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Abstract—Light detection and ranging (Lidar) single-photon
devices capture range and intensity information from a 3D
scene. This modality enables long range 3D reconstruction with
high range precision and low laser power. A multispectral
single-photon Lidar system provides additional spectral diversity,
allowing the discrimination of different materials. However, the
main drawback of such systems can be the long acquisition time
needed to collect enough photons in each spectral band. In this
work, we tackle this problem in two ways: first, we propose a
Bayesian 3D reconstruction algorithm that is able to find multiple
surfaces per pixel, using few photons, i.e., shorter acquisitions.
In contrast to previous algorithms, the novel method processes
jointly all the spectral bands, obtaining better reconstructions us-
ing less photon detections. The proposed model promotes spatial
correlation between neighbouring points within a given surface
using spatial point processes. Secondly, we account for different
spatial and spectral subsampling schemes, which reduce the total
number of measurements, without significant degradation of the
reconstruction performance. In this way, the total acquisition
time, memory requirements and computational time can be
significantly reduced. The experiments performed using both
synthetic and real single-photon Lidar data demonstrate the ad-
vantages of tailored sampling schemes over random alternatives.
Furthermore, the proposed algorithm yields better estimates than
other existing methods for multi-surface reconstruction using
multispectral Lidar data.

Index Terms—Bayesian inference, 3D reconstruction, Markov
chain Monte Carlo, Lidar, multispectral imaging, low-photon
imaging, Poisson noise

I. INTRODUCTION

Single-photon Lidar devices provide accurate range infor-
mation by constructing, for each pixel, a histogram of time de-
lays between emitted light pulses and photon detections. Using
time correlated single-photon counting (TCSPC) technology,
Lidar systems are able to provide accurate depth information
(of the order of centimetres) over very long ranges, while

c©2019 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. J.
Tachella, Y. Altmann and S. McLaughlin are with the School of Engineering,
Heriot-Watt University. M. Márquez is with the Department of Physics, Uni-
versidad Industrial de Santander. H. Arguello-Fuentes is with the Department
of Systems Engineering, Universidad Industrial de Santander. J.-Y. Tourneret
is with the Signal and Image Department, University of Toulouse. This work
was supported by the Royal Academy of Engineering under the Research Fel-
lowship scheme RF201617/16/31. This work was supported by EPSRC grant
number EP/R033013/1. This work was partly conducted within the ECOS
project ’Colored apertude design for compressive spectral imaging’ supported
by CNRS and Colciencias, and within the STIC-AmSud Project HyperMed.
MATLAB codes can be found at https://gitlab.com/Tachella/musapop.

allowing the use of laser sources of low power [1]. The
acquired range information (3D structure) has many important
applications, such as self-driving cars [2], the study of struc-
tures behind dense forests [3] and environmental monitoring
[4]. Multispectral Lidar (MSL) systems gather measurements
at many spectral bands, making it possible to distinguish
distinct materials, as illustrated in Fig. 1. For example, spectral
diversity was used in [5] to differentiate leaves from trunks and
in [6] to estimate plant area indices and abundance profiles.
The MSL modality consists of constructing one histogram of
time delays per wavelength, as shown in Fig. 2. The spectral
diversity can be obtained either using a supercontinuum laser
source [6], [7] or multiple lasers [8]. The detector generally
consists of a spatial form of wavelength routing to demultiplex
the channels [6]–[8] or wavelength-to-time codification [9].
Recovering spatial and spectral information from MSL data
is a challenging task, specially in scenes with strong ambient
illumination (i.e., multiple spurious detections) or when the
acquisition time is very low (i.e., very few photon detections
per histogram). Moreover, in a general setting, it is possible
to find more than one object per pixel. This phenomenon
occurs in scenes where the light goes through semi-transparent
materials (e.g., glass), or when the laser footprint is such that
multiple surfaces appear in the field of view. Thus, several
signal processing algorithms have been proposed to address
these challenges: while many algorithms are available for
single-wavelength Lidar, either assuming a single surface per
pixel [10]–[12] or multiple surfaces per pixel [13]–[15], to
the best of our knowledge, only the single-surface-per-pixel
case was studied in the multispectral case [7], [16], [17]. This
single-depth assumption greatly simplifies the reconstruction
problem, as it significantly reduces memory requirements and
overall complexity. Datasets containing dozens of wavelengths
can be prohibitively large for practical 3D reconstruction algo-
rithms, both in terms of memory and computing requirements.
For example, a typical MSL hypercube with 32 wavelengths
has more than 109 data voxels. To alleviate this problem,
some compressive acquisition strategies have been proposed.
While TCSPC technology hinders compressive techniques
along the depth axis1, reducing the number of measurements
can be achieved by integrating multiple wavelengths in a
single histogram [9] or measuring fewer histograms (i.e.,

1A coarse time-of-flight gating is applied to the photon detections, hindering
measurements of an arbitrary subset of histogram bins or linear combination
of them. However, other alternatives such as gated cameras [18] can provide
such measurements.
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Fig. 1. An airborne MSL system can capture multiple objects per pixel and
discriminate their materials. The multi-depth capability enables the recovery of
information from photons reflected off different branches of the trees, ground,
pedestrians or even from the interior of a car (i.e., photons which propagated
across the windshield) at an intra-pixel level. Moreover, the multispectral
information allows us to discriminate different properties of the materials
of each 3D object (e.g., the leaves and trunk of a tree).

subsampling) [16]. The wavelength-to-time approach proposed
by Ren et al. [9] is not well-suited in the presence of
multiple surfaces per pixel. Indeed, this method compresses
L histograms (associated with L wavelengths) into a single
waveform by shifting in time the photon detections according
to each measured wavelength. While significantly reducing the
data size, the resulting likelihood becomes highly multimodal
and extremely difficult to handle in the presence of multiple
surfaces. Different random subsampling schemes were studied
in [16] without obtaining any significant differences in terms
of reconstruction quality in the low-photon count regime.

In this work, we investigate a new pseudo-random sub-
sampling scheme for low-photon count MSL data based on
ideas from coded aperture design [19], [20]. By choosing the
pixels measured for each wavelength in a more principled
way, we achieve better results than the completely random
schemes of Altmann et al. [16]. Furthermore, the proposed
subsampling strategy can be easily implemented in many Lidar
systems, reducing the total number of measurements, i.e., the
time to acquire an MSL frame. Raster-scan systems using a
laser supercontinuum source [6], [7] can be easily modified
to measure only a subset of pixels per wavelength. More
interestingly, single-wavelength array technology [21] can be
combined with coded apertures [19], which acquire different
wavelengths at each pixel.

Furthermore, we propose a new method to perform 3D
reconstruction from subsampled MSL data, which is capable of
finding multiple surfaces per pixel. The novel method draws
ideas from a recently published algorithm named ManiPoP
[15], provided state-of-the-art reconstructions in the multiple
surface, single-wavelength case. However, due to the signifi-
cantly larger dimensionality of multispectral data, we propose
to modify the Bayesian model and estimation strategy of
ManiPoP. Adopting a Bayesian framework similar to [15],
we assign a spatial point process prior to promote spatial
correlation and a Gaussian Markov random field prior to regu-
larize the spectral reflectivity within surfaces/objects. Inference
using the resulting posterior distribution is performed using a
reversible jump Markov chain Monte Carlo algorithm (RJ-
MCMC), coupled with a multiresolution approach that im-
proves the convergence speed and reduces the total computing

time of the algorithm. We introduce new RJ-MCMC proposals,
which take into account the additional spectral dimension and
improve the acceptance ratio, compared to the ones proposed
in [15]. Moreover, we propose an empirical Bayes approach
to build the prior distribution associated with the background
detections, which further improves the convergence of the
RJ-MCMC sampler. Contrary to multi-depth methods that
require storage of dense volumetric estimates (e.g., [13], [14]
in the single-wavelength case and [22] in the multi-temporal
case), the memory requirements of the proposed method are
minimal (just the 3D points and spectral signatures are stored
in memory), enabling the acquisition and processing of very
large datasets (dozens of wavelengths and hundreds of pixels).

