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ABSTRACT

Texture analysis can be conducted within the mathematical frame-
work of multifractal analysis (MFA) via the study of the regularity
fluctuations of image amplitudes. Successfully used in various ap-
plications, however MFA remains limited to the independent anal-
ysis of single images while, in an increasing number of applica-
tions, data are multi-temporal. The present contribution addresses
this limitation and introduces a Bayesian framework that enables the
joint estimation of multifractal parameters for multi-temporal im-
ages. It builds on a recently proposed Gaussian model for wavelet
leaders parameterized by the multifractal attributes of interest. A
joint Bayesian model is formulated by assigning a Gaussian prior to
the second derivatives of time evolution of the multifractal attributes
associated with multi-temporal images. This Gaussian prior ensures
that the multifractal parameters have a smooth temporal evolution.
The associated Bayesian estimators are then approximated using a
Hamiltonian Monte-Carlo algorithm. The benefits of the proposed
procedure are illustrated on synthetic data.

Index Terms— Multifractal Analysis, Bayesian Estimation,
Texture Analysis, Multivariate image, Hamiltonian Monte Carlo

1. INTRODUCTION

Context. In image processing, texture characterization is a stan-
dard problem for which different paradigms have been proposed.
Multifractal analysis (MFA) is one such and characterizes a texture
via the local fluctuations of the point-wise regularity of image ampli-
tudes. More specifically, the texture is encoded in the so-called mul-
tifractal spectrum D(h) collecting the Hausdorff dimensions of the
sets of points sharing the same local regularity, classically measured
by the Hölder exponent h, cf., e.g., [1–4] and references therein.
Multifractal models are deeply tied to scale invariance properties.
These properties are practically assessed via the exponents ζ(q) of
the power laws, over a range of scales 2j , of the sample moments of
multiresolution quantities T (j,k) of the image X at spatial position
k and scale 2j

S(q, j) ,
1

nj

∑
k

|T (j,k)|q ' (2j)ζ(q), j1 ≤ j ≤ j2 (1)

where nj is the number of multiresolution quantities at scale 2j . The
present work dwells on the wavelet leaders l(j,k) that have been
shown to match MFA purposes [1, 4] (their definition is recalled in
Section 2). These so-called scaling exponents ζ(q) are intimately
linked to the multifractal spectrumD(h) via the Legendre transform
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D(h) ≤ L(h) , infq∈R[2 + qh− ζ(q)]. This link enables the prac-
tical discrimination between multifractal models through the char-
acterization of ζ(q). Notably, the two most prominent classes of
processes used to model scale invariance in data are the self-similar
processes [5], for which ζ(q) is linear in the vicinity of q = 0, and
multifractal multiplicative cascade (MMC) based processes [6], as-
sociated with a strictly concave function ζ(q). This discrimination
can be efficiently handled via the polynomial expansion of ζ(q) (at
q = 0), ζ(q) =

∑
m≥1 cmq

m/m!, by considering the coefficients
cm, termed log-cumulants [4, 7, 8]. It can be shown that the second
log-cumulant c2, referred to as intermittency or multifractality pa-
rameter, is strictly negative for multiplicative cascades whereas it is
identically zero for self-similar processes, cf., e.g, [1,9]. The estima-
tion of c2 is thus of paramount importance in MFA since it enables
the identification of the model that best fits the data. For more details
on MFA, the reader is referred to, e.g., [1–4, 10].
Estimation of c2. The log-cumulants cm have been shown to be
directly tied to the cumulants of the logarithm of the multiresolution
quantities [7]. Specifically, for the multifractality parameter c2

C2(j) , Var [ln l(j,k)] = c02 + c2 ln 2j . (2)

In view of (2), the classical estimation procedure for c2 is defined as
the linear regression of the sample variance V̂ar [·] of the log-leaders
with respect to scale j

ĉ2 =
1

ln 2

j2∑
j=j1

wj V̂ar [ln l(j,k)] (3)

where wj are appropriate regression weights [4, 9, 11]. This esti-
mator is widely used and known to provide relatively poor perfor-
mance, in particular for small image size. Different attempts to
improve estimation performance are reported in the literature. A
generalized method of moments has been proposed [12]. This pro-
cedure relies on fully parametric models that are often too restric-
tive in real-world applications. More recently, Bayesian estima-
tors for c2 have been proposed [13, 14]. This approach builds on
a semi-parametric model for the multivariate statistics of the log-
leaders whose variance-covariance structure is controlled by the pair
(c2, c

