r

(PFA) and the

observation window length N in order to obtain a given SNR (and a specific value of PD).

5.2.2. Simulation Results

A Monte Carlo test campaign has been conducted using an industrial Airbus desktop simulator to evaluate

the detection performance of the proposed approach. A test set, composed of the signals x = Command and

y = RVDT, has been generated for the elevator of a specific Airbus aircraft that flies on the typical mission

profile for that aircraft (see Fig. 5.3) under different operating conditions in terms of Mass, balance, Mach

number and turbulence level3 (see Table 5.2). Various possible operating conditions (around 2500) have been

simulated based on the typical profile mission in Fig. 5.3 and a particular combination of the parameters in

Table 5.2.

Figure 5.3.: Typical vertical flight path.

3The turbulence levels T1 − T2 − T3 are three increasing levels of turbulence (low, medium and strong) assessed with regard to
Airbus pilots sensitivity.
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Table 5.2.: Considered Operating Conditions.

Parameters Range

Mass 63-95% Maximum takeoff weight

Balance 20-40%

Mach 0.6-0.8

Turbulence T1 − T2 − T3

A simplified version of the algorithm described in Section 3.8 has been considered for hardware capacity

reasons. Indeed, we cannot guarantee the absence of signal power at the frequency f̂ in x. However, we can

consider that the power of the sinusoid is small compared to the energy and covariance terms xT (p̂)x(p̂) and

xT (p̂)y, leading to p̂0 ≈ p̂1 ≈ p̂. In this case, the estimation of the system dynamic P and the detection of

the oscillation s can be decoupled reducing the computational cost of the algorithm. In other terms, we have

reduced the algorithm to a simple two steps approach of the type estimation plus detection (recursive estimation

of the system dynamic for residual generation plus sinusoidal detection on the residuals, Figure 3.9). The system

dynamic can be estimated based on the MLEs under H0, while the detection problem reduces to the surveillance

of the power spectral density of the residuals. Note that the LCO frequency f is generally known a priori based

on the aeroelastic properties of the system, so the frequency band to be monitored is narrow.

The threshold can be tuned as in Section 3.8.2 for a PFA = 10−t for flight hour, where t ∈ [3, 6] and r = 2 under

the considered hypotheses. Based on (3.33), the observation window has been chosen as the smallest one able

to detect a given vibration amplitude A1 (lower than pilot sensitivity) with PD close to one (for the given PFA).

A value of 10 seconds has been chosen for the observation window, based on a sampling rate of Fs = 100Hz.

First, the test set has been analyzed with the aforementioned algorithm in order to verify the robustness of

the method (fault-free case). No false alarm was observed. Second, the original test set was modified for

performance evaluation. Indeed, the vibrations (frequency f) have been artificially added on the signal y only

in the flight phases where the LCO is more likely to trigger on the elevator (e.g., when the hinge moment of the

control surface is close to 0, see also Fig. 2.23). In particular, we have considered three target levels A1, A2 and

A3 to be detected in this campaign (three target levels corresponding to three cockpit vibration levels: lower

than pilot sensitivity A1, detectable by the average pilot A2 ≈ 1.35A1, possible in-flight turn back A3 ≈ 2.2A1,

see Fig. 5.4). An example of one of the simulated scenarios for performance evaluation is shown in Fig. 5.5

with the control surface hinge moment. Almost 170 different flight conditions were considered for this specific

scenario according to Table 5.2. An auto-recursive Simulink model was chosen to implement the algorithm and

to evaluate its performance in terms of detection and estimation capabilities (we want to estimate amplitude

and duration for the diagnostic objective as explained in Section 5.2). Fig. 5.6 shows an example of application
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of the algorithm for the target amplitude A2. We can observe that the vibration is always detected4. However,

the estimation accuracy in terms of amplitude and duration depends on the particular flight condition (the

same is true for the other target amplitudes). In Fig. 5.7 we can observe a bar plot of the mean estimation

errors5 as a function of the target amplitudes A1, A2, A3 and for a low level of turbulence T1. It can be seen

that the estimation errors are not monotone functions of the amplitude. In Fig. 5.8 we can observe a bar plot

of the mean estimation errors as a function of the turbulence level (T1 = low, T2 = medium, T3 = strong) for

the target amplitude A2. As expected, the turbulence acts as an undesired interference for the detector and the

estimation performance decreases as the turbulence level increases. It is interesting to observe that, from the

analysis of Figs. 5.7 and 5.8, one can also derive a rough estimate of the propagation error on the predictive

index in Section 5.2. Indeed, if we consider that I(F )/kw ≈ ∆̂TÂ2, assuming no correlation6, the propagation

error can be estimated as

e(I)/kw ≈
√
e(∆̂T )2 + (2e(Â))2.

