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Abstract

This paper presents a multi-band image fusion algorithm based on unsupervised spectral un-

mixing for combining a high-spatial low-spectral resolution image and a low-spatial high-spectral

resolution image. The widely used linear observation model(with additive Gaussian noise) is

combined with the linear spectral mixture model to form the likelihoods of the observations.

The non-negativity and sum-to-one constraints resulting from the intrinsic physical properties of

the abundances are introduced as prior information to regularize this ill-posed problem. The joint

fusion and unmixing problem is then formulated as maximizing the joint posterior distribution with

respect to the endmember signatures and abundance maps, This optimization problem is attacked

with an alternating optimization strategy. The two resulting sub-problems are convex and are solved

efficiently using the alternating direction method of multipliers. Experiments are conducted for

both synthetic and semi-real data. Simulation results showthat the proposed unmixing based fusion

scheme improves both the abundance and endmember estimation comparing with the state-of-the-art

joint fusion and unmixing algorithms.
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Multi-band image fusion, Bayesian estimation, block circulant matrix, Sylvester equation, al-

ternating direction method of multipliers, block coordinate descent.

I. INTRODUCTION

Fusing multiple multi-band images enables a synergetic exploitation of complementary

information obtained by sensors of different spectral ranges and different spatial resolutions.

In general, a multi-band image can be represented as a three-dimensional data cube indexed

by three exploratory variables(x, y, λ), wherex andy are the two spatial dimensions of the

scene, andλ is the spectral dimension (covering a range of wavelengths). Typical examples

of multi-band images include hyperspectral (HS) images [2], multi-spectral (MS) images

[3], integral field spectrographs [4], magnetic resonance spectroscopy images [5]. However,

multi-band images with high spectral resolution generallysuffers from the limited spatial

resolution of the data acquisition devices, mainly due to physical and technological reasons.

These limitations make it infeasible to acquire a high spectral resolution multi-band image

with a spatial resolution comparable to those of MS and panchromatic (PAN) images (which

are acquired in much fewer bands) [6]. For example, HS imagesbenefit from excellent

spectroscopic properties with several hundreds or thousands of contiguous bands but are

limited by their relatively low spatial resolution [7]. As aconsequence, reconstructing a

high-spatial and high-spectral multi-band image from multiple and complementary observed

images, although challenging, is a crucial inverse problemthat has been addressed in various

scenarios. In particular, fusing a high-spatial low-spectral resolution image and a low-spatial

high-spectral image is an archetypal instance of multi-band image reconstruction, such as

pansharpening (MS+PAN) [8] or HS pansharpening (HS+PAN) [9]. The interested reader

is invited to consult the references [8] and [9] for an overview of the HS pansharpening

problems and corresponding fusion algorithms.

In general, the degradation mechanisms in HS, MS, and PAN imaging, with respect to

(w.r.t.) the target high-spatial and high-spectral image can be summarized as spatial and

spectral transformations. Thus, the multi-band image fusion problem can be interpreted as

restoring a three dimensional data-cube from two degraded data-cubes, which is an inverse

problem. As this inverse problem is generally ill-posed, introducing prior distributions (reg-
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ularizers in the the regularization framework) to regularize the target image has been widely

explored [10]–[12]. Regarding regularization, the usual high spectral and spatial correlations

of the target images imply that they admit sparse or low rank representations, which has in

fact been exploited in, for example, [10]–[17].

In [14], a maximum a posterior(MAP) estimator incorporating a stochastic mixing model

has been designed for the fusion of HS and MS images. In [18], anon-negative sparse

promoting algorithm for fusing HS and RGB images has been developed by using an alter-

nating optimization algorithm. However, both approaches developed in [14] and [18] require

a very basic assumption that a low spatial resolution pixel is obtained by averaging the high

resolution pixels belonging to the same area, whose size depends the downsampling ratio.

This nontrivial assumption implies that the fusion of two multi-band images can be divided

into fusing small blocks, which greatly decreases the complexity of the overall problem.

Note that this assumption has also been used in [17], [19], [20]. However, this averaging

assumption can be violated easily as the area in a high resolution image corresponding to

a low resolution pixel can be arbitrarily large (depending on the spatial blurring) and the

downsampling ratio is generally fixed (depending on the sensor physical characteristics).

To overcome this limitation, a more general forward model, which formulates the blurring

and downsampling as two separate operations, has been recently developed and widely used

[9], [10], [12], [15], [21], [22]. Based on this model, a non-negative matrix factorization

pansharpening of HS image has been proposed in [21]. Similarworks have been developed

independently in [16], [23], [24]. Later, Yokoyaet al. have proposed to use a coupled

nonnegative matrix factorization (CNMF) unmixing for the fusion of low-spatial-resolution

HS and high-spatial-resolution MS data, where both HS and MSdata are alternately unmixed

into endmember and abundance matrices by the CNMF algorithm[15]. Though this algorithm

is rooted in physical principles and easy to implement owingto its simple update rules, it

does not use the abundances estimated from the HS image and the endmember signatures

estimated from the MS image, which makes the spectral and spatial information in both

images not fully exploited. It is worthy to note that a similar fusion and unmixing framework

was recently introduced in [25], in which the alternating NMF steps in CNMF were replaced

by alternating proximal forward-backward steps.
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In this work, we formulate the unmixing based multi-band image fusion problem as an

inverse problem in which the regularization is implicitly imposed by a low rank representation

inherent to the linear spectral mixture model and by non-negativity and sum-to-one constraints

resulting from the intrinsic physical properties of the abundances. In the proposed approach,

the endmember signatures and abundances are jointly estimated from the observed multi-

band images. The optimization w.r.t. the endmember signatures and the abundances are both

constrained linear regression problems, which can be solved efficiently by the alternating

direction method of multipliers (ADMM).