The main contributions of this work are
• a new Bayesian 3D reconstruction algorithm for subsam-

pled MSL data with multiple surfaces per pixel
• the analysis of an appropriate subsampling scheme based

on coded aperture design, which provides better results
than completely random alternatives.

The new algorithm is referred to as MuSaPoP, as it models
MultiSpectrAl Lidar signals using POint Processes. The re-
mainder of the paper is organized as follows. Section II recalls
the classical observation model for single-photon MSL data.
Sections III and IV present the Bayesian 3D reconstruction
algorithm and the associated RJ-MCMC sampler. Section V
details the principled subsampling strategy. Experiments per-
formed with synthetic and real Lidar data are introduced and
discussed in Section VI. Conclusions and future work are
finally reported in Section VII.

II. SINGLE-PHOTON MULTISPECTRAL LIDAR

A full multispectral Lidar data hypercube Z ∈
ZNr×Nc×L×T

+ consists of discrete photon count measure-
ments, where Z+ = {0, 1, . . . } is the set of positive integers,
Nr and Nc are the numbers of vertical and horizontal pixels
respectively, L is the number of acquired wavelengths and T
is the histogram length (i.e., the number of time bins). The
3D reconstruction algorithm estimates a point cloud, referred
to as Φ, from the data hypercube Z. The 3D point cloud is
represented by an unordered set of points, that is

Φ = {(cn, rn), n = 1, . . . , NΦ} (1)

where NΦ is the total number of points, and cn =
[xn, yn, tn]T ∈ [1, Nr] × [1, Nc] × [1, T ] ⊂ Z3

+ and rn =
[rn,1, . . . , rn,L]T ∈ RL+ are the coordinate vector and the
spectral response of the nth point, respectively. The observed
photon count at pixel (i, j), bin t and spectral band ` follows
a Poisson distribution [16], whose intensity is a mixture of the
background level, denoted by bi,j,`, and the responses of the
surfaces present in that pixel, i.e.,

zi,j,`,t|Φ, bi,j,` ∼ P

gi,j,`
∑
Ni,j

rn,`h`(t− tn) + bi,j,`


where P(·) denotes the Poisson distribution, gi,j,` ∈ {0, 1}
is a known binary variable that indicates whether wavelength
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Fig. 2. Example of an MSL system with three different wavelengths (red, green and blue). On the right, a schematic shows the working principles of a
single-photon multispectral Lidar device. The red, green and blue arrows illustrate the laser pulses sent by the laser sources and reflected by the target onto the
single-photon detectors. The white arrow depicts the background photons emitted by an ambient illumination source that reach the detectors at random times.
The figure on the left shows the collected histograms for a given pixel: the discrete measurements are depicted in red, green and blue, while the underlying
Poisson intensity (i.e., the parameters to estimate from the data) is shown in black.

` at pixel (i, j) has been acquired/observed or not, Ni,j =
{n : (xn, yn) = (i, j)} is the set of points corresponding
to pixel (i, j) and wavelength `, and h`(t) is the impulse
response of the Lidar device at wavelength `, which can be
measured using a spectralon panel during a calibration step.
Note that to lighten notations, we assume that the impulse
responses are only wavelength-dependent but the algorithm
can be easily adapted when the responses vary among pixels.
Assuming mutual independence between noise realizations in
different bins, pixels and spectral bands [1], the likelihood of
the proposed model can be written as

p(Z|Φ,B) =

Nc∏
i=1

Nr∏
j=1

L∏
`=1

T∏
t=1

p(zi,j,`,t|Φ, bi,j,`). (2)

For clarity in the notation, we will also denote the set of
point coordinates as Φc = {cn, n = 1, . . . , NΦ} and the set
of spectral responses as Φr = {rn, n = 1, . . . , NΦ}. The set
of all background levels is denoted by B = [b1, . . . , bL] ∈
RNr×Nc×L

+ , which is the concatenation of L images b`, one
for each wavelength. The cube of binary measurements is
designated by G ∈ {0, 1}Nr×Nc×L, where [G]i,j,` = gi,j,`.
Note that the model used in the ManiPoP algorithm [15] can
be obtained from (2) by setting all the binary variables to 1,
and considering only one band, i.e., L = 1.

III. MULTIPLE-RETURN MULTIPLE-WAVELENGTH 3D
RECONSTRUCTION

Recovering the position of the objects cn, their spectral
signatures rn and background levels B from the subsampled
MSL data Z is an ill-posed inverse problem, as many so-
lutions can explain the observed photon counts. Thus, prior
regularization is necessary to promote reconstructions in a set
of feasible 3D point clouds. In this work, we adopt a Bayesian
framework, which allows us to include prior knowledge about
the scene through tailored prior distributions assigned to the
parameters of interest.

A. Prior distributions

The proposed model considers prior regularization for the
point positions and reflectivity. As explained in Section III-A3,

an empirical Bayes prior [23] is assigned to the background
levels.

1) Spatial configuration: We adopt the spatial prior dis-
tribution of 3D points developed in the ManiPoP algorithm.
This distribution is designed to promote spatial correlation
between points within one surface and repulsion between
points belonging to different surfaces. While only a brief
summary is included below, we refer the reader to [15] for
a detailed discussion about this prior model. The spatial point
process prior for the position of the points is modelled by
a density defined with respect to a Poisson point process
reference measure [24, Chapter 9], i.e.,

f(Φc) ∝ f1(Φc)f2(Φc|γa, λa)

where f1(Φc) and f2(Φc|γa, λa) are the Strauss and area
interaction [25] processes respectively. The repulsive Strauss
process is written as

f1(Φc) ∝

 0 if ∃ n 6= n′ : xn = xn′ , yn = yn′

and |tn − tn′ | < dmin

1 otherwise

where dmin is the minimum separation between two surfaces
in the same pixel. Attraction between points within the same
surface is promoted by the area interaction process, that is

f2(Φc|γa, λa) ∝ λNΦ
a γ

−m
(⋃NΦ

n=1 S(cn)
)

a (3)

where m(·) denotes the standard Lebesgue measure, S(cn)
defines a convex set around the point cn, and γa and λa are
two hyperparameters, accounting for the amount of attraction
and total number of points, respectively. Both densities define
Markovian interactions between points, only correlating points
in a local neighbourhood. Moreover, the combination of both
processes implicitly defines a connected-surface structure,
which is used to model 2D manifolds in a 3D space.