Looking for example at Fig. 5.7, for the target level A1 and A2, one would obtain e(I)/kw ≈ 27% and

e(I)/kw ≈ 6%.

Figure 5.4.: Example of identification for the vibration target level A2.

4Please note that for industrial confidentiality reasons the real amplitudes are not shown, but the Signal to Noise Ratio (SNR)
justifies the use of statistical test as the GLRT.

5For a generic flight condition n, the normalized error is defined as: Error(n) = (True V alue− Estimated V alue)/True V alue.
6only for the purpose of getting a simple estimate even if it is generally not true
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Figure 5.5.: Aircraft descent under different operating conditions: altitude (up) and control surface hinge moment
(down). The hinge moment values are hidden for confidentiality reasons.

T1 T2 T3

T1 T2 T3

Figure 5.6.: Example of amplitude estimation (up) and duration estimation (down) for the simulated scenario in Fig.
5.5 and the target amplitude A2. For 3 levels of turbulence (T1 = low, T2 = medium, T3 = strong).
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Figure 5.7.: Mean amplitude estimation error (up) and mean duration estimation error (down) for the case in Figure
5.5 as a function of the target amplitude for a low level of turbulence. A 2σ error bar is also considered for
each mean error.
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Figure 5.8.: Mean amplitude estimation error (up) and mean duration estimation error (down) for the case in Fig. 5.5
as a function of the turbulence level for the target amplitude A2. A 2σ error bar is also considered for each
mean error.
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5.2.3. Experimental results

Flight data

The vibration detection algorithm has been validated also on real flight data. In Figure 5.9 we can see the test

statistic signal (detector of Figure 3.9) compared to the corresponding threshold for about 56 hours of real flight

data of an Airbus aircraft. An artificial oscillation at the LCO frequency and A1 amplitude (pilot sensitivity)

has been added on the data (∆T ≈ 20s) in the middle of the dataset, see Figure 5.9) and the algorithm is

able to correctly detect and estimate the vibration. No false alarm is observed on the considered dataset. The

threshold has been tuned as already explained in section 5.2.2 for a given PFA. It is important to mention that,

for the considered tuning, the long duration vibration (∆T > 20s) of amplitude A1 is correctly detected and

estimated, while short duration vibrations of amplitude A1 (∆T < 5s) are not detected. However, the missed

detection of small amplitude (A ≤ A1) and short duration (∆T < 5s) LCO is not critical for our application.

Indeed, the wear process induced by LCO depends from the energy of the vibration. Thus, only long duration

(∆T > 20s) and/or large amplitude (A > A1) LCO is of primary interest.

Figure 5.9.: GLR test for the detection of undesired oscillations affecting a C/S of an Airbus aircraft. The test statistic
(in comparison to the threshold) is shown. Please note that for confidentiality reasons some data are not
shown.

Laboratory

The LCO is a rare event and few data are available. Moreover, for a generic flight, we do not know the freeplay

level. In this context, a laboratory test with calibrated freeplay levels and induced vibrations is really important

to validate the LCO and freeplay detection techniques under investigation in this study.
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In 2018 a specific test campaign has been conducted on the elevator test bench of an Airbus aircraft (ground

test) to better assess the effectiveness of the proposed condition monitoring algorithm. The schematic of the

considered elevator test bench is displayed in Figure 5.10. The considered test bench is a very high fidelity test

mean. Indeed, it reproduces with very good fidelity the actuator control loop behavior of the real aircraft. The

C/S inertia is represented via a specific shaft that can rotate if the active actuator is moving (active/standby

scheme). A torque bar can be used to simulate the real aerodynamic efforts. The hardware components

(actuators, sensors, control computers) are the same as on the real aircraft.

Active actuator

Standby actuator

Inertia

Torque bar

Actuator rod

Hinge line

Actuator bearing

Figure 5.10.: Schematic of the actuator test bench.

An artificial oscillation (representing the LCO) is added to the shaft via the standby actuator and the active

actuator control loop is monitored via the detectors described in Figs. 3.7 and 3.9. Different cases have been

tested corresponding to different LCO amplitudes and freeplay levels. Figure 5.11 compares the true and

estimated oscillation amplitudes for different flight phases, freeplay levels and tuning parameters (observation

window). The minimum detectable LCO amplitude is displayed in red in Fig. 5.11. This amplitude is lower

than the pilot sensitivity to vibration confirming the applicability of the two algorithms (Figs. 3.7 and 3.9). It

can be seen that for the considered amplitudes the algorithms seem to systematically underestimate the real

amplitude. The observed underestimation is related to the sliding window implementation of the algorithms.