The remaining of this paper is organized as follows. SectionII gives a short introduction

of the widely used linear mixture model and forward model formulti-band images. Section

III formulates the unmixing based fusion problem as an optimization problem, which is

solved using the Bayesian framework by introducing the popular constraints associated with

the endmembers and abundances. The proposed fast alternating optimization algorithm is

presented in Section IV. Section V presents experimental results assessing the accuracy and

the numerical efficiency of the proposed method. Conclusions are finally reported in Section

VI.

II. PROBLEM STATEMENT

To better distinguish spectral and spatial properties, thepixels of the target multi-band

image, which is of high-spatial and high-spectral resolution, can be rearranged to build an

mλ×n matrixX, wheremλ is the number of spectral bands andn = nr×nc is the number

of pixels in each band (nr andnc represent the numbers of rows and columns respectively).

In other words, each column of the matrixX consists of amλ-valued pixel and each row

gathers all the pixel values in a given spectral band.

A. Linear Mixture Model

This work exploits an intrinsic property of multi-band images, according to which each

spectral vector of an image can be represented by a linear mixture of several spectral

signatures, referred to as endmembers. Mathematically, wehave

X = MA (1)

DRAFT March 30, 2016



5

whereM ∈ R
mλ×p is the endmember matrix whose columns are spectral signatures and

A ∈ Rp×n is the corresponding abundance matrix whose columns are abundance fractions.

This linear mixture model has been widely used in HS unmixing(see [26] for a detailed

review).

B. Forward Model

Based on the pixel ordering introduced at the beginning of Section II, any linear operation

applied to the left (resp. right) side ofX describes a spectral (resp. spatial) degradation action.

In this work, we assume that two complementary images of high-spectral or high-spatial

resolutions, respectively, are available to reconstruct the target high-spectral and high-spatial

resolution target image. These images result from linear spectral and spatial degradations of

the full resolution imageX, according to the popular models

YM = RX+NM

YH = XBS+NH

(2)

where

• X ∈ Rmλ×n is the full resolution target image as described in Section II-A.

• YM ∈ Rnλ×n and YH ∈ Rmλ×m are the observed spectrally degraded and spatially

degraded images.

• R ∈ Rnλ×mλ is the spectral response of the MS sensor, which can bea priori known

or estimated by cross-calibration [27].

• B ∈ Rn×n is a cyclic convolution operator acting on the bands.

• S ∈ Rn×m is a d uniform downsampling operator (it hasm = n/d ones and zeros

elsewhere), which satisfiesSTS = Im.

• NM andNH are additive terms that include both modeling errors and sensor noises.
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The noise matrices are assumed to be distributed according to the following matrix normal

distributions1

NM ∼MNmλ,m(0mλ,m,ΛM, Im)

NH ∼MN nλ,n(0nλ,n,ΛH, In)

where 0a,b is an a × b matrix of zeros andI a is the a × a identity matrix. The column

covariance matrices are assumed to be the identity matrix toreflect the fact that the noise

is pixel-independent. The row covariance matricesΛM andΛH are assumed to be diagonal

matrices, whose diagonal elements can vary depending on thenoise powers in the different

bands. More specifically,ΛH = diag
[
s2H,1, · · · , s

2
H,mλ

]
and ΛM = diag

[
s2M,1, · · · , s

2
M,nλ

]
,

where diag is an operator transforming a vector into a diagonal matrix,whose diagonal

terms are the elements of this vector.

The matrix equation (2) has been widely advocated for the pansharpening and HS pan-

sharpening problems, which consist of fusing a PAN image with an MS or an HS image [9],

[28], [29]. Similarly, most of the techniques developed to fuse MS and HS images also rely

on a similar linear model [11], [15], [30]–[34]. From an application point of view, this model

is also important as motivated by recent national programs,e.g., the Japanese next-generation

space-borne HS image suite (HISUI), which acquires and fuses the co-registered HS and MS

images for the same scene under the same conditions, following this linear model [35].

C. Composite Fusion Model

Combining the linear mixture model (1) and the forward model(2) leads to

YM = RMA+NM

YH = MABS+NH

(3)

where all matrix dimensions and their respective relationsare summarized in Table I.