2) Reflectivity: The spectral signatures are related to the
materials of the surfaces [17]. Neighbouring points corre-
sponding to a surface composed of a specific material show
similar spectral signatures. This prior information is added to
the model using a Gaussian Markov random field distribution,
where the neighbours are defined by the connected-surface
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structure of the point process prior. First, in order to avoid the
positivity constraint on the intensity rn,`, we use the canonical
form [26]–[28],

mn,` = log(rn,`) (4)

where mn,` ∈ R denotes the log-intensity of the nth point
at band `. As multispectral devices only acquire dozens of
well-separated wavelengths, the spectral measurements within
a pixel do not show significant correlation. Hence, although
potential correlations between wavelengths could be modelled,
we choose here to neglect this correlation to keep the esti-
mation strategy tractable. As a consequence, we consider the
following reflectivity prior model

p(Φr|σ2, β) =

L∏
`=1

p(m`|Φc, σ
2, β). (5)

Spatial correlations between log-intensity values in neighbour-
ing pixels are defined according to the distribution

m`|σ2, β,Φc ∼ N (0, σ2P−1) (6)

where σ2 and β are hyperparameters controlling the level of
smoothness. The precision matrix P is very sparse due to the
Markovian structure, being defined by

[P ]n,n′ =


β +

∑
ñ∈Mpp(cn)

1
d(cn;cñ) if n = n′

− 1
d(cn;cn′ )

if cn ∈Mpp(cn′)

0 otherwise
(7)

where Mpp(cn) is the set of neighbours of point cn, which
is obtained using the connected-surface structure illustrated in
Fig. 3, and d(cn; cñ) is the Euclidean distance between two
points, normalized according to the camera parameters of the
scene to have a physical meaning [29].

Fig. 3. Connectivity at an inter-pixel level. Two different surfaces are denoted
by the colours red and blue, where each square represents one pixel. Pixels
without points are represented by white squares. For simplicity, in this example
all points are considered to be present at the same depth. Note that each pixel
can be connected with at most 8 neighbours.

3) Background levels: Background detections are due to
detector dark counts and ambient illumination, as explained
in [13], [30]. If the transceiver system is mono-static2 [1],
the set of background levels can be interpreted as a multi-
spectral passive image of the scene, as background detections
generally come from ambient illumination reflected onto the
target and collected by the single-photon detector. In this
case, the background levels are strongly spatially correlated
within each wavelength. However, in bi-static systems [13], the
transmit and receive channels do not share the same objective

2In mono-static Lidar systems, the laser and detector are coaxial, whereas
in bi-static systems, the source and detector do not share the same axis.

lens aperture, yielding weakly or uncorrelated background
detections. Although not showing a strong spatial correlation
in this second case, all the background levels have similar
values, which also serves as prior information.

a) Independent prior distributions: In order to simul-
taneously model potential spatial correlation and ensure the
positivity of the background levels, ManiPoP uses a 2D gamma
Markov random field, which was introduced by Dikmen et al.
in [31]. However, this prior is not well suited for MSL data as
it introduces an undesired penalization for large background
levels, whose negative effects are amplified when considering
multiple bands (see Appendix A for details). Other alterna-
tives such as Gaussian Markov random fields [26] cannot be
sampled directly in closed form, requiring proposals with a
rejection step, whose mixing and convergence scale badly
with the dimension of the spectral cube, as shown in [32].
To alleviate these problems, we assign independent gamma
priors, i.e.,

p(B|K,Θ) =

Nr∏
i=1

Nc∏
j=1

L∏
`=1

p(bi,j,`|ki,j,`, θi,j,`)

bi,j,`|ki,j,`, θi,j` ∼ G(ki,j,`, θi,j`)

(8)

where [Θ]i,j,` = θi,j,` and [K]i,j,` = ki,j,` are the shape
and scale hyperparameters of the gamma distributions. Despite
using independent priors, we can capture the spatial correlation
by setting the hyperparameters (K,Θ) appropriately. More
precisely, in a similar fashion to variational Bayes [33] or
expectation propagation [34] methods, in order to simplify
the estimation of B, we specify (8) such that p(B|K,Θ)
is similar to another distribution q(B) =

∏L
`=1 q`(b`) which

explicitly correlates the background levels in neighbouring
pixels and assumes mutual independence between spectral
bands. Here, we use as a similarity criterion the Kullback-
Leibler divergence

(K,Θ) = arg min
K,Θ

KL(q||p). (9)

As discussed in Appendix B, solving (9) can be achieved by
computing expectations with respect to q(B).

b) Empirical Bayes approach: To ensure that the prior
model (8) is informative, a suitable distribution q(B) should
be chosen. Assuming that we have a coarse estimate of
the point cloud (this information will be obtained using the
multiresolution approach detailed in Section IV-B), we build
the distribution q(B) following an empirical Bayes approach,
as illustrated in Fig. 4. First, one can discard almost all the
signal photons in the dataset by removing the photons detected
in the compact support of h`(t) around each point (see Fig. 4,
central subplot). The number of bins that is not excluded in
each pixel is referred to as vi,j,`. Secondly, we integrate the
remaining photons of each pixel, obtaining a coarse estimate
of the per-pixel background photon levels, denoted by z̄i,j,`,b.
We then define q`(b`) ∝ p(z̄`|b`)p(b`|αB) with

z̄i,j,`,b|bi,j,` ∼ P(gi,j,`vi,j,`bi,j,`)

bi,j,` = exp(b̃i,j,` + µ`)

b̃`|αB ∼ N (0, αBD
−1)

(10)
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where b` a vectorized image of background levels at wave-
length `, D ∈ RNrNc×NrNc a positive semidefinite matrix,
αB is a fixed hyperparameter controlling the degree of smooth-
ness. In mono-static systems, a two-dimensional Laplacian fil-
ter is chosen forD to promote spatial correlation [26], whereas
in bi-static systems, D is replaced by the identity matrix, only
penalizing large background levels. µ` is a translation parame-
ter centring b̃i,j,` in the linear part of the exponential function
and is defined as µ` = log( 1

NrNc

∑Nr

i

∑Nc

j
z̄i,j,`,bgi,j,`

vi,j,`
). As

mentioned above, solving (9) requires the computation of
expectations with respect to q(B) which are unfortunately
not available in closed form. Instead of using additional
MCMC sampling to find numerical approximations (detailed
in Appendix B), obtaining samples from (10) is more attractive
both in terms of convergence and computational complexity
than using the original full datacube which includes mixtures
of background and signal photons. Indeed, (10) simply in-
volves integrated photon counts (over the range dimension).
Moreover, given the independence property of q(B) among
spectral bands, all the bands can be processed independently
in parallel when sampling B (see Section IV-A1).

Fig. 4. Computation of the hyperparameters for the priors of the background
levels. First, the photons due to the signal are removed from the dataset using
a coarse approximation of the point cloud. Secondly, the remaining photons
are integrated per pixel, giving a noisy background image. Finally, this image
is used to estimate uncertainty about the background levels, computing the
gamma hyperparameters K and Θ.

B. Posterior distribution

Following Bayes theorem, the joint posterior distribution of
the model parameters is given by

p(Φc,Φr,B|Z,Ψ) ∝ p(Z|Φc,Φr,B)p(Φr|Φc, σ
2, β)×

f1(Φc|γa, λa)f2(Φc|γst)π(Φc)p(B|K,Θ) (11)

where Ψ denotes the set of hyperparameters Ψ =
{γa, λa, γs, σ2, β,K,Θ} and π(·) is the Poisson point process
reference measure. Fig. 5 shows the directed acyclic graph
associated with the proposed hierarchical Bayesian model.

IV. INFERENCE

In this work, we compute the same posterior statistics as
in [15]: the point cloud positions and spectral signatures are
estimated using the maximum-a-posteriori (MAP) estimator

Φ̂ = arg max
Φ

p(Φ,B|Z,Ψ) (12)

and the minimum mean squared error estimator is considered
for B

B̂ = E{B|Z,Ψ}. (13)

Fig. 5. Directed acyclic graph (DAG) of the proposed hierarchical Bayesian
model. The variables inside squares are fixed, whereas the variables inside
circles are estimated.