0
2). The resulting Gaussian likelihood is numerically evaluated

using a closed-form Whittle approximation, and the Bayesian infer-
ence is accomplished by a Markov chain Monte Carlo (MCMC) al-
gorithm with Metropolis-Hasting within Gibbs (MHG) moves using
random walk proposals. However, these approaches are all designed
for processing single images only and cannot be used to take into
account the information that is potentially jointly conveyed in a col-
lection of several multi-temporal images.
Goals and contributions. The goal of the present work is to in-
troduce a novel Bayesian framework suitable for the joint estima-
tion of c2 for image sequences. Elaborating on the statistical model



formulated for a single image in previous work [13, 14] (recalled
in Section 2), this is achieved through two original key contribu-
tions detailed in Section 3. First, the assumption that multifractality
evolves smoothly across the collection of images is encoded via a
Gaussian prior on the second derivatives of the evolution of the mul-
tifractal attributes. The degree of the induced smoothness is con-
trolled by hyperparameters whose estimation is also embedded in a
full Bayesian model. Second, the computation of Bayesian estima-
tors associated with the proposed model is achieved via an MCMC
algorithm relying on a Hamiltonian Monte Carlo scheme that per-
mits the efficient exploration of the non-standard conditional distri-
butions in high-dimensional variable space induced by the model.
The performance of the proposed estimation procedure is analyzed
in Section 4 for sequences of synthetic multifractal multi-temporal
images with prescribed temporal evolutions of its parameters. The
results indicate that the proposed method compares very favorably
against the linear regression (3) as well as with previous Bayesian
formulations [13, 14].

2. STATISTICAL MODEL FOR LOG-LEADERS

2.1. Wavelet leaders

Denote χ(x) and ψ(x) a scaling function and a mother wavelet
(characterized by Nψ ≥ 1 vanishing moments) defining a 1D
wavelet transform. Two-dimensional wavelets can be constructed
from the tensorial products ψ(0)(x) = χ(x1)χ(x2), ψ(1)(x) =

ψ(x1)χ(x2), ψ(2)(x) = χ(x1)ψ(x2), ψ(3)(x) = ψ(x1)ψ(x2).
Under certain admissibility conditions on φ, the collection of di-
lated (to scale 2j) and translated (to location x = 2jk) templates
{ψ(m)

j,k (x) = 2−jψ(m)(2−jx − k)} forms a basis of L2. The dis-
crete wavelet transform coefficients of an image X are defined as
the inner product d(m)

X (j, k) = 〈X, ψ(m)
j,k 〉, m = 0, . . . , 3 [15]. The

wavelet leaders l(j,k) are defined as the supremum of the wavelet
modulus taken in a spatial neighborhood of 2jk over all finer scales
j′ ≤ j

l(j,k) , sup
m∈(1,2,3),λ′⊂9λj,k

|d(m)
X (λ′)| (4)

where 9λj,k denotes the 9 neighboring dyadic cubes of width 2j

centered around spatial location k2j , see [1, 4] for more details.

2.2. Statistical model

Recent results reported in [13, 14] suggest that the log-leaders
`(j,k) , ln l(j,k) can be modeled by a Gaussian random field
whose covariance Cov[`(j,k), `(j,k + ∆k)] is approximated by
a radial symmetric function parametrized by θ = [θ1, θ2]T ,
[c2, c

0
2]T , defined as follows

%j(∆k;θ),


C2(j)− c2 ln(2jr0j /3)+c

0
2

ln 4
ln(1+‖∆k‖) ‖∆k‖≤3

c2 ln(‖∆k‖/r0j ) 3<‖∆k‖ ≤r0j
0 r0j <‖∆k‖

(5)
with r0j =

√
nj/4. The mean of the log-leaders is linked only

to c1 and is empirically removed from the model, ¯̀(j,k) ,
`(j,k) − Ê[`(j, .)], and the centered log-leaders ¯̀ are gathered
in the vector `j , where Ê[·] is the sample mean. By assuming
moreover independence between scales, the likelihood for the vector
` = [`Tj1 , ..., `

T
j2 ]T can be expressed as

p(`|θ) =

j2∏
j=j1

p(`j |θ)∝
j2∏
j=j1

exp
(
− 1

2
`Tj Σj(θ)−1`j

)
|Σj(θ)| 12

(6)

where Σj(θ) is the covariance matrix induced by %j , | · | denotes
the determinant and T is the transpose operator.