Note that the matrixM can be selected from a known spectral library [36] or estimated

1The probability density functionp(X|M,Σr,Σc) of a matrix normal distributionMN r,c(M,Σr,Σc) is defined by

p(X|M,Σr,Σc) =
exp

(

− 1

2
tr
[

Σ
−1

c (X−M)TΣ−1

r (X−M)
])

(2π)rc/2|Σc|r/2|Σr|c/2

whereM ∈ R
r×c is the mean matrix,Σr ∈ R

r×r is the row covariance matrix andΣc ∈ R
c×c is the column covariance

matrix.
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TABLE I: Matrix dimension summary

Notation Definition Relation
m no. of pixels in each row ofYH m = n/d
n no. of pixels in each row ofYM n = m× d
d decimation factor d = n/m
mλ no. of bands inYH mλ ≫ nλ

nλ no. of bands inYM nλ ≪ mλ

a priori from the HS data [37]. Also, it can be estimated jointly with the abundance matrix

A [38]–[40], which will be the case in this work.

D. Statistical Methods

To summarize, the problem of fusing and unmixing high-spectral and high-spatial reso-

lution images can be formulated as estimating the unknown matricesM andA from (3),

which can be regarded as a joint non-negative matrix factorization (NMF) problem. As is well

known, the NMF problem is non-convex and has no unique solution, leading to an ill-posed

problem. Thus, it is necessary to incorporate some intrinsic constraints or prior information

to regularize this problem, improving the conditioning of the problem.

Various priors have been already advocated to regularize the multi-band image fusion

problem, such as Gaussian priors [10], [41], sparse representations [11] or total variation

(TV) priors [12]. The choice of the prior usually depends on the information resulting from

previous experiments or from a subjective view of constraints affecting the unknown model

parameters [42], [43]. The inference ofM andA (whatever the form chosen for the prior) is

a challenging task, mainly due to the large size ofX and to the presence of the downsampling

operatorS, which prevents any direct use of the Fourier transform to diagonalize the blurring

operatorB. To overcome this difficulty, several computational strategies, including Markov

chain Monte Carlo (MCMC) [10], block coordinate descent method (BCD) [44], and tailored

variable splitting under the ADMM framework [12], have beenproposed, both applied to

different kinds of priors, e.g., the empirical Gaussian prior [10], [41], the sparse presentation

based prior [11], or the TV prior [12]. More recently, contrary to the algorithms described

above, a much more efficient method, namedRobust Fast fUsion based on Sylvester Equation

(R-FUSE)has been proposed to solve explicitly an underlying Sylvester equation associated
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with the fusion problem derived from (3) [45]. This solutioncan be implementedper seto

compute the maximum likelihood estimator in a computationally efficient manner, which has

also the great advantage of being easily generalizable within a Bayesian framework when

considering various priors.

In our work, we propose to form priors by exploiting the intrinsic physical properties of

abundances and endmembers, which is widely used in conventional unmixing, to inferA

andM from the observed dataYM andYH. More details will be give in following sections.

III. PROBLEM FORMULATION

Following the Bayes rule, the posterior distribution of theunknown parametersM andA

can be obtained by the product of their likelihoods and priordistributions, which are detailed

in what follows.

A. Likelihoods (Data Fidelity Term)

Using the statistical properties of the noise matricesNM andNH, YM andYH have matrix

Gaussian distributions, i.e.,

p (YM|M,A) =MN nλ,n(RMA,ΛM, In)

p (YH|M,A) =MNmλ,m(MABS,ΛH, Im).
(4)

As the collected measurementsYM and YH have been acquired by different (possibly

heterogeneous) sensors, the noise matricesNM and NH are sensor-dependent and can be

generally assumed to be statistically independent. Therefore, YM andYH are independent

conditionally upon the unobserved sceneX = MA. As a consequence, the joint likelihood

function of the observed data is

p (YM,YH|M,A) = p (YM|M,A) p (YH|M,A) . (5)

DRAFT March 30, 2016
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The negative logarithm of the likelihood is

− log p (YM,YH|M,A)

= − log p (YM|M,A)− log p (YH|M,A) + C

= 1
2

∥∥Λ− 1

2

H (YH −MABS)
∥∥2

F
+ 1

2

∥∥Λ− 1

2

M (YM −RMA)
∥∥2

F

+C

where‖X‖F =
√

trace(XTX) is the Frobenius norm ofX andC is a constant.

B. Priors (Regularization Term)

1) Abundances:As the mixing coefficientai,j (the element located in theith row and

jth column ofA) represents the proportion (or probability of occurrence)of the the ith

endmember in thejth measurement [26], [46], the abundance vectors satisfy the following

abundance non-negativity constraint(ANC) andabundance sum-to-one constraint(ASC)

aj ≥ 0 and 1T
p aj = 1, ∀j ∈ {1, · · · , n} (6)

whereaj is the jth column ofA, ≥ means “element-wise greater than” and1T
p is a p × 1

vector with all ones. Accounting for all the image pixels, the constraints (6) can be rewritten

in matrix form

A ≥ 0 and 1T
pA = 1T

n . (7)

Moreover, the ANC and ASC constraints can be converted into auniform distribution forA

on the feasible regionA, i.e.,

p(A) =





cA if A ∈ A

0 elsewhere
(8)

whereA =
{
A|A ≥ 0, 1T

pA = 1T
n

}
, cA = 1/vol(A) andvol(A) =

∫
A∈A

dA is the volume

of the setA.