As this expectation cannot be derived analytically, we propose
to investigate Markov Chain Monte Carlo (MCMC) simulation
methods. As in [15], we use a reversible jump MCMC
algorithm that can handle the varying dimension nature of the
spatial point process. This sampler generates Nm samples of
Φ and B from the posterior distribution (11) denoted as

{Φ(s),B(s) ∀s = 0, 1, . . . , Nm − 1}. (14)

These samples are then used to approximate the statistics of
interest, i.e.,

Φ̂ ≈ arg max
s=0,...,Nm−1

p(Φ(s),B(s)|Z,Ψ)

B̂ ≈ 1

Nm −Nbi

Nm∑
s=Nbi+1

B(s)

where Nbi is the number of burn-in iterations.

A. Reversible jump MCMC moves

While other stochastic simulation algorithms for varying
dimensions can be used [24], we choose an RJ-MCMC
sampler, as it allows us to build proposals tailored for the
MSL reconstruction problem. RJ-MCMC can be interpreted
as a natural extension of the Metropolis-Hastings algorithm
for problems with an a priori unknown dimensionality. Given
the actual state of the chain θ = {Φ,B} of model order NΦ, a
random vector of auxiliary variables u is generated to create a
new state θ′ = {Φ′,B′} of model order NΦ′ , according to an
appropriate deterministic function θ′ = g(θ,u). To ensure re-
versibility, an inverse mapping with auxiliary random variables
u′ has to exist such that θ = g−1(θ′,u′). The move θ → θ′

is accepted or rejected with probability ρ = min{1, r
(
θ,θ′

)
},

where r(·, ·) is defined as

r (θ,θ′) =
p(θ′|Z,Ψ)K(θ|θ′)p(u′)

p(θ|Z,Ψ)K(θ′|θ)p(u)

∣∣∣∣∂g(θ,u)

∂(θ,u)

∣∣∣∣ (15)

and K(θ′|θ) is the probability of proposing the move θ → θ′,
p(u) is the probability distribution of the random vector u, and∣∣∣∂g(θ,u)
∂(θ,u)

∣∣∣ is the Jacobian of the mapping g(·). The RJ-MCMC
algorithm performs birth/death, dilation/erosion, spatial and
mark shifts, and split/merge moves with probabilities pbirth,
1 − pbirth, pdilation, 1 − pdilation, pshift, pmark, psplit and 1 − psplit
respectively. Due to the Markovian nature of the prior distri-
butions, all the proposed moves are local, having a complexity
proportional to the size of the neighbourhood. These moves are
detailed in the following subsections. For ease of presentation,
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we summarize the main aspects of each move, inviting the
reader to consult Appendix C for more details.

a) Birth and death moves: The birth move proposes a
new point θ′ = (cNΦ+1,mNΦ+1) uniformly at random in the
3D cube. The spectral signature of the new point is proposed
by extracting a fraction (1−u`) from the current value of the
background level bi,j,` according to the signal-to-background-
ratio (SBR) [11] w`, that is for each wavelength `

u` ∼ U(0, 1), b′i,j,` = u`bi,j,`

emNΦ+1,` = w`(1− u`)bi,j,`
T∑T

t=1 h`(t)

, (16)

where U(0, 1) denotes the uniform distribution on the interval
(0, 1). The death move proposes the removal of a point. In
contrast to the birth move, we modify the background level
according to

b′i,j,` = bi,j,` + emNΦ+1,`

∑T
t=1 h`(t)

w`T
∀` = 1, . . . , L. (17)

b) Dilation and erosion moves: Birth moves have low
acceptance ratio, as the probability of randomly proposing
a point within or close to the surfaces of interest is very
low. However, this problem can be overcome by using the
current estimation of the surface to propose in regions of high
probability. The dilation move proposes a point inside the
neighbourhood of an existing surface with uniform probability
across all possible neighbouring positions where a point can
be added. Contrary to [15], where the intensity samples are
generated according to the prior distribution, the spectral
signature is sampled in the same way as the birth move
(16). The complementary move (named erosion), proposes to
remove a point cn with one or more neighbours. In this case,
the background is updated in the same way as the death move.

c) Mark and shift moves: As in ManiPoP, the mark
move updates the log-intensity of a randomly chosen point cn.
Each wavelength is updated independently using a Gaussian
proposal with variance δm as a proposal (also known as
Metropolis Gaussian random walk), that is

m′n,` ∼ N (mn,`, δm) ∀` = 1, . . . , L. (18)

Similarly, the shift move updates the position of a uniformly
chosen point using a Gaussian proposal with variance δt

t′n ∼ N (tn, δt) (19)

The values of δm and δt are adjusted by cross-validation3 to
yield an acceptance ratio close to 41% for each move, which
is the optimal value for a one dimensional Metropolis random
walk, as explained in [24, Chapter 4].

d) Split and merge moves: Some pixels might present
two points with overlapping impulse responses in depth. In
such cases, a death move followed by two birth moves would
happen with very low probability. Hence, as in ManiPoP, we
propose a split move, which randomly picks a point (cn,mn)
and proposes two new points, (c′k1

,m′k1
) and (c′k2

,m′k2
). The

3Intensities are normalized to belong to a fixed interval across datasets.
Hence, we can fix the variance of the proposal to achieve similar acceptance
ratios.

log-intensity is proposed for each wavelength following the
mapping 

u` ∼ B(η, η)

m′k1,` = mn,` + log(u`)

m′k2,` = mn,` + log(1− u`)
(20)

where B(·) denotes the beta distribution and η is a fixed
parameter. The new positions are determined according to

s` ∼ Be(0.5)

∆ ∼ U(dmin, Lh)

t′k1
= tn + (−1)s`∆

∑L
`=1(1− u`)emn,`∑L

`=1 e
mn,`

t′k2
= tn − (−1)s`∆

∑L
`=1 u`e

mn,`∑L
`=1 e

mn,`

(21)

where Be(·) denotes the Bernoulli distribution, Lh is the length
in bins of the instrumental response at the wavelength with
longest impulse response. The complementary move, named
merge move, is performed by randomly choosing two points
ck1 and ck2 inside the same pixel (xk1 = xk2 and yk1 = yk2 )
that satisfy the condition

dmin < |tk1 − tk2 | ≤ Lh ∀` = 1, . . . , L (22)

The merged point (c′n, r
′
n) is obtained by the inverse mapping

em
′
n,` = emk1,` + emk2,` ∀` = 1, . . . , L

t′n = tk1

∑L
`=1 e

mk1,`∑L
`=1 e

mk1,` + emk2,`
+ tk2

∑L
`=1 e

mk2,`∑L
`=1 e

mk1,` + emk2,`

which preserves the total pixel intensity and weights the spatial
shift of each peak according to the sum of the intensity values.