Indeed, the “transient phases” when the oscillation enters in the observation window tend to reduce the average

value of the estimated amplitude. A simple way to tackle this problem is to eliminate the transient phases from
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the computation of the average estimate of the amplitude.
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Figure 5.11.: True and estimated oscillation amplitudes for different flight phases and freeplay levels. Two different
observation windows are considered. The amplitudes are normalized for confidentiality reasons.

5.3. Freeplay diagnostic

Several methods have been studied in Chapter 4 for Wiener model identification and freeplay diagnostic. The

nonparametric method (adapted from [PHW07]) presented in Section 4.3.2 is the first one that we have derived

and tested. On the other hand, the parametric method (MLE) studied in Section 4.4 is an interesting alternative

as it is supposed to provide better results for deterministic input signals. In this section, due to the PhD thesis

time constrains and to the more complex initialization of the MLE, we have decided to validate only the

nonparametric method from Section 4.3.2, leaving to further studies the validation and comparison with the

MLE.

It is important to note that trough the identification of the nonlinearity of the Wiener model at different time

instant ti one can evaluate the nonlinearity evolution due to the system aging. As a consequence, the freeplay

evolution can be related to the nonlinearity evolution and a condition monitoring signal can be computed that

is proportional to the freeplay level. A specific procedure can be defined for freeplay diagnostic

1. Data pre-processing (identifiability): select the flight phase and remove artefacts (NaN and outliers).

2. Wiener model identification [PHW07]: data partitioning, linear subsystem identification, non linear sub-

system identification (hysteresis), goodness of fit evaluation (NMSE).
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3. freeplay level estimation: condition monitoring signal I(t) computation (at t = t0, t1, t2, ...) for all the

actuator servoloops under surveillance.

4. freeplay diagnostic: anomaly isolation, maintenance recommendation.

The condition monitoring signal considered in this section represents a degree of nonlinearity (seen as a

deviation from a normal behavior) and it can be computed in different ways. For example, by computing the

distance between the current estimate of g(.) and the estimate of g(.) from a reference flight or directly by

measuring a specific feature of the nonlinearity. If the estimated nonlinearity is of hysteresis type, one can

choose to compute the norm and/or the area of the hysteresis cycle (see Section 4.3.2)

I(t) =
∥∥g+(ω)− g−(ω)

∥∥ or I(t) =
∫ (

g+(ω)− g−(ω)
)
dω. (5.2)

5.3.1. Example of freeplay detection

A real test campaign has been conducted to test the effect of different levels of freeplays on control surface

oscillations as LCO. For the purpose of this study we have considered 4 test sets representing 4 flights with

different known levels of freeplay. Each test set is composed by the pair LVDT/RVDT of the actuator control

loop, corresponding to the actuator rod position and the control surface position. Pawlak’s method is applied

to generate an estimate of the output nonlinearity of a Wiener model. The reader should observe that the

nonlinearity shape is not a priori known, because multiple non linearities exist in the system. However, the

different levels of freeplay among the 4 test sets should be visible comparing the 4 estimates. In Figure 5.12

we can see that an hysteresis cycle is estimated in the four cases and we can identify a trend among the flights

(with some dispersion).

Figure 5.12.: Application to 4 test sets representing 4 flights with increasing known levels of freeplay. The
predictive index corresponds to the area of the estimated hysteresis.

In Figure 5.13, repeating the same analysis on 4 different flights from a different aircraft and control surface,
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but with no freeplay, we can see that there is a small dispersion among the estimated nonlinearities.

Figure 5.13.: Application to 4 test sets representing 4 flights with no freeplay. The predictive index corresponds
to the area of the estimated hysteresis.

Figures 5.13 and 5.12 suggest that the chosen approach could be used for freeplay estimation. It can be seen

that the input signals considered in the previous example are not i.i.d. random variables, however, Pawlak’s

method still provide reasonable results.

5.3.2. Simulation results

The proposed solution for freeplay estimation is based on the hypothesis that an increased freeplay between the

rod position measure (LVDT) and the control surface position measure (RVDT) leads to a nonlinear behavior

similar to an hysteresis cycle. However, in the nominal actuator’s operation domain plenty of non linear behav-

iors may appear that can counterfeit the output of the identification algorithm. Thus, the following question

arises: how can we guarantee that the algorithm is robust to other nonlinear behaviors that can be encountered

in the actuator’s operation domain ?. A first attempt in answering this question has been made based on an

Airbus Matlab/Simulink model for the simulation of the actuator/surface behavior. The considered model, nu-

merically and experimentally validated on Airbus aircraft, is able to represent, with reasonable approximation,

the actuator response and its interaction with the flight control computers and the control surface (see Figure

5.14). Thirteen different parameters have been considered in a Monte Carlo test campaign to test multiple

nonlinear behaviors that can be encountered by the actuator in normal operation. Figure 5.15 summarizes the

results of this study. Indeed, representing the norm versus the area of the estimated nonlinearity, a cluster

representing the nominal behavior can be observed. On the other hand, when a dead-zone or a backlash are

introduced in the system (representing the freeplay) the norm (and the area) of the estimated hysteresis tends

to be far from the nominal behavior. Finally, the simulator test campaign confirms the feasibility of the chosen

approach and suggests that the area and the norm of the hysteresis are good features for freeplay diagnostic.
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For more details about this study the reader may refer to [Car18].