2) Endmembers:As the endmember signatures represent the reflectances of different

materials, each element of the matrixM should be between0 and 1. Thus, the constraints

for M can be written as

0 ≤M ≤ 1. (9)
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Similarly, these constraints for the matrixM can be converted into a uniform distribution on

the feasible regionM

p(M) =





cM if M ∈M

0 elsewhere

whereM = {M|0 ≤M ≤ 1} and cM = 1/vol(M).

C. Posteriors (Constrained Optimization)

Combining the likelihoods (5) and the priorsp (M) andp (A), the Bayes theorem provides

the posterior distribution ofM andA

p (M,A|YH,YM)

∝ p (YH|M,A) p (YM|M,A) p (M) p (A)

where∝means “proportional to”. Thus, the unmixing based fusion problem can be interpreted

as maximizing the joint posterior distribution ofA andM. Moreover, by taking the negative

logarithm ofp (M,A|YH,YM), the MAP estimator of(A,M) can be obtained by solving

the minimization

min
M,A

L(M,A) s.t. A ≥ 0 and 1T
pA = 1T

n

0 ≤M ≤ 1

(10)

where

L(M,A) =
1

2

∥∥Λ− 1

2

H (YH −MABS)
∥∥2

F

+
1

2

∥∥Λ− 1

2

M (YM −RMA)
∥∥2

F
.

In this formulation, the fusion problem can be regarded as a generalized unmixing problem,

which includes two data fidelity terms. Thus, both images contribute to the estimation of the

endmember signatures (endmember extraction step) and the high-resolution abundance maps

(inversion step). For the endmember estimation, a popular strategy is to use a subspace

transformation as a preprocessing step, such as in [39], [47]. In general, the subspace trans-

formation is learneda priori from the high-spectral resolution image empirically, e.g., from
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the HS data. This empirical subspace transformation alleviates the computational burden

greatly and can be incorporated in our framework easily.

IV. A LTERNATING OPTIMIZATION SCHEME

Even though problem (10) is convex w.r.t.A andM separately, it is non-convex w.r.t. these

two matrices jointly and has more than one solution. We propose an optimization technique

that alternates optimizations w.r.t.A andM, which is also referred to as a BCD algorithm.

The optimization w.r.t.A (resp.M) conditional onM (resp.A) can be achieved efficiently

with the ADMM algorithm [48], which converges to a solution of the respective convex

optimization under some mild conditions. The resulting alternating optimization algorithm,

referred to as Fusion based on Unmixing for Multi-band Images (FUMI), is detailed in

Algorithm 1, where EEA(YH) in line 1 represents an endmember extraction algorithm to

estimate endmembers from HS data. The optimization steps w.r.t. A and M are detailed

below.

Algorithm 1: Multi-band Image Fusion based on Spectral Unmixing (FUMI)
Input : YM, YH, ΛM, ΛH, R, B, S
/* Initialize M */

1 M(0) ← EEA(YH);
2 for t = 1, 2, . . . to stopping ruledo

/* Optimize w.r.t. A using ADMM (see Algorithm 2) */
3 A(t) ∈ argmin

A∈A
L(M(t−1),A);

/* Optimize w.r.t. M using ADMM (see Algorithm 5) */
4 M(t) ∈ arg min

M∈M
L(M,A(t));

5 end
6 Set Â = A(t) andM̂ = M(t);

Output : Â andM̂

A. Convergence Analysis

To analyze the convergence of Algorithm 1, we recall a convergence criterion for the BCD

algorithm stated in [44, p. 273].

Theorem 1 (Bertsekas, [44]; Proposition 2.7.1). Suppose thatL is continuously differentiable

w.r.t. A andM over the convex setA×M. Suppose also that for each{A,M}, L(A,M)

March 30, 2016 DRAFT
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viewed as a function ofA, attains a unique minimum̄A. The similar uniqueness also holds

for M. Let
{
A(t),M(t)

}
be the sequence generated by the BCD method as in Algorithm 1.

Then, every limit point of
{
A(t),M(t)

}
is a stationary point.

The target function defined in (10) is continuously differentiable. Note that it is not

guaranteed that the minima w.r.t.A or M are unique. We may however argue that a simple

modification of the objective function, consisting in adding the quadratic termα1‖A‖2F +

α2‖M‖2F , whereα1 andα2 are very small thus obtaining a strictly convex objective function,

ensures that the minima of (11) and (15) are uniquely attained and thus we may invoke the

Theorem (1). In practice, even without including the quadratic terms, we have systematically

observed convergence of Algorithm 1.

B. Optimization w.r.t. the Abundance MatrixA (M fixed)

The minimization ofL(M,A) w.r.t. the abundance matrixA conditional onM can be

formulated as

min
A

1

2

∥∥Λ− 1

2

H (YH −MABS)
∥∥2

F
+

1

2

∥∥Λ− 1

2

M (YM −RMA)
∥∥2

F

s.t. A ≥ 0 and 1T
pA = 1T

n .