1) Sampling the background: In order to exploit the conju-
gacy between the Poisson likelihood and gamma priors for the
background levels, we use a data augmentation scheme as in
[35], which classifies each photon-detection according to the
source (target(s) or background), i.e.,

zi,j,t,` =
∑

n:(xn,yn)=(i,j)

z̃i,j,t,`,n + z̃i,j,t,`,b

z̃i,j,t,`,b ∼P(gi,j,`bi,j,`)

z̃i,j,t,`,n ∼P(gi,j,`rn,`h(t− tn))

where z̃i,j,t,`,n are the photons at bin t associated with the
nth surface and z̃i,j,t,`,b are the ones associated with the back-
ground. In the augmented space defined by (z̃i,j,t,`,n, z̃i,j,t,`,b),
the background levels are sampled as follows
z̃i,j,t,`,b ∼ B

(
zi,j,l,t,

bi,j,`∑
n:(xn,yn)=(i,j) rn,`h(t− tn) + bi,j,`

)

bi,j,` ∼ G

(
ri,j,` +

T∑
t=1

z̃i,j,t,`,b,
θi,j,`

gi,j,`Tθi,j,` + 1

)
(23)

where B(·) denotes the Binomial distribution. The transition
kernel defined by (23) produces samples of bi,j,` distributed
according to the marginal posterior distribution of B. In
practice, we observed that only one iteration of this kernel
is sufficient.
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B. Full algorithm

We adopt a multi-resolution approach to speed up the
convergence of the RJ-MCMC algorithm, in a fashion similar
to [15]. The dataset is downsampled by integrating photon
detections in patches of Nbin×Nbin pixels. Hence, the number
of pixels is reduced by a factor of N2

bin, meaning less points
and background levels to infer with N2

bin times more photons
per pixel. The estimated point cloud at the coarse scale is
upsampled using a simple nearest neighbour algorithm and
used as initialization for the next (finer) scale. In all our
experiments we repeat the process for K = 3 scales. The
background hyperpriors K and Θ are initialized with non-
informative values, i.e., ki,j,` = 0.01 and θi,j,` = 100 for
all pixels (i, j) and wavelengths `. In finer scales, these
hyperparameters are computed using the algorithm detailed
in Section III-A3. The multi-resolution approach is finally
summarized in Algorithm 1.

Algorithm 1 Multiresolution MuSaPoP
Input: MSL waveforms Z, hyperparameters Ψ, window
size Nbin and number of scales K.
Initialization:
Φ

(0)
1 ← ∅

B
(0)
1 ← sample from (23)

(K1,Θ1)← non-informative hyperparameter values
Main loop:
for k = 1, . . . ,K do

if k > 1 then
(Φ

(0)
k ,B

(0)
k )← upsample(Φ̂k−1, B̂k−1)

Compute hyperparameters (Kk,Θk) and SBR using
Section III-A3

end if
(Φ̂k, B̂k)←MuSaPoP(Zk, (Φ

(0)
k ,B

(0)
k ),Ψk,SBR)

end for
Output: (Φ̂K , B̂K)

V. SUBSAMPLING STRATEGY

Despite not being able to design compressive measurements
along the depth axis, we can still reduce the number of
measurements in the two spatial (horizontal and vertical)
dimensions and in the spectral dimension [16]. Given the
point positions, recovering their reflectivity profile reduces to
a multispectral image restoration problem using measured data
corrupted by Poisson noise. While many compressive sensing
strategies have been proposed for measurements under this
noise assumption [36]–[38], MSL datasets have an additional
limitation if multiple surfaces per pixel are considered: photon-
detections belonging to different wavelengths cannot be inte-
grated into a single histogram, as the reconstruction problem
generally becomes highly non-convex, preventing practical
reconstruction algorithms4. Indeed, summing histograms asso-
ciated with different wavelengths and including multiple peaks

4As mentioned in the introduction, the system presented in [9] considers
the integration of photons belonging to different histograms, but is limited to
one surface per pixel.

generates histograms with even more peaks (possibly overlap-
ping), which makes the 3D reconstruction and the reflectivity
estimation more difficult. As a consequence, we only consider
subsampling of depth histograms, which incorporates all of the
practical sampling limitations. Following the formulation of
the observation model (2), the subsampling strategy consists
of choosing the binary coefficients G for a given compres-
sion level W/L, with W the average number of observed
band per pixel. Several subsampling strategies have been
proposed for different applications, such as halftoning and
stippling [39], rendering, compressive spectral imaging [40]–
[42], compressive computed tomography [43], [44], geometry
processing [45], amongst others [46]–[48]. These approaches
exploit the sampling geometry of the sensing devices to design
a set of criteria. Similarly to coded aperture snapshot spectral
imaging systems, the distribution of reflectivity profiles of 3D
surfaces in real natural scenes suggests uniform sampling in
the row, column and spectral axes. Following the design in
Correa et al. [20], the coefficients are chosen according to the
spatiotemporal characteristics of blue noise, which distributes
the measurements in spectral and spatial dimensions as ho-
mogeneously as possible [49]. The binary cube G is obtained
by minimizing the variance of (weighted) measurements per
local neighbourhood, i.e.,

arg min
G

VAR


L∑
`=1

∑
(i′,j′)∈M(i,j)

ss

wi′,j′gi′,j′,`


subject to

L∑
`=1

gi,j,` = W ∀(i, j)

where VAR{·} denotes the variance operator, M(i,j)
ss denotes

the set of pixels in a local neighbourhood of (i, j) and wi′,j′
are the weights. The minimization is simplified by dividing
the data in slices of L/W contiguous bands and running the
algorithm introduced in [20] per slice. As shown in Fig. 6,
the proposed strategy distributes the measurements uniformly
in space, while other random strategies [16] tend to exhibit
clusters, leaving some regions without measurements.
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Fig. 6. Subsampling strategies for a Lidar cube with L = 8 wavelengths,
Nr = Nc = 32 pixels and total compression of 1/L, i.e., one observed band
per pixel. The sampled pixels at the first wavelength are shown in white. A
completely random strategy [16] is shown in (b), whereas the one proposed
here is shown in (a).
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Hyperparameter Coarse scale Fine scale
γa e2 e3

λa (NrNr/N2
bin)1.5 (NrNr)1.5

Nb 8Nbin∆p/∆bin 8∆p/∆bin
dmin 2Nb + 1 2Nb + 1
σ2 0.62 0.62/Nbin
β σ2/100 σ2/100

TABLE I
HYPERPARAMETERS VALUES

VI. EXPERIMENTS

To illustrate the efficacy of the proposed method, the new
reconstruction algorithm is compared to other alternatives
(based on the work conducted in [6]) using a synthetic dataset.
Subsequently, the new subsampling scheme is compared with
other random subsampling choices for a real MSL dataset. In
all the experiments, the performance was measured using the
following summary statistics:
• True detections Ftrue(τ): Probability of true detection as

a function of the distance τ , considering an estimated
point as a true detection if there is another point in the
ground truth point cloud in the same pixel (xtrue

n = xest
n′

and ytrue
n = yest

n′ ) such that |ttrue
n − test

n′ | ≤ τ .
• False detections Ffalse(τ): Number of estimated points

that cannot be assigned to a ground truth point at a
distance τ .

• Mean intensity absolute error at distance τ (IAE): Mean
across all the points of the intensity absolute error∑L
`=1 |rtrue

n,` − rest
n′,`|, normalized with respect to the total

number of ground truth points. The ground truth and
estimated points are coupled using the probability of de-
tection Ftrue(τ). Note that if a point was falsely estimated
or a ground truth point was not found, then they are
considered to have resulted in an error of

∑L
`=1 |rn,`|.

The comparison is done with normalized intensity values,
that is

∑T
t=1 h`(t) = 1 for ` = 1, . . . , L.

• Background normalized mean squared error NMSEB:
Mean of the normalized squared error of the
estimated background at each wavelength, i.e.,
1
L

∑L
`=1

∑Nr
i=1

∑Nr
j=1(btrue

i,j,`−b̂i,j,`)2∑Nr
i=1

∑Nr
j=1 (btrue

i,j,`)
2 .