Figure 5.14.: Airbus Simulink/Matlab model used to represent the actuator response and its interaction with the flight
control computers and the control surface.

Norm
0 5 10 15 20 25 30 35

A
re

a

-2

-1

0

1

2

3

4

5

6

7

8
Area vs Norm of the estimated nonlinearity 

Nominal Mode
Current
Pressure
Temperature
InternalStiffness
ServoFlowCharacteristic
InternalDamping
CenteringLawGain
CenteringLawCurrent
CenteringLawCharacteristic
HingeDamping
DeadZone
MechanicalStiffness
Backlash
Internal Parameters Cluster
Mechanical Stiffness Cluster
Dead Zone 
Backlash 

BacklashDead Zone

Nominal behavior

Figure 5.15.: Area versus norm of the estimated nonlinearity for the simulated data [Car18].
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5.3.3. Experimental results

Laboratory

As already mentioned in Section 5.2.3, a test campaign has taken place in 2018 on a specific actuator test bench

(Figure 5.10) with calibrated freeplay levels. In particular, two freeplay levels have been tested to confirm the

feasibility of the proposed approach. The chosen freeplay levels correspond to a relatively “small” and “large”

freeplay on the actuator bearing of a specific C/S of an Airbus aircraft (we cannot mention these values for

confidentiality reasons). Multiple input signals and flight phases have been tested to evaluate the performance

of the Wiener identification method of Pawlak. Indeed, as already seen in Chapter 4, the input can strongly

affect the performance. Figures 5.16 and 5.17 display the results of this analysis where the area versus the norm

(see (5.2)) of the estimated hysteresis cycle are displayed for two different input signals (CS = chirp signal,

WGN = white Gaussian noise) and different freeplay levels. The reader should observe that only the active

actuator servoloop is under surveillance and that the “small” and “large” freeplays have been introduced only

on the actuator bearings (active and standby actuators) and not on the hinge line. Two distinct regions can be

identified in Figs. 5.16 and 5.17: a small freeplay zone (corresponding to small values of the area and the norm)

and a large freeplay zone (corresponding to increasing values of the area and the norm). Two different ways of

tuning the algorithm are considered in Figures 5.16 and 5.17. Indeed, while in Fig. 5.16 we have considered

constant values for the parameters h and gmax, in Fig. 5.17 the parameters h and gmax are adjusted as a function

of the input signal (h = 1.06σLVDTn
−1/5 and gmax = max(LVDT)).
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Figs. 5.16 and 5.17 confirm that the chosen approach can be used for freeplay diagnostic on a real control

surface of a civil aircraft. It can also be observed that the minimum detectable freeplay level is somewhere

between the calibrated levels. It is important to mention that in the test campaign multiple inputs and flight

phases have been tested. However, only chirp and noise provided consistent results in terms of NMSE with

Pawlak’s method. A “sufficient excitation” is needed to guarantee the convergence of the method and this leads

to some constraints for the industrial application. Persistent and repetitive input signals should be considered

to ease the method convergence and to reduce the statistical dispersion of the results.
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6
Conclusions

The main contributions of this study are related to the proposal of two algorithmic solutions for LCO and

freeplay diagnostic in the actuator control loop of a civil aircraft. LCO diagnostic state-of-the-art is mainly

based on the pilot/crew sensitivity to vibrations. In this study a specific GLR test (plus some variants and

simplifications) for LCO diagnostic was proposed, as well as a way to assess the GLRT performance analytically

without using Monte Carlo runs (Chapter 3). Moreover, the proposed solution was validated considering a

quite exhaustive dataset, evaluating its performance, robustness and tuning parameters (Chapter 5). An auto-

recursive scheme based on Goertzel algorithm (Appendix A.5) was implemented on Matlab/Simulink to reduce

the overall computational cost.

Freeplay diagnostic state-of-the-art is mainly based on planned maintenance checks. In this study it was

proposed to estimate the freeplay level based on a system identification approach. The freeplay level between

the actuator rod position measure and the control surface position measure is modeled as an hysteresis cycle at

the output of a Wiener model. A well-known nonparametric method for Wiener model identification [PHW07]

has been modified for the purpose of hysteresis estimation. Moreover, a constrained version of this method was

proposed and its parametric version in comparison to the MLE and to some theoretical performance bounds

was investigated. Indeed, it was shown that it is sub-optimal compared to the MLE (when the input is not

stationary and the additive noise is Gaussian, see Chapter 4). Finally, the modified Pawlak’s method was

tested considering a quite exhaustive dataset, evaluating its performance and limitations in relation to different

freeplay levels and input signals (Chapter 5).