2.3. Whittle approximation

The direct evaluation of the likelihood (6) requires computing the
covariance matrix inverses Σj(θ)−1. As proposed in [13, 14], this
can be circumvented by replacing (6) with the numerically robust
and efficient Whittle approximation [16–18]

p(`j |θ) ∝ exp

−1

2

∑
m∈Jj

lnφj(m;θ)+
Ij(m; `j)

φj(m;θ)

 (7)

that evaluates the fit between the periodogram of the log-leaders
Ij(m, `j) and the spectral density φj(m;θ) associated with the
covariance model over the frequencies ωm = 2πm/nj with
m ∈ Jj , [[b(−√nj − 1)/2c, . . . ,√nj − b

√
nj/2c]]2\0. A closed-

form expression of the spectral density, φj(m;θ) = θ1f1,j(m) +
θ2f2,j(m), has been derived in [14], where the functions {fi,j} do
not depend on θ, hence enabling precomputation and storage of the
vectors fi,j , (fi,j(m))m∈Jj ), see [14] for details. By substitution
of (7) in (6), the likelihood (6) can be approximated as

p(`|θ) ∝ exp

(
−1

2
1T
(

lnφ(θ) + I(`)� φ(θ)
))

(8)

where φ(θ) , θ1f1 + θ2f2, with fi , [fTi,j1 , . . . , f
T
i,j2 ]T , I(`) ,

[(Ij1(m, `j1)Tm∈Jj1
, . . . , Ij2(m, `j2)Tm∈Jj2

]T , 1 is anM×1 vector
of ones and � denotes the component-wise division operator.

3. SMOOTH BAYESIAN ESTIMATION

Based on the above model and its approximation (8), we specify a
Bayesian model for a sequence of images {Xt}Mt=1.

3.1. Bayesian model

Likelihood. We write `t and θt , [θt1, θ
t
2]T for the centered

log-leader and parameter vectors associated with the image Xt, re-
spectively, and use the notations L , {`t}Mt=1 and Θ = {θ1,θ2}
with θi = {θti}Mt=1. Assuming independence between leaders of
different images, the likelihood of L is given by

p(L|Θ) ∝
M∏
t=1

p(`t|θt). (9)

Priors. A smooth evolution of the parameters θt is enforced by
assigning a Gaussian distribution to the second order differences of
θi

p(θi|ε2i ) ∝
(

1

ε2i

)M−1
2

exp

(
− 1

2ε2i
‖Dθi‖2

)
(10)

whereD is the Laplacian operator. This prior models the parameters
θi by a simultaneous autoregression (SAR) and has been considered
in various applications, e.g., for image deconvolution [19]. It con-
strains the second derivative of parameters of interest to be small and
hence promotes smoothness.
Hyperpriors. The degree of smoothing depends on the values of
hyperparameters ε2i . We adopt here a full Bayesian strategy by in-
cluding them in the unknown parameter vector and assigning them a



non-informative Jeffreys’ prior p(ε2i ) = (ε2i )
−1IR+(ε2i ), with IR+(·)

the indicator function of the set R+.
Posterior distribution. Assuming a priori independence between
θ1 and θ2, the Bayes’ theorem yields the following posterior

p(Θ, ε|L) ∝ p(L|Θ)

2∏
i=1

p(θi|ε2i )p(ε2i ), ε , [ε21, ε
2
2]T . (11)

Bayesian estimators. In the context of MFA, only the parameters
θi are of interest. We therefore consider here the marginal poste-
rior mean estimator associated with (11), denoted MMSE (minimum
mean square error estimator) and defined by

θMMSE
i , E[θi|L] (12)

where the expectation is taken with respect to the marginal posterior
distribution p(θi|L). Since (12) involves integrating over the poste-
rior (11), its direct computation is intractable. Instead, the inference
is performed by using a Gibbs sampler (GS) generating the collec-
tion of samples {Θ(k), ε(k)}Nmc

k=1 that are asymptotically distributed
according to (11). These samples are used in turn to approximate the
marginal posterior mean estimator by

θMMSE
i ≈ (Nmc −Nbi)−1

Nmc∑
k=Nbi+1

θ
(k)
i (13)

where Nbi is the length of the burn-in period [20].