A. Synthetic data

We first assessed the performance of the proposed algo-
rithm using a synthetic dataset created from the “Art” scene
of the Middlebury dataset [50], as shown in Fig. 7. The
measurements were obtained by simulating the single-photon
multispectral Lidar system of [17], whose bin width is 0.3 mm.
The generated dataset has Nr = 283 and Nc = 231 pixels,
T = 4500 histogram bins and L = 4 wavelengths (red, green,
blue and yellow), where only W = 2 wavelengths out of 4
were sampled per pixel using the coded aperture introduced
in Section V. The mean number of photons per wavelength
per pixel is 10, where approximately 3.4 photons are due to
the background illumination. As in mono-static Lidar systems,
the background levels are generated as a passive image of the
scene (see Fig. 9).

We compared the proposed method to a two-stage algorithm
that first estimates the point positions using ManiPoP [15]

Fig. 7. Synthetic “Art” scene from Middlebury dataset with an additional
semitransparent surface (blue plane).

(single-wavelength multiple-return state-of-the-art algorithm)
by integrating the photons across wavelengths and then infers
the spectral signatures with fixed point positions, similarly
to the procedure suggested by Wallace et al. [6]. The re-
sulting method, referred to as ManiPoP #1, is summarized
in Algorithm 2. We also compared with ManiPoP in the
strict single-wavelength setting, by choosing the most powerful
wavelength and using the same total acquisition time per pixel
than in the multispectral case (i.e., a per-pixel acquisition time
W = 2 longer than the one considered for each wavelength in
MuSaPoP). This second alternative is referred to as ManiPoP
#2.

Algorithm 2 ManiPoP #1 [6], [15]
Input: MSL waveforms Z
Depth estimation: Accumulate photons across wave-
lengths z′i,j,t =

∑
` zi,j,`,t for all pixels (i, j)

(Φ̂, B̂)←ManiPoP(Z′)
for ` = 1, . . . , L and ` 6= w do

Update (Φ̂, B̂) using ManiPoP(Z`) in a fixed dimen-
sional setting (only using background and reflectivity
moves)

end for
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MuSaPoP ManiPoP #1 ManiPoP #2

Fig. 8. From left to right: Ftrue(τ), Ffalse(τ) and IAE(τ) for the proposed
method and the two alternatives.

Fig. 8 illustrates Ftrue(τ), Ffalse(τ) and IAE for both meth-
ods. The proposed algorithm performs better than the other
alternatives, as it finds 97.7% of the true points, whereas
ManiPoP #1 and #2 only recover 95.34% and 89.6% respec-
tively. ManiPoP #1 relies on an approximate impulse response
h̃(t) =

∑L
`=1 h`(t), which biases the depth estimates, as the

true accumulated response varies across points depending on
their spectral signature5. The bias degrades the performance
in terms of average depth absolute error (computed for true
detections within a distance of 9 mm from the ground truth
point). The proposed method obtains an average error of 3.9

5Note that this bias can be arbitrarily large depending on the variations of
h`(t) across wavelengths.
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mm, whereas the estimates by ManiPoP #1 present an average
error of 5.7 mm. Despite having double acquisition time for
the single-wavelength, ManiPoP #2 fails to find points corre-
sponding to materials that have very low reflectivity in the blue
wavelength (e.g., the red helicoidal structure shown in Fig. 7).
The proposed MuSaPoP algorithm performs slightly worse in
terms of false detections, finding 3 times more false points
than the competitor methods. In terms of intensity estimation,
MuSaPoP obtains better results, having an asymptotic IAE of 1
photon, whereas the alternatives #1 and #2 provide IAE equal
to 1.1 and 2.7. The estimated background levels are shown
in Fig. 9. The proposed method yields a better background
NMSE (0.04) than alternatives #1 (0.14) and #2 (0.79). The
improvement in background estimation over the ManiPoP
alternatives can be attributed to the use of an empirical Bayes
prior instead of a gamma Markov random field. The total
execution time was 811 s for MuSaPoP and 294 and 348 s
for alternatives #1 and #2.

Ground truth MuSaPoP ManiPoP #2ManiPoP #1

Fig. 9. From left to right: Ground truth background levels, estimates obtained
by MuSaPoP and the two ManiPoP alternatives. Only the red, blue and
green channels were used to generate these images. The proposed method
provides smooth estimates due to the empirical prior distribution described in
Section III-A3. ManiPoP #2 only estimates one wavelength, which is shown
in grayscale.

B. Real MSL data

The proposed subsampling scheme was evaluated on a real
MSL dataset [17]. The scene consists of L = 32 wavelengths
sampled at regular intervals of 10 nm from 500 nm to 810 nm,
Nr = Nc = 198 pixels and T = 4500 histogram bins. The
target is composed by a series of blocks of different types of
clay and two leaves. Fig. 10 shows an RGB image of the scene
and the 3D reconstruction using acquisition times up to 10 ms
per wavelength per pixel. We compare the blue noise codes
mentioned in Section V with the random schemes introduced
in [16], all yielding the same total number of measurements
and acquisition time:

1) Random sampling without overlap: W out of L bands
per pixel are sampled without replacement (i.e., for a
given pixel, each wavelength is measured at most once).

2) Random sampling without overlap: For each wavelength,
W/L% of the pixels are sampled without replacement.

3) Proposed sampling method: For each wavelength,
W/L% of the pixels are chosen following the scheme
presented in Section V.

The codes were evaluated for W = 1, 2, 4, 8, 16 bands per
pixel and acquisition times of 0.1, 1 and 10 ms per measure-
ment (i.e., the histogram of one wavelength), using as ground-
truth the reconstruction obtained with all the measurements
and an acquisition time of 10 ms. Fig. 11 shows the percentage
of true detections, IAE and background NMSEs for all codes,
acquisition times and numbers of sensed bands per pixel W .

(a) (b)

Fig. 10. (a) is an RGB image of the target and (b) shows the 3D reconstructed
scene (the colors were generated according to the CIE 1931 RGB color space).

All the evaluated compressive strategies yield good results,
where a small improvement can be obtained by the use of
blue noise codes. In terms of total number of estimated
points, the blue noise codes achieve better performance in
high compression scenarios W = 1, 2 and low acquisition
times (0.1 and 1 ms). For example, for an acquisition time
of 1 ms, almost all points are reconstructed using blue noise
codes, whereas the random codes only yield around 97% of
the ground-truth points. The choice of blue noise codes has
a stronger impact in terms of IAE, achieving smaller IAE for
all acquisition times and number of bands per pixel. Fig. 12
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Fig. 11. Ftrue(τ), Ffalse(τ) and IAE(τ) obtained with the proposed recon-
struction method for different acquisition times and sensed bands per pixel.

shows the execution time for acquisition times of 10, 1 and 0.1
ms and different numbers of sensed bands. The proposed RJ-
MCMC sampler has a complexity proportional to the number
of photon detections in the support of the impulse response
around the 3D point being modified, whereas the background
update has a complexity proportional to the total number of
active histogram bins in the Lidar scene. The background
extraction step required around 15% of the total execution
time, which could be significantly reduced if all the bands
were processed in parallel instead of sequentially as it is
done in the current implementation. All the experiments were
performed using a Matlab R2018a implementation on a i7-3.0
GHz desktop computer (16GB RAM).

