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Abstract—Multifractal (MF) analysis enables the theoretical
study of scale invariance models and their practical assessment
via wavelet leaders. Yet, the accurate estimation of MF param-
eters remains a challenging task. For a range of applications,
notably biomedical, the performance can potentially be improved
by taking advantage of the multivariate nature of data. However,
this has barely been considered in the context of MF analysis.
This paper proposes a Bayesian model that enables the joint
estimation of MF parameters for multivariate time series. It
builds on a recently introduced statistical model for leaders and
is formulated using a 3D gamma Markov random field joint
prior for the MF parameters of the voxels of spatio-temporal
data, represented as a multivariate time series, that counteracts
the statistical variability induced by small sample size. Numer-
ical simulations indicate that the proposed Bayesian estimator
significantly outperforms current state-of-the-art algorithms.

I. CONTEXT, RELATED WORK AND CONTRIBUTIONS

Context. Multifractal analysis is a widely used signal pro-
cessing tool and enables the study of the scale invariance
properties of data. It has been successfully used in a large
variety of applications, ranging from biomedical [1], [2],
physics [3] to finance [4] and Internet [5], cf., e.g., [6] for
a review. Scale invariance implies that the dynamics of a time
series X(t) are driven by a large continuum of time scales
instead of only a few characteristic scales. This translates
into power law behaviors of the time averages of well chosen
multiresolution quantities TX(j, k) of X (i.e., quantities that
depend jointly on scale 2j and time instance k) over a large
range of scales 2j

S(q, j) ,
1

nj

∑
k

|TX(j, k)|q ' (2j)ζ(q), 2j1 ≤ 2j ≤ 2j2 (1)

where nj is the number of TX(j, k) at scale j. In this work,
wavelet leaders l(j, k) are used as multiresolution quantities,
which can be shown to be well suited for this purpose [6],
[7] (and are defined in Section II). Given a time series X , the
goal is the estimation of the so-called scaling exponents ζ(q)
of the power law in (1), which fully characterize the scale
invariance properties of X . Notably, the scaling exponents
permit discrimination between the two fundamental classes
of scale invariance models: self-similar processes, which are
obtained by additive construction mechanisms and charac-
terized by a linear function ζ(q) = qH [8]; multifractal
multiplicative cascades (MMC), which have a multiplicative

structure and yield a strictly concave function ζ(q) [4]. In
order to understand the construction mechanisms underlying
data, it is crucial to decide which model better fits the data in
applications. This decision can be reached by considering the
polynomial development ζ(q) =

∑
m≥1 cmq

m/m! at q = 0. It
can be shown that the coefficient c2, called the multifractality
parameter, is strictly negative for MMC but equals zero
for self-similar processes, cf., e.g., [7], [9]. Therefore, the
estimation of c2 is central in multifractal analysis.
Estimation of c2. The multifractality parameter c2 can be
directly linked to the variance of the logarithm of l(j, k) [9]

C2(j) , Var [ln l(j, ·)] = c02 + c2 ln 2j . (2)

This motivates estimation of c2 as a linear regression of the
sample variance V̂ar [·] of log-leaders with respect to scale j

ĉ2 = (ln 2)−1
∑j2

j=j1
wj V̂ar [ln l(j, ·)] (3)

where wj are appropriate regression weights [7]. The estimator
(3) is widely used but is known to yield poor performance for
small sample size [10], [11]. Alternative estimators have been
described in, e.g., [12], [13], but they make assumptions, (e.g.
fully parametric model, specific multifractal process), that are
often too restrictive in real-world applications. More recently,
Bayesian estimators for c2 have been proposed in [10], [11].
Their advantage lies in the use of a semi-parametric model
for the statistics of the log-leaders that is generically valid for
MMC processes and induces considerable performance gains
when compared to (3). These gains were obtained at the price
of increased computational cost since the Bayesian inference
was achieved by a Markov chain Monte Carlo (MCMC)
algorithm with a Metropolis-Hastings within Gibbs (MHG)
sampler. A significantly more efficient algorithm was obtained
very recently in [14] by considering a data augmented formu-
lation of the Bayesian model. None of these developments
addressed the estimation of c2 for multivariate data.
Contributions. This paper devises a Bayesian procedure
for the joint estimation of c2 associated with multivariate time
series registered on a volume (voxels) that makes use of the
dependence of neighboring voxels in order to improve estima-
tion accuracy. The algorithm combines the statistical model
introduced in [10], [11] with the data augmentation strategy
proposed for images in [14] (summarized in Section II). The