Table 6.1 presents an overview of the datasets considered for the development and validation of the method

investigated in this study. The reader should note that the algorithms were validated based on very heteroge-

neous and exhaustive datasets. Table 6.2 summarizes the results for the datasets of Table 6.1.

It can be seen that for the considered vibration detection approach, there exists a tuning that guarantee no false

alarm and at the same time allows to anticipate the pilot detection (see Section 5.1, 5.2.2 and 5.2.3). Indeed,
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having the right sampling time1, the proposed GLR test (and its variants/simplifications) is a very appealing

method for LCO diagnostic in terms of performance (minimum detectable amplitude), robustness (false alarm)

and computational cost. Moreover, the detector can be easily coded with an auto-recursive scheme and thanks

to the performance analysis of Section 3.7, we also have a good theoretical reference for the threshold tuning

process. Based on these observations, having the right sampling time for LCO detection (Shannon’s theorem),

we can say that GLR tests are a good choice for the considered industrial application.

On the other hand, the proposed freeplay diagnostic algorithm (modified Pawlak’s method for hysteresis

estimation) needs to be improved in order to be put into practice. Indeed, it is able to detect relatively

large freeplay levels, but it does not provide consistent results for relatively small freeplay levels. Moreover,

specific input types (chirp or Gaussian noise of a certain amplitude) are needed to guarantee repetitive and

consistent results. The method may also be affected by local minima (as it implicitly involves a non-convex

optimization problem) and identifiability problems (due to the considered input signal). The computational

cost is high compared to other methods (as patent [PK11]). Finally, despite these drawbacks, the proposed

approach for freeplay diagnostic still represent an interesting alternative to the state-of-the-art, thanks to its

genericity (block-structured model) and adaptability to the current technology (no additional sensors, no need

for too high sampling frequency). Indeed, the method is proven to be able to detect a given freeplay level, but

some additional research step are required to improve its accuracy and robustness.

Table 6.1.: Summary of Validation datasets.

Data source Validation data
Vibration diagnostic Freeplay diagnostic

Synthetic data simplified actuator control loop and
anomaly

synthetic scenario of the type
Wiener model

Simulator (Fig. 5.14) ∼ 2500 flight conditions (Mach,
Mass, Balance, Turbulence, Flight
Phase)

Airbus Matlab/Simulink toolbox
(13 parameters)

Flight data ∼ 56 hours 4 flights with calibrated free play
level

Laboratory (Fig. 5.10) elevator test bench with calibrated
freeplay and vibration

elevator test bench with calibrated
freeplay

Perspectives

This research study is the result of a 3 years CIFRE PhD thesis between Airbus and TéSA laboratory. Thus,

this research study has both industrial and academic vocations.

For the industrial project the results correspond to a technology readiness level (TRL) of 4, in a scale between

1this is not always possible, see Section 2.6
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Table 6.2.: Results summary.

Data source Validation results
Vibration diagnostic Freeplay diagnostic

Synthetic data Section 3.8.3: the algorithm is fea-
sible, performance analysis valida-
tion.

Section 4.3.2 and 4.4: the algorithm
is feasible, comparison Pawlak’s
method, MLE and performance
bounds.

Simulator (Fig. 5.14) Section 5.2.2: no false alarms, antic-
ipate pilot detection, error analysis
of estimators.

Section 5.3.2: freeplay segregation
using LVDT/RVDT, choice of the
features (area vs norm).

Flight data Section 5.2.1 and 5.2.3: no false
alarms, anticipate pilot detection
(but ∆T > 20s).

Section 5.3.1: there is a trend on the
4 flights with calibrated free play.

Laboratory (Fig. 5.10) Section 5.2.3: no false alarms, antic-
ipate pilot detection.

Section 5.3.3: “large” freeplay can
be detected, input signal sensitivity.

1 and 9 [Man95] (Figure 6.1), that is the last step before the technology demonstration. Thus, to reach TRL9

(system launch) there is a long road ahead and the next levels are often very difficult to achieve [GDB14][Zol17].

In the present study a quite extensive validation has been accomplished, but a more extensive verification and

validation (“V&V”) campaign on real data and real hardware has to be accomplished to reach TRL5 (technology

demonstration). Moreover, in the long-term, the in-service implementation has to be fully clarified and adapted

to the airline need in order to reach the last steps of Fig. 6.1.

Figure 6.1.: NASA technology readiness levels (TRL).