(11)

This constrained minimization problem can be solved by introducing an auxiliary variable

to split the objective and the constraints, which is the spirit of the ADMM algorithm. More

specifically, by introducing the splittingV = A, the optimization problem (11) w.r.t.A can

be written as

min
A,V

L1(A) + ιA(V) s.t.V = A

whereL1(A) =

1

2

∥∥Λ− 1

2

H (YH −MABS)
∥∥2

F
+

1

2

∥∥Λ− 1

2

M (YM −RMA)
∥∥2

F

and

ιA(V) =





0 if V ∈ A

+∞ otherwise.

Recall thatA =
{
A|A ≥ 0, 1T

pA = 1n

}
.

DRAFT March 30, 2016



13

The augmented Lagrangian associated with the optimizationof A can be written as

L(A,V,G) =
1

2

∥∥Λ− 1

2

H (YH −MABS)
∥∥2

F
+ ιA(V)

+
1

2

∥∥Λ− 1

2

M (YM −RMA)
∥∥2

F
+

µ

2

∥∥A−V −G
∥∥2

F
(12)

whereG is the so-called scaled dual variable andµ > 0 is the augmented Lagrange multiplier,

weighting the augmented Lagrangian term [48]. The ADMM summarized in Algorithm 2,

consists of anA-minimization step, aV-minimization step and a dual variableG update

step (see [48] for further details about ADMM). Note that theoperatorΠX (X) in Algorithm

2 represents projecting the variableX onto a setX , which is defined as

ΠX (X) = argmin
Z∈X

∥∥Z−X
∥∥2

F
.

Algorithm 2: ADMM sub-iterations to estimateA
Input : YM, YH, ΛM, ΛH, R, B, S, µ > 0

1 Initialization : V(0),G(0);
2 for k = 0 to stopping ruledo

/* Optimize w.r.t A (Algorithm 3) */
3 A(t,k+1) ∈ argmin

A

L(A,V(k),G(k));

/* Optimize w.r.t V (Algorithm 4) */
4 V(k+1) ← ΠA(A

(t,k+1) −G(k));
/* Update Dual Variable G */

5 G(k+1) ← G(k) −
(
A(t,k+1) −V(k+1)

)
;

6 end
7 SetA(t+1) = A(t,k+1);

Output : A(t+1)

Given that the functionsL1(A) and ιA(V) are both closed, proper, and convex, thus,

invoking the Eckstein and Bertsekas theorem [49, Theorem 8], the convergence of Algorithm

2 to a solution of (11) is guaranteed.

1) UpdatingA: In order to minimize (12) w.r.t.A, we solve the equation∂L(A,V(k),G(k))/∂A =

0, which is equivalent to the generalized Sylvester equation

C1A+AC2 = C3 (13)
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where

C1 =
(
MTΛ−1

H M
)−1

(
(RM)TΛ−1

M RM+ µIp
)

C2 = BS (BS)T

C3 =
(
MTΛ−1

H M
)−1

(MTΛ−1
H YH (BS)T

+ (RM)TΛ−1
M YM + µ(V(k) +G(k))).

Eq. (13) can be solved analytically by exploiting the properties of the circulant and down-

sampling matricesB andS, as summarized in Algorithm 3 and demonstrated in [45]. Note

that the matrixF represents the FFT operation and its conjugate transpose (or Hermitian

transpose)FH represents the iFFT operation. The matrixD ∈ Cn×n is a diagonal matrix,

which has eigenvalues of the matrixB in its diagonal line and can be rewritten as

D =




D1 0 · · · 0

0 D2 · · · 0

...
...

. . .
...

0 0 · · · Dd




whereDi ∈ Cm×m. Thus, we havēDHD̄ =
d∑

t=1

DH
t Dt =

d∑
t=1

D2
t , whereD̄ = D (1d ⊗ Im).

Similarly, the diagonal matrixΛC has eigenvalues of the matrixC1 in its diagonal line

(denoted asλ1, · · · , λm̃λ
andλi ≥ 0, ∀i). The matrixQ contains eigenvectors of the matrixC1

in its columns. The auxiliary matrix̄A ∈ Cmλ×n is decomposed as̄A =
[
ā
T
1 , ā

T
2 , · · · , ā

T
p

]T
.

2) Updating V: The update ofV can be made by simply computing the Euclidean

projection ofA(t,k+1) − G(k+1) onto the canonical simplexA, which can be expressed as

follows

V̂ = argmin
V

µ

2

∥∥V −
(
A(t,k+1) −G(k+1)

) ∥∥2

F
+ ιA(V)

= ΠA

(
A(t,k+1) −G(k+1)

)

whereΠA denotes the projection (in the sense of the Euclidean norm) onto the simplexA.