key contribution (described in Section III) resides in the design
of an appropriate joint prior for the multifractality parameters
for voxels. It consists of a hidden 3D gamma Markov random
field (GMRF) [15] with eight-fold spatial neighborhood that
models the dependence between the parameters of neighboring
voxels. The Bayesian model is designed in such a way that the
conditional distributions of the resulting joint posterior can be
sampled without MHG steps. Consequently, the approximation
of the associated Bayesian estimator by means of an MCMC
algorithm is very efficient (inducing approximately 10 times
only the overall cost of estimation based on (3)). Numerical
simulations with synthetic multifractal data demonstrate that
the proposed method reduces standard deviations as compared
to the linear regression (3) by more than one order of mag-
nitude and permits, for the first time, the accurate assessment
of small differences of the values of c2 associated with voxels
of multivariate time series (cf., Section IV).

II. STATISTICAL MODEL FOR LOG-LEADERS

A. Direct statistical model in the time-domain

Wavelet leaders. A mother wavelet ψ0(t) is a reference
pattern that has narrow supports in the time and frequency
domains. It is chosen such that the collection {ψj,k(t) ≡
2−j/2ψ0(2−jt − k), j ∈ N, k ∈ N} forms a basis of L2(R)
and is characterized by its number of vanishing moments
Nψ ≥ 1 (∀k = 0, 1, . . . , Nψ − 1,

∫
R t

kψ0(t)dt ≡ 0 and∫
R t

Nψψ0(t)dt 6= 0). The (L1-normalized) discrete wavelet
transform coefficients of X are defined as dX(j, k) =
〈X, 2−j/2ψj,k〉, cf., e.g., [16] for details.
Let λj,k = [k2j , (k+1)2j) denote the dyadic interval of size 2j

and 3λj,k the union of λj,k with its 2 neighbors. The wavelet
leaders are defined as the largest wavelet coefficient within
3λj,k over all finer scales [6], [7]

l(j, k) , supλ′⊂3λj,k
|dX(λ′)|. (4)

Statistical model. Denote as `j the vector of the log-leaders
`(j, ·) , ln l(j, ·) at scale j after mean substraction (since
it conveys no information on c2) and ` , [`Tj1 , . . . , `

T
j2 ]T .

The statistics of `j of MMC based processes can be well
approximated by a multivariate Gaussian distribution whose
covariance Cj(k,∆k) , Cov[`(j, k), `(j, k+∆k)] is [10]

Cj(k,∆k) ≈ %0
j (∆k;θ) + %1

j (∆k;θ) (5)

where θ = (c2, c
0
2), %1

j (r;θ) , c2 ln(4|r|/nj)I(3,nj/4](r),
%0
j (r;θ) ,

( ln(1+|r|)
ln 4 (%1

j (3;θ) − c02 − c2 ln 2j) + c02 +
c2 ln 2j

)
I(0,3](r) and where IA is the indicator function of the

set A. Assuming independence between `j at different scales
j leads to the following likelihood for `

p(`|θ) =
∏j2

j=j1
|Σj,θ|−

1
2 exp

(
− 1

2
`Tj Σ−1

j,θ`j

)
(6)

where the matrices Σj,θ are defined element-wise by (5), | · |
is denoting the determinant and T the transpose operator.
Whittle approximation. The likelihood (6) is problematic
to evaluate numerically since it requires the computation of
the matrix inverses Σ−1

j,θ. Thus, it has been proposed in [11]

to approximate (6) with the asymptotic Whittle likelihood [17]

pW (`|θ) =|Γθ|−1 exp
(
−yHΓ−1

θ y
)
, (7)

y , [yTj1 , ...,y
T
j2 ]T , yj = F(`j)

where Γθ , c2F + c02G is an NY ×NY diagonal covariance
matrix, with NY , card(y), F , diag (f), G , diag (g),
f , [fTj1 , ..., f