From the academic point of view, multiple research paths can be identified starting from the contribution
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presented in this study (see also Sections 3.9 and 4.5). In particular, as short-term perspective for LCO detec-

tion, it can be interesting to study a Bayesian approach to integrate the a priori information directly in the

test statistic. Moreover, it can be useful to consider a data fusion algorithm to integrate other signals (already

available in the flight control computers on board the aircraft) as accelerometers or pressure sensors. This study

also considered a particular interference model and a known noise variance. It would be interesting to extend

our derivations to different interference models with a possible unknown noise variance.

As short-term perspectives for freeplay diagnostic, it would be important to investigate the MLE when the non-

linearity is an hysteresis cycle and to evaluate its sensitivity to initialization. Indeed, we had time to validate

only Pawlak’s method on experimental data, but we have shown (in theory and on synthetic data) that it is

sub-optimal compared to the MLE (when the input is not stationary and the additive noise is Gaussian) and

it leads to consistent results only for some specific inputs. Given the importance of the input signal in the

identification problem, it would be useful also to analyze if there exists an optimal input signal, in terms of

freeplay detection accuracy and robustness, for Pawlak method and for the MLE.

The main goal of this research study was to find a software solution for LCO diagnostic using only existing

signals available in the flight control computers on board in-series aircraft, being compliant with the current

hardware and possibly being independent from the specific surface/actuator combination. A contribution in

this sense was given and further studies could lead to the technology deployment in operation. However,

in the long-term, a different solution might be proposed. In Chapter 2 we have seen that the EFCS is a

system in continuous evolution. New systems, sensors and communication means will be introduced in the next

aircraft generation. For example, long endurance wireless accelerometers installed on the tip of the vertical

and horizontal stabilizers would certainly improve the accuracy and robustness of LCO detection. Moreover,

specific sensors might be developed to monitor the actuator bearings and the freeplay level. In parallel with

new sensors, advanced health monitoring systems could be introduced. These systems would be able to host

advanced machine learning techniques and manage multiple undesired vibrations at the same time. Finally, in

Chapter 2 we have also seen that there is a wide literature about active control of vibrations like the LCO, but

relatively few applications. The next generation aircraft would probably be able to control the LCO (and similar

undesired vibrations) once it is detected in-flight, reducing the need for corrective and preventive maintenance

tasks related to freeplay and LCO.
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A.1. Asymptotic approximation for the sufficient statistic

In the asymptotic region, at high SNR [Ren+06]

α̂ = α+ d̂α,
∥∥∥d̂α∥∥∥2

� 1

thus, developing the quadratic terms at the first order we obtain

∥∥∥Π⊥
H(α+d̂α)

y
∥∥∥2

≈

∥∥∥∥∥∥∥
Π⊥H(α)H(α)β + ∂Π⊥H(α)

∂α H(α)βd̂α

+Π⊥H(α)w + ∂Π⊥H(α)
∂α wd̂α

∥∥∥∥∥∥∥
2

≈

∥∥∥∥∥Π⊥H(α)H(α)β +
∂Π⊥H(α)

∂α
H(α)βd̂α+ Π⊥H(α)w

∥∥∥∥∥
2

.

The previous equation can be simplified by differentiating

0 = Π⊥H(α)H (α)

leading to

∂Π⊥H(α)

∂α
H (α) = −Π⊥H(α)

∂H(α)
∂α

.
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As a consequence

∥∥∥Π⊥
H(α+d̂α)

y
∥∥∥2

≈
∥∥∥∥Π⊥H(α)H(α)β −Π⊥H(α)

∂H(α)
∂α

βd̂α+ Π⊥H(α)w

∥∥∥∥2

=
∥∥∥∥Π⊥H(α)y −Π⊥H(α)

∂H(α)
∂α

βd̂α

∥∥∥∥2
=
∥∥∥Π⊥H(α)y −Dd̂α

∥∥∥2

=
∥∥∥Π⊥DΠ⊥H(α)y

∥∥∥2
+
∥∥∥ΠDΠ⊥H(α)y −Dd̂α

∥∥∥2

with D = Π⊥H(α)
∂H(α)β
∂α . The quantity

∥∥∥∥Π⊥
H(α+d̂α)

y

∥∥∥∥2
reaches its minimum if d̂α is chosen as follows

ΠDΠ⊥H(α)y = Dd̂α

or equivalently if

d̂α = (DTD)−1DTΠ⊥H(α)y (A.1)

leading to

∥∥∥Π⊥
H(α+d̂α)

y
∥∥∥2
≈
∥∥∥Π⊥DΠ⊥H(α)y

∥∥∥2
.

Straightforward computations allow the following result to be obtained

E[d̂αd̂α
T

] = CRB(α)

which proves that α+ d̂α is a valid approximation of the CMLE in the asymptotic region.

