

A promising parametric spectral analysis method applied to sea level anomaly signals

C. Mailhes¹, D. Bonacci¹, A. Guillot², S. Le Gac², N. Steunou², C. Cheymol², N. Picot², G. Dibarboure²

1. Telecommunications for Space and Aeronautics Lab. (TeSA), Toulouse, France

2. Centre National d'Etudes Spatiales (CNES), Toulouse, France

Context of the presentation

SPECTRAL ANALYSIS of sea level anomalies (SLA) widely used in the altimetry community: To understand the geophysical content of measured signals, To assess and compare the performance of missions

SPECTRAL ANALYSIS = usually based on Fourier transform

Outline of the talk

- 1. Spectral analysis based on Fourier transform
- 2. Spectral analysis based on parametric modeling
- 3. A parametric spectral analysis for SLA: ARWARP
- 4. Validation on simulated signals
- 5. Results on real signals
- 6. Conclusions and perspectives

Comparisons made in this presentation on simulated Sea Level Anomalies (SLA) and on real signals from SARAL/AltiKa, Agulhas current area

1. Spectral Analysis based on Fourier Transform

[1] S. M. Kay and S. L. Marple, "Spectrum analysis—A modern perspective," in *Proceedings of the IEEE*, vol. 69, no. 11, pp. 1380-1419, Nov. 1981.

[2] L. Marple, « Digital Spectral Analysis: with Applications », Prentice Hall Ed., 1987.

[3] S.M.Kay, « Modern spectral estimation: Theory and applications », Prentice Hall Ed., 1988.

[4] P. Soica, R. Moses, « Spectral analysis of signals », Prentice Hall Ed., 2005 (expanded version of the book of 1997).

[5] R.E..Thomson, W.J.Emery, « Data analysis methods in physical oceanography », Elsevier Ed., 3rd edition, 2014.

- [1] S. M. Kay and S. L. Marple, "Spectrum analysis—A modern perspective," in *Proceedings of the IEEE*, vol. 69, no. 11, pp. 1380-1419, Nov. 1981.
- [2] L. Marple, « Digital Spectral Analysis: with Applications », Prentice Hall Ed., 1987.
- [3] S.M.Kay, « Modern spectral estimation: Theory and applications », Prentice Hall Ed., 1988.
- [4] P. Soica, R. Moses, « Spectral analysis of signals », Prentice Hall Ed., 2005 (expanded version of the book of 1997).
- [5] R.E..Thomson, W.J.Emery, « Data analysis methods in physical oceanography », Elsevier Ed., 3rd edition, 2014.

- [1] S. M. Kay and S. L. Marple, "Spectrum analysis—A modern perspective," in *Proceedings of the IEEE*, vol. 69, no. 11, pp. 1380-1419, Nov. 1981. [2] L. Marple, « Digital Spectral Analysis: with Applications », Prentice Hall Ed., 1987.
- [3] S.M.Kay, « Modern spectral estimation: Theory and applications », Prentice Hall Ed., 1988.
- [4] P. Soica, R. Moses, « Spectral analysis of signals », Prentice Hall Ed., 2005 (expanded version of the book of 1997).
- [5] R.E..Thomson, W.J.Emery, « Data analysis methods in physical oceanography », Elsevier Ed., 3rd edition, 2014.

SLA AltiKa – Agulhas Current – Cycle 4

SLA AltiKa – Agulhas Current – Cycle 4

AR spectral analysis will fit a model on the whole spectrum, on a uniform frequency scale basis.

Necessary to adapt
to fit well
the interesting
part of the PSD 15

3. A parametric spectral analysis for SLA: ARWARP

[1] <u>T. Kinnunen, Spectral features for automatic text-independent speaker recognition, PhD Thesis, 2003, available on ftp://ftp.cs.uef.fi/pub/PhLic/2004_PhLic_Kinnunen_Tomi.pdf</u>.

16

3. A parametric spectral analysis for SLA: ARWARP

5. Results on real signals

5. Results on real signals

••

Spectral analysis of sea level anomaly signals

Fourier-based PSD	ARWARP PSD	
For small signal sample size, not interesting	Can be used on small sample size, no need to average	
Necessary to average PSD (Welch)	Averaging PSD possible	
PSD variance	Smooth PSD	\bigcirc
Estimation of the slope: biased (window), large variance	Estimation of the slope: small bias, small variance	
When averaging PSDs, slope estimation combining rectangular and BH windows	 ≈ ARWARP slope estimation (equivalent MSEs) 	
Estimation of the noise level : good estimator, whatever the window (except rect.)	Estimation of the noise level : biased	26

6. Conclusions

Spectral analysis of sea level anomaly signals using ARWARP or TF-based methods

- Extended paper in preparation: more details, more results
- To be used on other kinds of signals
 - (SLA 1 Hz, wet troposheric correction, ...)
- Next: study on error bounds
 - Cramer–Rao bound on slope estimation = bound on estimation variance
- Nexte: study to reduce the slope estimation bias

Thank you for your attention