This classical projection problem has been widely studied and can be achieved by numerous

methods [50]–[53]. In this work, we adopt the popular strategy first proposed in [50] and
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Algorithm 3: A closed-form solution of (13) w.r.t.A

Input : YM, YH, ΛM, ΛH, R, B, S, V(k), G(k), µ > 0
/* Circulant matrix decomposition: B = FDFH

*/
1 D← EigDec(B);
2 D̄← D (1d ⊗ Im);
/* Calculate C1 */

3 C1 ←
(
MTΛ−1

H M
)−1

(
(RM)TΛ−1

M RM+ µI p
)

;

/* Eigen-decomposition of C1: C1 = QΛCQ
−1

*/
4 (Q,ΛC)← EigDec(C1);
/* Calculate C3 */

5 C3 ←
(
MTΛ−1

H M
)−1

(MTΛ−1
H YH (BS)T +(RM)TΛ−1

M YM + µ(V(k) +G(k)));
/* Calculate C̄3 */

6 C̄3 ← Q−1C3F;
/* Calculate Ā band by band */

7 for l = 1 to p do
/* Calculate the lth band */

8 āl ← λ−1
l (C̄3)l − λ−1

l (C̄3)lD̄

(
λldIm +

d∑
t=1

D2
t

)
D̄H ;

9 end
10 SetA = QĀFH ;

Output : A

summarized in Algorithm 4. Note that the above optimizationis decoupled w.r.t. the columns

of V, denoted by(V)1, · · · , (V)n, which accelerates the projection dramatically.

Algorithm 4: Projection onto the SimplexA

Input : A(t,k+1) −G(k)

1 for i = 1 to n do
2 (A−G)i , ith column ofA(t,k+1) −G(k);

/* Sorting the elements of (A−G)i */
3 Sort (A−G)i into y: y1 ≥ · · · ≥ yp ;

4 SetK := max
1≤k≤p

{k|
(∑k

r=1 yr − 1
)
/k < yk};

5 Set τ :=
(∑K

r=1 yr − 1
)
/K;

/* The max operation is component-wise */
6 Set (V̂)i := max{(A−G)i − τ, 0};
7 end

Output : V(k+1) = V̂

In practice, the ASC constraint is sometimes criticized fornot being able to account for

every material in a pixel or due to endmember variability [26]. In this case, the sum-to-
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one constraint can be simply removed. Thus, the Algorithm 4 will degenerate to projecting

(A − G)i onto the non-negative half-space, which simply consists ofsetting the negative

values of(A−G)i to zeros.

C. Optimization w.r.t. the Endmember MatrixM (A fixed)

The minimization of (10) w.r.t. the abundance matrixM conditional onA can be formu-

lated as

min
M

L1(M) + ιM(M) (14)

whereL1(M) =

1

2

∥∥Λ− 1

2

H (YH −MAH)
∥∥2

F
+

1

2

∥∥Λ− 1

2

M (YM −RMA)
∥∥2

F

andAH = ABS. By splitting the quadratic data fidelity term and the inequality constraints,

the augmented Lagrangian for (15) can be expressed as

L(M,T,G) = L1(M) + ιM(Λ
1

2

HT) +
µ

2

∥∥Λ− 1

2

H M−T−G
∥∥2

F
. (15)

The optimization ofL(M,T,G) consists of updatingM, T andG iteratively as summarized

in Algorithm 5 and detailed below. AsL1(M) and ιM(Λ
1

2

HT) are closed, proper and convex

functions andΛ
1

2

H has full column rank, the ADMM is guaranteed to converge to a solution

of problem (14).

1) UpdatingM: Forcing the derivative of (15) w.r.t.M to be zero leads to the following

Sylvester equation

H1M+MH2 = H3 (16)

where

H1 = ΛHR
TΛ−1

M R

H2 =
(
AHAH

T + µIp
) (

AAT
)−1

H3 =
[
YHA

T
H +ΛHR

TΛ−1
M YMA

T + µΛ
1

2

H (T+G)
] (

AAT
)−1

.
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Algorithm 5: ADMM sub-iterations to estimateM
Input : YM, YH, ΛM, ΛH, R, B, S, A, µ > 0

1 Initialization : T(0),G(0);
2 for k = 0 to stopping ruledo

/* Optimize w.r.t M */
3 M(t,k+1) ∈ argmin

M

L(M,T(k),G(k));

/* Optimize w.r.t T */

4 T(k+1) ← ΠT (Λ
− 1

2

H M(t,k+1) −G(k));
/* Update Dual Variable G */

5 G(k+1) ← G(k) −
(
Λ

− 1

2

H M(k+1) −T(k+1)
)

;

6 end
7 SetM(t+1) = M(t,k+1);

Output : M(t+1)

Note that vec(AXB) =
(
BT ⊗A

)
vec(X), where vec(X) denotes the vectorization of the

matrix X formed by stacking the columns ofX into a single column vector and⊗ denotes

the Kronecker product [54]. Thus, vectorizing both sides of(16) leads to2

Wvec(M) = vec(H3) (17)

whereW =
(
I p ⊗H1 +HT

2 ⊗ Imλ

)
. Thus, vec

(
M̂

)
= W−1vec(H3). Note thatW−1 can

be computed and stored in advance instead of being computed in each iteration.

Alternatively, there exists a more efficient way to calculate the solutionM analytically

(avoiding to compute the inverse of the matrixW). Note that the matricesH1 ∈ R
mλ×mλ

andH2 ∈ Rp×p are both the products of two symmetric positive definite matrices. According

to the Lemma 1 in [55],H1 and H2 can be diagonalized by eigen-decomposition, i.e.,

H1 = V1O1V
−1
1 andH2 = V2O2V

−1
2 , whereO1 andO2 are diagonal matrices denoted as

O1 = diag{s1, · · · , smλ
}

O2 = diag{t1, · · · , tp}.
(18)

2The vectorization of the matricsM,H1 andH2 is easy to do as the size of these matrices are small, which is not true
for the matricesA, C1 andC2 in (13).
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Thus, (16) can be transformed to

O1M̃+ M̃O2 = V−1
1 H3V2. (19)

whereM̃ = V−1
1 MV2. Straightforward computations lead to

H̃ ◦ M̃ = V−1
1 H3V2 (20)

where

H̃ =




s1 + t1 s1 + t2 · · · s1 + tp

s2 + t1 s2 + t2 · · · s2 + tp
...