3.2. Gibbs sampler

The GS considered here successively generates samples according
to the conditional distributions associated with the posterior distri-
bution p(Θ, ε|L) [20].
Multifractal parameters. It can be shown that the conditional
distribution p(θi|L,θi′ 6=i, ε) is not standard. Due to the high di-
mension of θi (M � 1), implementing an MHG procedure (with a
random walk proposal as in [13,14]) would yield a poor exploration
of the target distribution. Instead, we resort to a Hamiltonian Monte-
Carlo algorithm (HMC) [21] whose strategy is recalled in the next
subsection.
Hyperparameters. The conditional distributions for hyperpa-
rameters ε2i are inverse-gamma (IG) distributions that are easy to
sample

ε2i |θi ∼ IG(
M − 1

2
,
‖Dθi‖2

2
). (14)

3.3. Hamiltonian Monte-Carlo

Hamiltonian system. The HMC algorithm is a sampling scheme
inspired by Hamiltonian dynamics [21]. The target distribu-
tion, here p(θi|L,θi′ 6=i, ε), is associated with a potential en-
ergy E(q) = − ln p(q|L,θi′ 6=i, ε) with q , θi. Moreover
p ∈ RM auxiliary momentum variables are introduced and as-
sociated with a kinetic energy K(p) = pTp/2. The Hamiltonian
H(q,p) = E(q) +K(p) defines trajectories (q(τ),p(τ)), in con-
tinuous time τ , with constant total energy H(q,p) via the system of
equations dq

dτ
= ∂H

∂p
(q,p), dp

dτ
= − ∂H

∂q
(q,p) [21].

Sampling. In an HMC sampling scheme, the proposal of a candi-
date is achieved through the discrete evaluation of the Hamiltonian
equations. More precisely, at the iteration k of the GS, starting from
the initial state q0 , θ

(k)
i and p0 ∼ N (0M , IM ), the system of

Hamiltonian equations is numerically integrated for a time interval
of length δ ·L using the leap-frog method, which yields the candidate
(q?,p?). This candidate is then accepted with an acceptance rate
α = min(1, ρ) with ρ = exp[H(q0,p0) −H(q?,p?)]. The leap-
frog method, detailed in Algo. 1, is composed of L steps associated
with an increment δ that is tuned during the Nbi first iterations of
the GS such that α ∈ [0.5, 0.8]. Note that this scheme requires the
computation of the derivatives of the potential energy. For the model
proposed in this work, the derivatives can be calculated analytically
and are given by the closed-form expression

∂E(θi)

∂θti
=

[
DTDθi
ε2i

]
t

+
1

2

(
fi � φ(θt)

)T (
1− I(`t)� φ(θt)

)
(15)

where [·]t stands for the t-th element of a vector.

Algorithm 1 Sampling scheme via HMC

1: Set q0 =θ
(k)
i and draw p0∼N (0M , IM )

2: Leap-frog method
3: for n = 0 : L− 1
4: pn+1/2 = pn − δ

2
∂E
∂qT (qn)

5: qn+1 = qn + δpn+1/2

6: pn+1 = pn+1/2 − δ
2
∂E
∂qT (qn+1)

7: end for
8: Set (q?,p?) = (qL,pL) and draw u ∼ U[0,1]

9: Acceptance-reject
10: Compute α = min(1, exp[H(q0,p0)−H(q?,p?)])

11: Set θ(k+1)
i =q? if u < α, otherwise θ(k+1)

i =θ
(k)
i

4. NUMERICAL EXPERIMENTS

Scenario. We compare the proposed multivariate Bayesian approach
(denoted as mB) to the univariate Bayesian method proposed in [13]
(denoted as uB) and to the linear regression (3) (denoted as LF) by
applying them to a large number of independent realizations of a
sequence of M = 100 multi-temporal images defined as 2D mul-
tifractal random walks (MRWs) of size 27 × 27. An MRW has
multifractal properties mimicking those of Mandelbrot’s log-normal
cascades, with scaling exponents ζ(q) = (H − c2)q + c2q