Finally, we compared the performance of MuSaPoP with
the single-depth multiple-wavelength algorithm by Altmann
et al. [16]. The algorithm is referred to as Depth TV and
considers total variation regularizations for the background,
reflectivity and depth images. Note that this method requires
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Fig. 12. Total execution time for different number of sensed bands per pixel
and acquisition times of 0.1, 1 and 10 ms.

a (global) depth interval where all signal photons are found,
which is given manually by the user. We also considered a
target detection scenario (i.e., some pixels without surfaces),
by removing the backplane of the scene and keeping only
photons associated with background levels. In this case, we
post-process the Depth TV estimates, removing points with a
mean normalized intensity below 10%, which gave the best
results across the evaluated datasets. In both experiments, we
used the blue noise codes with W = 8 wavelengths per pixel
out of L = 32. Fig. 13 shows the 3D reconstructions obtained
by MuSaPoP and Depth TV using an acquisition time of 10
ms. Fig. 14 shows the performance of both algorithms in
terms of true and false detections. MuSaPoP performs better
in the 1 and 0.1 ms cases, whereas Depth TV obtains better
depth estimates in the lowest acquisition time case (0.01 ms).
However, in the 0.01 ms case without backplane, the intensity
thresholding step does not remove backplane points, hence
obtaining a very large number of false detections. This result
illustrates the inefficiency of simple thresholding in target
detection scenarios, whereas MuSaPoP includes these cases
within its general formulation. Table II shows the performance
of both algorithms in terms of IAE, background NMSE and
execution time. The proposed method yields a better IAE
than Depth TV (approximately half), as the latter tends to
smooth out details within the blocks and leaves, as shown
in Fig. 13. Moreover, in terms of background NMSE, Depth
TV fails to provide good estimates in the low-photon cases,
as it only considers photon counts within the global interval
without signal returns. The execution time of Depth TV was
significantly higher than MuSaPoP.

Fig. 13. From left to right: 3D reconstructions obtained by the proposed
method and Depth TV for an acquisition time of 10 ms. Note that Depth
TV tends to smooth out fine scale details (zoom for better visualization).
Moreover, the thresholding step used in Depth TV removes some low intensity
points in the borders of each 3D object.

VII. CONCLUSIONS AND FUTURE WORK

This paper has studied a new 3D reconstruction algorithm
referred to as MuSaPoP using multispectral Lidar data, which
is able to find multiple surfaces per pixel. The proposed
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Fig. 14. True and false point detections for MuSaPoP and Depth TV for the
real MSL dataset with (top row) and without (bottom row) backplane. Solid,
dashed and dotted lines represent the datasets with acquisition times of 1, 0.1
and 0.01 ms respectively.

Backplane Yes No
Acq. time [ms] 1 0.1 0.01 1 0.1 0.01

IAE
[photons]

Depth TV 36 3.7 0.5 45 4.9 0.8
MuSaPoP 14 1.7 0.3 19 2.4 0.4

Bkg.
NMSE

Depth TV 0.12 >1 >1 0.12 >1 >1
MuSaPoP 0.04 0.11 0.36 0.04 0.11 0.26

Execution
time [h]

Depth TV 19.8 17.9 17.7 19.3 17.9 17.7
MuSaPoP 2.8 1.4 1.0 1.5 1 0.8

TABLE II
IAE, BACKGROUND NMSE AND EXECUTION TIME OF DEPTH TV AND
THE PROPOSED METHOD FOR THE BLOCKS AND LEAVES DATASET WITH

AND WITHOUT THE BACKPLANE.

method leads to better reconstruction quality than other al-
ternatives, as it considers all measured wavelengths in a
single observation model. While based on some ideas initially
investigated in ManiPoP [15], MuSaPoP also relies on new
strategies to deal with the very high dimensionality of the
multispectral problem. The first novelty is the use of an
empirical Bayes prior for the background levels, which speeds
up significantly the RJ-MCMC algorithm. A second improve-
ment is the adapted dilation/erosion and split/merge moves
for the multispectral case, profiting from SBR estimates to
increase the acceptance rate. Finally, the subsampling strategy
further reduces both the algorithm’s complexity and total
number of measurements, leading to faster acquisitions and
reconstructions. The sparse point cloud representation of the
proposed method speeds up the computations proportionally
to the number of measurements, whereas other dense models
[13], [14] would not achieve similar improvements.

Further work will be devoted to the design of compressive
systems that are not limited to subsampling the spectral cube.
Moreover, the compression can also be extended to depth
information, for example using a range-gated camera [18].

APPENDIX A
GAMMA MARKOV RANDOM FIELD

Most classical prior distributions (often referred to as reg-
ularization terms in the convex optimization literature) for
images, such as Laplacian [26] and total variation [51], only
penalize variations between neighbouring pixels, ignoring the
mean intensity of the image. However, the gamma Markov
random field [31], includes a penalization on the mean in-
tensity, which promotes pixels with smaller values. This can
be shown by inspecting the marginal distribution (defined as
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[32]),

p(B|αB) ∝
L∏
`=1

Nc∏
i=1

Nr∏
j=1

bαB−1
i,j,`(∑

(i′,j′)∈MB
bi′,j′,`

)αB
(24)

where αB is a hyperparameter controlling the degree of
smoothness and MB denotes the set of pixels in the neigh-
bourhood of pixel (i, j). For an image of constant intensity c,
we have bi′,j′,` = bi,j,` = c for all pixels and spectral bands,
yielding the density

p(B|αB) ∝
L∏
`=1

Nc∏
i=1

Nr∏
j=1

c−1 =

Nc∏
i=1

Nr∏
j=1

c−L. (25)

This dependency on the mean promotes reconstructions with
lower background levels, decreasing the acceptance ratio of
death and erosion moves (that propose to increase the back-
ground levels). In the case of ManiPoP, only one band is con-
sidered (L = 1). Thus, the bias towards smaller background
levels does not impact the overall reconstruction significantly.
However, in the MSL case (L� 1), the reconstruction quality
is reduced, hindering the use of gamma Markov random fields.

APPENDIX B
EMPIRICAL PRIOR FOR THE BACKGROUND LEVELS

The prior for the background levels is chosen to minimize
the Kullback-Leibler divergence in (9), where the correlated
model q is given by (10). The minimization of (9) can be
written as

(K,Θ) = arg min
(K,Θ)

−Eq{log p(B|K,Θ)}. (26)

Considering the product of independent gamma distributions
in (8), the problem reduces to

(ki,j,`, θi,j,`) = arg min
(ki,j,`,θi,j,`)

Eq{bi,j,`}
θi,j,`

− ki,j,` (Eq{log bi,j,`} − log θi,j,`) + log Γ(ki,j,`) (27)

for all pixels i = 1, . . . , Nr and j = 1, . . . , Nc and
wavelengths ` = 1, . . . , L. The expected values Eq{bi,j,`}
and Eq{log bi,j,`} cannot be obtained in closed form for
the Poisson-Gaussian model of (10). Thus, we approximate
them numerically by obtaining MCMC samples of b̃i,j,`.
As explained in [32], off-the-shelf sampling strategies (e.g.,
Hamiltonian Monte Carlo [24, Chapter 9]) do not scale
well with the dimension of the problem, being inefficient
when applied to large multispectral Lidar datasets. Hence,
we consider proposals from a Gaussian approximation of
(10) (as detailed in [26]) using the perturbation optimization
algorithm [52], accepting or rejecting them according to the
Metropolis-Hastings rule [24], [26]. We generate 103 samples
{b̃(s)i,j,`, s = 1, . . . , 103} and compute the desired expected
values as

Eq{bi,j,`} =
∑
s

exp b̃
(s)
i,j,` (28)

Eq{log bi,j,`} =
∑
s

b̃
(s)
i,j,`. (29)

Finally, the values of the hyperparameters are obtained by
setting θi,j,` = Eq{bi,j,`} and minimizing (27) with a one-
dimensional Newton method.