...
. . .

...

smλ
+ t1 smλ

+ t2 · · · smλ+tp




(21)

and ◦ represents the Hadamard product, defined as the component-wise product of two

matrices (having the same size). Then,M̃ can be calculated by component-wise division

of V−1
1 H3V2 and H̃. Finally, M can be estimated aŝM = V1M̃V−1

2 . Note that the

computational complexity of the latter strategy is of orderO(max(m3
λ, p

3)), which is lower

than the complexity orderO((mλp)
3)) of solving (17).

2) UpdatingT: The optimization w.r.t.T can be transformed as

argmin
T

1

2

∥∥T−Λ
− 1

2

H M+G
∥∥+ ιT (T) (22)

whereιT (T) = ιM(Λ
1

2

HT). As Λ
− 1

2

H is a diagonal matrix, the solution of (22) can be obtained

easily by setting

T̂ = Λ
− 1

2

H min
(
max

(
M−Λ

1

2

HG, 0
)
, 1
)

(23)

wheremin andmax are to be understood component-wise.

Remark. If the endmember signatures are fixed a priori, i.e.,M is known, the unsupervised

unmixing and fusion will degenerate to a supervised unmixing and fusion by simply not

updatingM. In this case, the alternating scheme is not necessary, since Algorithm 1 reduces

to Algorithm 2. Note that fixingM a priori transforms the non-convex problem(10) into a

convex one, which can be solved much more efficiently. The solution produced by the resulting
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algorithm is also guaranteed to be the global optimal point instead of a stationary point.

V. EXPERIMENTAL RESULTS

This section applies the proposed unmixing based fusion method to multi-band images

associated with both synthetic and semi-real data. All the algorithms have been implemented

using MATLAB R2014A on a computer with Intel(R) Core(TM) i7-2600 CPU@3.40GHz

and 8GB RAM.

A. Quality metrics

1) Fusion quality:To evaluate the quality of the proposed fusion strategy, fiveimage qual-

ity measures have been investigated. Referring to [11], [19], we propose to use the restored

signal to noise ratio (RSNR), the averaged spectral angle mapper (SAM), the universal image

quality index (UIQI), the relative dimensionless global error in synthesis (ERGAS) and the

degree of distortion (DD) as quantitative measures. The larger RSNR and UIQI, the better

the fusion. The smaller SAM, ERGAS and DD, the better the fusion.

2) Unmixing quality: In order to analyze the quality of the unmixing results, we consider

the normalized mean square error (NMSE) for both endmember and abundance matrices

NMSEM =
‖M̂−M‖2F
‖M‖2F

NMSEA =
‖Â−A‖2F
‖A‖2F

.

The smaller NMSE, the better the quality of the unmixing. TheSAM between the actual

and estimated endmembers (different from SAM defined previously for pixel vectors) is a

measure of spectral distortion defined as

SAMM(mn, m̂n) = arccos

(
〈mn, m̂n〉

‖mn‖2‖m̂n‖2

)
.

The overall SAM is finally obtained by averaging the SAMs computed from all endmembers.

Note that the value of SAM is expressed in degrees and thus belongs to(−90, 90]. The smaller

the absolute value of SAM, the less important the spectral distortion.
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B. Synthetic data

This section applies the proposed FUMI method to synthetic data and compares it with

the joint unmixing and fusion methods investigated in [21] and [15]. Note that the method

studied in [21] can be regarded as a one-step version of [15].

The reference endmembers arem reflectance spectra selected randomly from the United

States Geological Survey (USGS) digital spectral library3. Each reflectance spectrum consists

of L = 224 spectral bands from383 nm to 2508 nm. In this simulation, the number of

endmembers is fixed top = 5. The abundancesA are generated according to a Dirichlet

distribution over the simplex defined by the ANC and ASC constraints. There is one vector

of abundance per pixel, i.e.,A ∈ R5×1002 , for the considered image of size100×100 pixels.

The synthetic image is then generated by the product of endmembers and abundances, i.e.,

X = MA.

• Initialization : As shown in Algorithm 1, the proposed algorithm only requires the

initialization of the endmember matrixM. Theoretically, any endmember extraction

algorithm (EEA) can be used to initializeM. In this work, we have used thesimplex

identification via split augmented Lagrangian(SISAL) method [56], which is a state-

of-the-art method that does not require the presence of purepixels in the image.