A.2. Characteristic functions and PDF approximation

The characteristic function of a random variable Z, defined as the linear combination of random variables Xn

with real constant coefficients an

Z =
N∑
n=1

anXn
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is simply given by

ϕZ(t) =
N∏
n=1

ϕXn(ant).

Assume that Xn is distributed according to a non-central chi-square distribution with l degrees of freedom and

non-centrality parameter k. The characteristic function of Xn is denoted as is ϕk,l and defined as

ϕk,l(t) =
exp ( ikt

1−2it )
(1− 2it)l/2

.

The approximated probability density function (pdf) of Z can then be obtained as the inverse Fourier transform

of its characteristic function by numerical integration. However, to obtain directly the cumulative distribution

function (CDF) of Z one can also use the Gil-Pelaez’s formula [Gil51]

FZ(z) = 1
2 −

1
π

∫ ∞
0

Im[e−itzϕZ(t)]
t

dt.

A.3. Projection matrices

For the nested model (3.20), it can be shown that the “approximate GLRT” statistic (see Section 3.7) can be

written as a quadratic form of the type xTΠx, where Π is a symmetric and idempotent matrix. In this section

it is verified that the matrix Π is a projection (for the two cases of α known and α unknown).

β unknown and α known

The matrix K = Π⊥H0(α0) − Π⊥H1(α1) is symmetric and idempotent. Indeed, it is symmetric by difference

between symmetric matrices. In order to show its idempotence, One can simply consider H1(α1)A = H0(α0)

(where A is a suitable matrix) to prove the following expressions


Π⊥H0(α0)Π⊥H1(α1) = Π⊥H1(α1)

ΠH0(α0)ΠH1(α1) = ΠH0(α0)

(A.2)

hence [
Π⊥H0(α0) −Π⊥H1(α1)

]2
= Π⊥H0(α0) −Π⊥H1(α1).

which proves the idempotence.
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β unknown and α unknown

The matrix Ka = L⊥0 − L
⊥
1 is symmetric and idempotent. Indeed, it is symmetric by difference between

symmetric matrices

L⊥0 = Π⊥H0(α0)Π⊥D0
Π⊥H0(α0), L

⊥
1 = Π⊥H1(α1)Π⊥D1

Π⊥H1(α1)

where D = Π⊥H(α)
∂H(α)β
∂α . In order to show the idempotence of Ka, we recall (A.2) and consider the notation

∂(H0(α0)β0)
∂α0

= Q0,
∂(H1(α1)β1)

∂α1
= Q1, Q1B = Q0

where B is a suitable transformation matrix (Q0 is included in Q1, as the matrix H0(α0) is included in

H1(α1)). One can observe that

Π⊥H0
ΠD0Π⊥H1

ΠD1 = Π⊥H0
Q0(QT

0 Π⊥H0
Q0)−1BT (QT

1 Π⊥H1
Q1)(QT

1 Π⊥H1
Q1)−1QT

1 = Π⊥H0
ΠD0

hence

Π⊥H1
ΠD0ΠD1 = Π⊥H0

ΠD0 .

As a consequence

Π⊥H0
Π⊥D0

Π⊥H1
Π⊥D1

= Π⊥H1
Π⊥D0

Π⊥D1
= Π⊥H1

−Π⊥H1
ΠD1 −Π⊥H1

ΠD0 + Π⊥H1
ΠD0ΠD1 = Π⊥H1

−Π⊥H1
ΠD1 = Π⊥H1

Π⊥D1

or equivalently

L⊥0 L
⊥
1 = L⊥1

which proves the idempotence of Ka [PSZ96].

A.4. GLRT by Alternating Projection (AP)

We have seen that the algorithm of the GLRT is not fully satisfactory from a computational point of view because

it requires a nonlinear multivariate optimization. For this reason, we decided to consider a different approach to

reduce the computational burden. The Alternating Projection (AP) approach [ZW88] consider a sequence

of one-dimensional optimization for computing the ML estimator and thus it guarantee lower complexity and

computational time. For every iteration a maximization is performed on a single parameter while all the others

parameters are held fixed. Since a maximization is performed at every iteration, the algorithm will surely

converge to a local maximum. However, depending on the initial condition, the local maximum may or may
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not be the global one and this represents the main drawback of this approach.

In order to compute α̂1, we have seen that we need to consider an optimization problem on the parameters p

and f . Introducing the following notation for the matrix H

H(α) = [x(p), c(f), s(f)] = [x(p), z(f)]

The MLE can be written in the form

α̂1 = argmin
α

∥∥Π⊥Hy
∥∥2 = argmax

α
‖ΠHy‖2 = argmax

α

(
‖Πxy‖2 +

∥∥ΠΠ⊥x zy
∥∥2
)

(A.3)

where we have applied the following decomposition[Cha14][ZW88] of the projection matrix ΠH

H(α) = [x(p), z(f)]→ ΠH = Πx + ΠΠ⊥x z

It has to be observed that (A.3) requires the simultaneous optimization of two terms (the first dependent on

p and the other on p and f). In the AP approach, we can consider separately the optimization of the two terms.