APPENDIX C
COMPLETE EXPRESSIONS OF THE RJ-MCMC MOVES

The birth move of point (cNΦ+1, rNΦ+1) has an acceptance
ratio given by ρ = min{1, r (θ,θ′)} with

r (θ,θ′) =

 C1 if |tNΦ+1 − tn| > dmin ∀n 6= NΦ + 1 :
xn = xNΦ+1 and yn = yNΦ+1

0 otherwise

where C1 is defined as

C1 =

L∏
`=1

T∏
t=1

∑n:xn=i
yn=j

r′n,`h`(t− t′n) + b′i,j,`∑
n:xn=i
yn=j

rn,`h`(t− tn) + bi,j,`

zi,j,t,`

pdeath

pbirth

λaγ
−m

(
S(cNΦ+1)\

⋃
n′∈Mpp(cNΦ+1) S(cn′ )

)
a

1

NΦ + 1

(
|P ′|
|P |

1

2πσ2

)L
2

L∏
`=1

exp

− ∑
n′∈Mpp(cn)

(mNΦ+1,` −mn′,`)
2

2σ2d(cNΦ+1; cn′)
− mNΦ+1,`

2β

2σ2


(1− u)−L

L∏
`=1

exp

(
gi,j,`rNΦ+1,`(1− w`−1)

(
T∑
t=1

h`(t)

))
∏

(i,j)∈MB(bi,j)

L∏
`=1

(
b′i,j,`
bi,j,`

)ri,j,`−1

exp(
bi,j,` − b′i,j,`

θi,j,`
).

Similarly, the death move is accepted with probability ρ =
min{1, C−1

1 }, where the term 1
NΦ+1 in the second line is

replaced by 1
NΦ

. The dilation move of point (cNΦ+1, rNΦ+1)
is accepted with probability ρ = min{1, r (θ,θ′)} with

r (θ,θ′) =

 C2 if |tNΦ+1 − tn| > dmin ∀n 6= NΦ + 1
xn = xNΦ+1 and yn = yNΦ+1

0 otherwise

where C2 is defined as

C2 =

L∏
`=1

T∏
t=1

∑n:xn=i
yn=j

r′n,`h`(t− t′n) + b′i,j,`∑
n:xn=i
yn=j

rn,`h`(t− tn) + bi,j,`

zi,j,t,`

perosion

pdilation

λaγ
−m

(
S(cNΦ+1)\

⋃
n′∈Mpp(cNΦ+1) S(cn′ )

)
a

(
|P ′|
|P |

1

2πσ2

)L
2

NΦ(2Nb + 1)∑
m∈Mpp(cNΦ+1) #Mpp(cm)

× 1∑NΦ+1
m=1 1Z+(#Mpp(cm))

L∏
`=1

exp

− ∑
n′∈Mpp(cn)

(mNΦ+1,` −mn′,`)
2

2σ2d(cNΦ+1; cn′)
− mNΦ+1,`

2β

2σ2


(1− u)−L

L∏
`=1

exp

(
gi,j,`rNΦ+1,`(1− w`−1)

(
T∑
t=1

h`(t)

))
∏

(i,j)∈MB(bi,j)

L∏
`=1

(
b′i,j,`
bi,j,`

)ri,j,`−1

exp(
bi,j,` − b′i,j,`

θi,j,`
).
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A shift of the point (cn, rn) to the new position c′n =
[xn, yn, t

′
n]T has an acceptance probability of ρ =

min{1, r (θ,θ′)} with

r (θ,θ′) =

 C3 if |t′n − tm| > dmin ∀n 6= m
xm = xn and ym = yn

0 otherwise

where

C3 =

L∏
`=1

T∏
t=1

∑n:xn=i
yn=j

r′n,`h`(t− t′n) + b′i,j,`∑
n:xn=i
yn=j

rn,`h`(t− tn) + bi,j,`

zi,j,t,`

L∏
`=1

exp

− 1

2σ2

 ∑
n′∈Mpp(c′n)

(mn,` −mn′,`)
2

d(c′n; cn′)


(
|P ′|
|P |

)L
2

L∏
`=1

exp

 1

2σ2

 ∑
n′∈Mpp(cn)

(mn,` −mn′,`)
2

d(cn; cn′)


γ
−m

(
S(c′n)\

⋃
n′∈Mpp(c′n) S(cn′ )

)
+m

(
S(cn)\

⋃
n′∈Mpp(cn) S(cn′ )

)
a .

A mark update randomly picks a point (cn, rn) and proposes
a new spectral signature r′n = log(m′n). Each spectral log-
intensity is accepted independently with probability ρ =
min{1, C4}, where

C4 =

L∏
`=1

T∏
t=1

∑n:xn=i
yn=j

r′n,`h`(t− t′n) + b′i,j,`∑
n:xn=i
yn=j

rn,`h`(t− tn) + bi,j,`

zi,j,t,`

exp

− 1

2σ2

 ∑
n′∈Mpp(c′n)

(m′n,` −mn′,`)
2

d(c′n; cn′)
+m′n,`

2
β


exp

 1

2σ2

 ∑
n′∈Mpp(cn)

(mn,` −mn′,`)
2

d(cn; cn′)
+m2

n,`β


L∏
`=1

exp

(
gi,j,`(rn,` − r′n,`)(1− w`−1)

(
T∑
t=1

h`(t)

))
.

The split move from (cn = [xn, yn, tn]T , rn) to (c′k1 =
[xn, yn, t

′
k1

]T , r′k1
) and (c′k2 = [xn, yn, t

′
k2

]T , r′k2
) is ac-

cepted with probability ρ = min{1, r (θ,θ′)}, where

r (θ,θ′) =

 C5 if |t′n − tm| > dmin ∀n 6= m :
xm = xn and ym = yn

0 otherwise

and

C5 =

L∏
`=1

T∏
t=1

∑n:xn=i
yn=j

r′n,`h`(t− t′n) + b′i,j,`∑
n:xn=i
yn=j

rn,`h`(t− tn) + bi,j,`

zi,j,t,`

(u(1−u))−LNΦ(# points in Φ that verify (22))−1

(
|P ′|
|P |

)L
2

L∏
`=1

exp

− 1

2σ2

 ∑
n′∈Mpp(c′k1

)

(mk1,` −mn′,`)
2

d(c′k1
; cn′)


L∏
`=1

exp

− 1

2σ2

 ∑
n′∈Mpp(c′k2)

(mk1,` −mn′,`)
2

d(c′k2
; cn′)


L∏
`=1

exp

 1

2σ2

 ∑
n′∈Mpp(cn)

(mn,` −mn′,`)
2

d(cn; cn′)


γ
−m

(
S(c′k1

)\
⋃

n′∈Mpp(c′k1
) S(cn′ )

)
+m

(
S(cn)\

⋃
n′∈Mpp(cn) S(cn′ )

)
a

λaγ
−m

(
S(c′k2

)\
⋃

n′∈Mpp(c′k2
) S(cn′ )

)
a 2(dmin + Lh)

pmerge

psplit
.

Finally, the merge move is accepted with probability ρ =
min{1, C−1

5 }.
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