T
j2

]T and g , [gTj1 , ...,g
T
j2

]T . The diagonal
elements of Γθ correspond to the discretized spectral densities
c2 fj(m) + c02 gj(m) associated with the model (5), for the
positive frequencies ωm = 2πm/

√
nj , m ∈ N+. Here,

yj , F(`j) is the periodogram of `j , where the operator
F(·) computes and vectorizes the discrete Fourier transform
coefficients for ωm, m ∈ N+ and H is the conjugate transpose
operator. Note that fj and gj do not depend on θ and can be
precomputed (and stored) using the fast Fourier transform.

B. Data augmented statistical model in the Fourier domain

The parameters θ are encoded in Σ−1
j,θ, and their condi-

tional distributions are not standard. Sampling the posterior
distribution with an MCMC method would hence require
accept/reject procedures [10], [11]. A more efficient algorithm
can be obtained by interpreting (7) as a statistical model for
the Fourier coefficients y [14]. Assuming that Γθ is positive
definite, (7) amounts to modeling y by a random vector with
a centered circular-symmetric complex Gaussian distribution
CN (0,Γθ), hence to the use of the likelihood

p(y|θ) = |Γθ|−1 exp
(
−yHΓ−1

θ y
)
. (8)

Reparametrization. The matrix Γθ is positive definite as long
as the parameters θ=(c2, c

0
2) belong to the admissible set

A={θ∈R−?× R+
? |c2f(m) + c02g(m)>0,m=1,..., NY}. (9)

Since ∀m, c02g(m) > 0 (while c2f(m) < 0), (9) can be
mapped onto independent positivity constraints by a one-to-
one transformation from θ ∈ A to v ∈ R+2

? defined as θ 7→
v = (v1, v2),(−c2, c02/γ+ c2), where γ = supm f(m)/g(m)
[14]. Consequently, (8) can be expressed using v ∈ R+2

? as

p(y|v) ∝|Γv|−1 exp
(
−yHΓ−1

v y
)

(10)

Γv = v1F̃ + v2G̃, F̃ = −F +Gγ, G̃ = Gγ

where F̃ , G̃ and Γv are positive definite diagonal matrices.
Data augmentation. One can now introduce an NY × 1
vector of latent variables µ that enables us to augment (10) us-
ing the model y|µ, v2 ∼ CN (µ, v2G̃), µ|v1 ∼ CN (0, v1F̃ ),
which is associated with the extended likelihood [14]

p(y,µ|v) ∝ v2
−NY exp

(
− v−1

2 (y − µ)HG̃
−1

(y − µ)
)

× v1
−NY exp

(
− v−1

1 µH F̃
−1
µ
)
. (11)

Simple calculations show that (11) leads to standard condi-
tional distributions when inverse-gamma priors are used for
vi, i = 1, 2, and that (10) is recovered by marginalization of
(11) with respect to µ.



III. BAYESIAN MODEL FOR MULTIVARIATE TIME SERIES

A. Likelihood

Based on the likelihood (11) for one single time series
X(t), we now design a joint Bayesian model for the analysis
of multivariate time series. Let Xm, m , (m1,m2,m3),
md = 1, . . . ,Md, denote M1 ×M2 ×M3 discrete time series
(voxels) of length N (as illustrated in Fig. 1). Denote as
ym, µm and vm the Fourier coefficients, latent variables and
parameter vector associated with Xm and as Y , {ym},
M , {µm}, and V , {V 1,V 2} (where V i , {vi,m},
i = 1, 2) the corresponding collections for all voxels {Xm}.
Assuming independence between the vectors ym, the joint
likelihood of Y can be written as

p(Y ,M |V ) ∝
∏

m
p(ym,µm|vm). (12)