2 [22].
Typical realizations of MRW images are plotted in Fig. 1 for three
different values of c2. We use a Daubechies wavelet with Nψ = 2
vanishing moments and scales (j1, j2) = (1, 3) in the analysis and
set H = 0.72. Four different evolutions of c2 across the image
sequences are studied, with values for c2 ranging from −0.04 to
−0.12: a slow sinusoidal profile, a fast sinusoidal profile, a chirp
profile including both slow and fast evolutions (as a limit benchmark
case violating the slow evolution assumption) and a discontinuous
evolution (cf., Fig. 2, top row, left to right columns, respectively).
Estimation performance. Estimation performance is quanti-
fied via the average, the standard deviation (STD) and the root
mean squared error (RMSE) computed for MC = 100 indepen-
dent series and defined by m = Ê[ĉ2], s = (V̂ar[ĉ2])

1
2 and

rms =
√

(m− c2)2 + s2. Results are summarized in Fig. 2
(a) for the four different evolutions of c2 and yield the following
conclusions. All estimators succeed in reproducing on average the
prescribed values of c2 for the smooth evolutions (i.e., they have
small bias). For the discontinuous evolution of c2, mB provides a
smooth estimate, as expected, and hence introduces a small bias in
the vicinity of the discontinuities. More importantly, however, it can



c2 = −0.01 c2 = −0.07 c2 = −0.12

Fig. 1. Realizations of 2D MRW with different values for c2.

be observed that the proposed joint Bayesian estimator mB consis-
tently yields a significant reduction of STD values as compared to
LF (STD divided by up to 6.5) and also to the univariate Bayesian
estimator uB (STD divided by up to 2.5). This demonstrates the
clear benefits of the proposed Bayesian procedure for the joint esti-
mation of c2 and is also reflected in RMSE values which are, except
at the locations of discontinuities, 50 − 70% smaller than those of
uB and LF for mB.

The observed improvements come at the price of increased yet
reasonable computational time (for a sequence of 100 27 × 27 im-
ages, ∼ 8s for mB instead of ∼ 1s for LF or ∼ 3s for uB).
Estimation of hyperparameters ε2i . In order to study the ef-
fectiveness of the automatic tuning of the hyperparameters ε21, Fig.
2 (b) reports histograms of MMSE estimates ε21

MMSE ≈ (Nmc −
Nbi)

−1∑Nmc
k=Nbi+1 ε

2
1
(k) for the four different evolutions of c2. Note

that since ε21 corresponds to the variance in the prior (10), the smaller
ε21, the smoother the solution. For the sinusoidal evolutions, the av-
erage value of ε21 (indicated by a thin red line in Fig. 2 (b)) is 10−6.2

and 10−4.5 for slow and fast evolution, respectively, thus reflecting
the degree of smoothness in the evolution. For the chirp, the average
value is 10−5 and thus sightly below that of the fast sinusoid (indeed,
stronger smoothing would introduce bias and would hence be highly
penalizing). The values of ε21 for the discontinuous case are cen-
tered at 10−5.8 and close to the slow sinusoid case, indicating that
larger bias at the two discontinuities is traded off for small variability
within the segments with constant c2. These results clearly demon-
strate that the model succeeds in adjusting the hyperparameter to an
appropriate smoothing level for the data.

5. CONCLUSIONS AND PERSPECTIVES

This work introduced a Bayesian procedure that enables, for the first
time, the joint estimation of the multifractality parameter c2 for se-
quences of multi-temporal images. Building on a recent statistical
model for the multivariate statistics of log-leaders of MMC based
processes, the procedure relies on two mains contributions. First,
a smoothness assumption for parameter values across the collection
of images was encoded via a Gaussian prior on the second deriva-
tives of the multifractal attributes. The resulting Bayesian model
also enables the estimation of the hyperparameters controlling the
amount of smoothness. Second, to bypass the difficulties resulting
from non-standard conditional distributions during the Bayesian in-
ference, a Hamiltonian Monte-Carlo scheme was proposed. Closed-
form expressions for the derivatives required in this scheme were
obtained. Our numerical results demonstrate that the proposed pro-
cedure yields excellent estimation performance and significantly im-
proves over previous (univariate) formulations. Future work will in-
clude the extension of the proposed approach to spatial multivariate
data, i.e., the joint estimation of parameters for patches of heteroge-
neous multifractal images.

m
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Fig. 2. Numerical experiments: (a) estimation performance (from
top to bottom: mean, STD and RMSE) assessed on 100 independent
realizations for different evolutions of c2; (b) histograms of MMSE
estimates ε21

MMSE.
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