So, the ML estimation problem reduces to two one-dimensional optimization problems

1) argmax
p

‖Πxy‖2

2) argmax
f

∥∥ΠΠ⊥x zy
∥∥2

Considering the maximization of the first term, we can recognize that it leads to

argmax
p

‖Πxy‖2 = argmax
p
{

(
∑N−1
n=0 y(n)x(n− p))2∑N−1
n=0 x(n− p)2

} = p̂1 = p̂0 = p̂

The observation that p̂1 = p̂0 = p̂ is useful also to simplify the expression of the GLRT. In fact, the sufficient

statistic reduces to

T ′ = 1
2σ2

(
‖ΠH(α̂1)y‖2 − ‖ΠH(α̂0)y‖2

)
=

1
2σ2

(
‖Πxy‖2 +

∥∥ΠΠ⊥x zy
∥∥2 − ‖Πxy‖2

)
=

1
2σ2

∥∥ΠΠ⊥x zy
∥∥2
> γ′′a
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For the maximization of the second term, we can rewrite ΠΠ⊥x z as

ΠΠ⊥x z = Π⊥x z(zTΠ⊥x z)−1zTΠ⊥x

So the ML estimation of f can be obtained from the following function

f̂ = argmax
α

(∥∥ΠΠ⊥x zy
∥∥2
)

=

argmax
α

(∥∥Π⊥x z(zTΠ⊥x z)−1zTΠ⊥x y
∥∥2)

argmax
α

(
yTΠ⊥x z(zTΠ⊥x z)−1zTΠ⊥x y

)

AS the sufficient statistic for the AP approach is

T ′ = 1
2σ2

∥∥ΠΠ⊥x zy
∥∥2
> γ′′a

or equivalently

T ′ = 1
2σ2

(
yTΠ⊥x z(zTΠ⊥x z)−1zTΠ⊥x y

)
for large sample (N →∞) that corresponds to

T ′′ =

 (xT (p̂1)y)2 2Ix(f̂)
xT (p̂1)x(p̂1) + 2(xT (p̂1)x(p̂1))Iy(f̂)− 4(xT (p̂1)y)Re[Ixy(f̂)]− 4(Im[Ixy(f̂)])2

(xT (p̂1)x(p̂1))− 2Ix(f̂)

 > 2σ2γ′′

if we can consider that the power of the anomaly is small compared to the energy and covariance terms

xT (p̂)x(p̂) and xT (p̂)y; we can consider (Im[Ixy(f̂)])2 ≈ 0 and 2Ix(f̂)
xT (p̂1)x(p̂1) ≈ 0. So, the simplified statistic will

be again
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T ′′′ =
(
Iy(f̂)− 2r′(p̂)Re[Ixy(f̂)]

)
> σ2γ′′

Remark

We have argued before that the AP approach does not guarantee the convergence to a global maximum.

However, it can be noticed that, for our case study, the global maximum of (A.3) is not so far from the one

identified by optimization of the first term (‖Πxy‖2) alone.

A.5. Goertzel algorithm

The Goertzel algorithm is a digital signal processing technique used to identify the different frequency com-

ponents of a signal. The main difference with the Fast Fourier Transform (FFT) approach is that while the

general form of the FFT consider the whole bandwidth, the Goertzel algorithm consider only some specific

frequencies. Moreover, this algorithm can be used to compute directly |X(ω)|2. The computational complexity

of this algorithm for M computed frequencies is only NM . So, this algorithm can perform a faster analysis

than FFT for

M ≤ 5N2

6N log2N2 (A.4)

where N2 is the nearest exact power of 2 of N.

The main idea of this algorithm comes from the observation that, if we want to extract some frequencies from

a signal x, we can observe that the last term of the sequence

y(n) = x(n) + y(n− 1)eiω (A.5)

is "almost" equal to the DFT of the signal computed at the frequency ω. In fact, it is possible to show that:

y(n− 1) = eiω(N−1)
N−1∑
m=0

xme
−iωm (A.6)

thus y(n− 1) is equal to X(ω) multiplied for a complex constant eiω(N−1). The Goertzel algorithm computes

X(w) using the combination of two filters: a second order IIR filter and a first order FIR filter. An example of

a recursive algorithm that use the Goertzel algorithm is the one shown in Figure A.1 implemented on Simulink.
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Figure A.1.: Simulink implementation of Goertzel algorithm (|X(ω)|2) for a given frequency.
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