B. Gamma Markov random field prior

Inverse-gamma distributions IG(αi,m, βi,m) are conjugate
priors for the parameters vi,m in (12), and we propose to
specify (αi,m, βi,m) such that the resulting prior for V i is a
hidden GMRF [15]. A GMRF makes use of a set of positive
auxiliary variables Z = {Z1,Z2}, Zi = {zi,m}, to induce
positive dependence between the neighbooring elements of
V i (and thus spatial regularization) [15]. Specifically, each
vi,m is connected to the eight auxiliary variables zi,m′ >
0, m′ ∈ Vv(m) , {m + (d1, d2, d3)}d1,d2,d3=0,1 (and
therefore, each zi,m to vi,m′ , m′ ∈ Vz(m) , {m +
(d1, d2, d3))}d1,d2,d3=−1,0), via edges with weights ρi, i =
1, 2, that are hyperparameters and control the amount of
smoothness. It can be shown that this prior for (V i,Zi) is
associated with the density [15]

p(V i,Zi|ρi) ∝
∏

k
e(8ρi−1) log zi,m e−(8ρi+1) log vi,m

.× e
− ρi
vi,m

∑
m′∈Vv(m) zi,m′ . (13)

C. Posterior distribution and Bayesian estimators

Under the assumption of prior independence between
(V 1,Z1) and (V 2,M ,Z2), the joint posterior distribution
associated with the proposed model is obtained as

p(V ,Z,M |Y , ρ1, ρ2) ∝ p(Y |V 2,M) p(M |V 1)

× p(V 1,Z1|ρ1) p(V 2,Z2|ρ2) (14)

using Bayes’ theorem. To infer the parameters of inter-
est V i, we consider the marginal posterior mean (mini-
mum mean square error) estimator, denoted MMSE, which
is defined as V MMSE

i , E[V i|Y , ρi], where the expecta-
tion is taken with respect to the marginal posterior den-
sity p(V i|Y , ρi). The direct computation of V MMSE

i is not
tractable since it requires integrating the posterior (14) over
the variables Z and M and computation of the expectation.
Instead, by considering a Gibbs sampler (GS) generating
samples ({V (q)

i },M
(q), {Zi(q)})Nmcq=0 that are asymptotically

distributed according to (14), it can be approximated as [18]

V MMSE
i ≈ (Nmc −Nbi)−1

∑Nmc

q=Nbi
V

(q)
i (15)
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Fig. 1. Illustration of the cube of 32 × 32 × 32 voxels of time series (left
panel) with prescribed multifractal properties c2 ∈ {−0.01,−0.03,−0.06}
(indicated as green, yellow, dark blue, respectively); the slices correspond to
those analyzed in Fig. 2. Single realizations of time series corresponding to
3 voxels with different value of c2 (right panel).

LF IG GMRF
|b| 0.0158 0.0051 0.0092
std 0.0800 0.0255 0.0020

rmse 0.0819 0.0262 0.0094

TABLE I
ESTIMATION PERFORMANCE FOR 100 INDEPENDENT REALIZATIONS.

where Nbi is the number of samples of the burn-in period.

D. Gibbs sampler

Here, the GS consists of successively drawing samples
from the conditional distributions that are associated with the
posterior (14) [18]. Simple calculations lead to

p(µ |Y ,V )∼ CN
(
v1F̃Γ−1

v y,
(

(v1F̃ )−1+(v2G̃)−1
)
−1
)

(16a)

p(vi |Y ,M ,Zi) ∼ IG(NY+αi,Ξi+βi) (16b)
p(zi |V i) ∼ G(αi, γi) (16c)

where the subscript m has been omitted for notational con-
venience and where Ξ1 = ||µ||

F̃
−1 , Ξ2 = ||y−µ||

G̃
−1 with

||x||Π , xHΠx, αi,m = 8ρi, βi,m = ρi
∑
m′∈Vv(m) zi,m′

and γi,m = (ρi
∑
m′∈Vz(m) v

−1
i,m′)

−1. All conditionals (16a–
16c) are standard laws that can be sampled efficiently, without
MHG steps. Finally, note that when the parameters vi,m
are assumed to be independent and have IG(ci, di) priors
instead of (13) (i.e., no smooth spatial evolution is assumed),
a Bayesian model is obtained that can also be sampled using
the GS steps (16a–16b), with αi,m = ci and βi,m = di.

IV. NUMERICAL EXPERIMENTS

We compare the performance of the proposed estimator
(denoted as GMRF) with its counterpart with an IG prior
(denoted as IG) and with the linear regression estimator (3)
(denoted as LF, with weights as in [7]) by applying it to
100 independent realizations of a cube of 323 voxels of
length N = 512. Each voxel is an independent realization
of MRW, with prescribed values c2 ∈ {−0.01,−0.03,−0.06}
as illustrated in Fig. 1. MRW belongs to the class of MMC
processes and possesses multifractal properties similar to those
of Mandelbrot’s multiplicative log-normal cascades, with scal-
ing exponents ζ(q) = (H− c2)q+ c2q

2/2, cf., [19] for details



Fig. 2. Estimation of c2 for one single realization: ground truth (1st
column) and estimates obtained using LF, IG and GMRF (2nd to 4th column,
respectively) for the 3 slices shown in Fig. 1 (from top to bottom).

(H = 0.72 for the results presented below). The regularization
parameters have been fixed a priori using cross-validation.
Illustration for a single realization. Fig. 2 displays es-
timates obtained for one single realization using LF, IG and
GMRF (2nd to 4th row, respectively) for the slices x = 16,
z = 10 and z = 23 shown in Fig. 1 and yields the
following conclusions. First, the LF estimator completely fails
to reveal the existence of two zones of voxels with constant
c2 ∈ {−0.03,−0.06} in the background of voxels with
c2 = −0.01. The IG estimator improves estimation accuracy
with respect to the LF such that the three groups of voxels
can be evidenced visually, but its variability is too large to
permit accurate identification of the voxels sharing the same
value for c2. In contrast, the GMRF estimator yields excellent
estimates that accurately capture the geometry of the three
zones of voxels and the corresponding values for c2.
Performance. The estimation performance for c2 is quan-
tified via the bias, standard deviation and root mean squared
error defined as b = Ê[ĉ2]−c2, std = (V̂ar[ĉ2])

1
2 and rmse =(

b2 +std2
) 1

2 , respectively. The results are given in Table I and
confirm the above conclusions. While IG reduces std values to
1
3 of those of LF, GMRF further and dramatically reduces std
values to 1

40 of those of LF, which clearly demonstrates the
effectiveness of the proposed joint Bayesian model. The bias
is found to be small but non-negligible for all three methods
(largest for LF and smallest for IG). As a result, gains in rmse
values for GMRF are smaller but still significant (rmse values
of GMRF are one order of magnitude below those of LF).

V. CONCLUSIONS

This paper has proposed a Bayesian procedure for the
joint estimation of c2 for spatio-temporal data (voxels). The
Bayesian model is composed of a data-augmented Whittle

likelihood for log-leaders and a GMRF joint prior for the
multifractality parameters for voxels and yields a significant
improvement in estimation performance for each voxel (by
more than one order of magnitude when compared to linear
regression). Moreover, it is designed in such a way that the
associated estimators can be approximated efficiently by an
MCMC algorithm. The proposed joint estimator enables, for
the first time, the reliable assessment of small differences of
c2 for voxels with as little as N = 512 samples. Future work
will include incorporation of the regularization parameters ρi
in the model and allowing them to differ for each voxel in
order to permit abrupt changes in the data while maintaining
strong smoothing within zones of voxels with constant c2.
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