• Subspace Identification: For the endmember estimation, a popular strategy is to use a

subspace transformation as a preprocessing step, such as in[39], [47]. In general, the

subspace transformation is estimateda priori from the high-spectral resolution image,

e.g., from the HS data. In this work, the projection matrix has been learned by computing

the singular value decomposition (SVD) ofYH and retaining the left-singular vectors

associated with the largest eigenvalues. Then the input HS data YH, the HS noise

covariance matrixΛH and the spectral responseR in Algorithm 1 are replaced with their

projections onto the learned subspace asYH ← ETYH, ΛH ← ETΛHE andR← RE,

whereE ∈ Rmλ×m̃λ is the estimated orthogonal basis using SVD andm̃λ ≪ mλ. Given

that the formulation using the transformed entities is equivalent to the original one but

the matrix dimension is now much smaller, the subspace transformation brings huge

3http://speclab.cr.usgs.gov/spectral.lib06/
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numerical advantage.

• Parameters in ADMM : The value ofµ adopted in all the experiments is fixed to the

average of the noise power of HS and MS images, which is motivated by balancing

the data term and regularization term. As ADMM is used to solve sub-problems, it is

not necessary to use complicated stopping rule to run ADMM exhaustively. Thus, the

number of ADMM iterations has been fixed to30. Experiments have demonstrated that

varying these parameters do not affect much the convergenceof the whole algorithm.

• Stopping rule: The stopping rule for Algorithm 1 is that the relative difference for the

successive updates of the objectiveL(M,A) is less than10−4, i.e.,

|L(M(t+1),A(t+1))− L(M(t),A(t))|

|L(M(t),A(t))|
≤ 10−4.

1) HS and MS image fusion:In this section, we consider the fusion of HS and MS

images. The HS imageYH has been generated by applying a7 × 7 Gaussian filter (with

zero mean and standard deviationσB = 1.7) and then by down-sampling every4 pixels in

both vertical and horizontal directions for each band of thereference image. A7-band MS

imageYM has been obtained by filteringX with the LANDSAT-like reflectance spectral

responses. The HS and MS images are both contaminated by zero-mean additive Gaussian

noises. Our simulations have been conducted with SNRH,i = 50dB for all the HS bands with

SNRH,i = 10 log
(

‖(XBS)i‖
2

F

s2
H,i

)
. For the MS image SNRM,j = 10 log

(
‖(RX)j‖

2

F

s2
M,j

)
= 50dB for

all spectral bands.

As the endmembers are selected randomly from the USGS library, 30 Monte Carlo sim-

ulations have been implemented and all the results have beenobtained by averaging these

30 Monte Carlo runs. The fusion and unmixing results using different methods are reported

in Tables II and III, respectively. For fusion performance,the proposed FUMI method out-

performs the other two methods, with a competitive time complexity. Regarding unmixing,

Berne’s method and FUMI perform similarly for endmember estimation, both much better

than Yokoya’s. In terms of abundance estimation, FUMI outperforms the other methods.

2) HS and PAN image fusion:When the number of MS bands degrade to one, the fusion

of HS and MS degenerates to HS pansharpening, which is a more challenging problem. In
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TABLE II: Fusion Performance for Synthetic HS+MS dataset: RSNR (in dB), UIQI, SAM
(in degree), ERGAS, DD (in10−3) and time (in second).

Methods RSNR UIQI SAM ERGAS DD Time

Berne2010 48.871 0.9995 0.169 0.1011 1.4048.13
Yokoya2012 48.278 0.9995 0.188 0.1077 1.513 29.95

Proposed FUMI 50.100 0.9996 0.146 0.0877 1.2358.50

TABLE III: Unmixing Performance for Synthetic HS+MS dataset: SAMM (in degree),
NMSEM (in dB) and NMSEA (in dB).

Methods SAMM NMSEM NMSEA

Berne2010 0.549 -39.44 -18.22
Yokoya2012 1.443 -31.91 -13.97

Proposed FUMI 0.690 -39.71 -22.44

this experiment, the PAN image is obtained by averaging the first 50 bands of the reference

image. The quantitative results obtained after averaging 30 Monte Carlo runs for fusion and

unmixing are summarized in Tables IV and V, respectively. Interms of fusion performance,

the proposed FUMI method performs the best for all the quality measures, with the least

CPU time. Regarding the unmixing performance, Berne’s method gives the best estimation

for endmembers whereas FUMI gives best abundance estimations.

TABLE IV: Fusion Performance for Synthetic HS+PAN dataset:RSNR (in dB), UIQI, SAM
(in degree), ERGAS, DD (in10−3) and time (in second).

Methods RSNR UIQI SAM ERGAS DD Time

Berne2010 32.34 0.9887 0.669 0.682 6.776 6.74
Yokoya2012 33.00 0.9901 0.592 0.633 6.072 11.65

Proposed FUMI 36.16 0.9960 0.399 0.458 3.899 6.36

TABLE V: Unmixing Performance for Synthetic HS+PAN dataset: SAMM (in degree),
NMSEM (in dB) and NMSEA (in dB).

Methods SAMM NMSEM NMSEA

Berne2010 0.566 -39.03 -16.38
Yokoya2012 1.543 -29.31 -14.09

Proposed FUMI 0.716 -38.07 -18.49
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C. Semi-real data

In this section, we test the proposed FUMI algorithm on semi-real datasets, for which we

have the real HS image as the reference image and have simulated the degraded images from

the reference image.

1) Moffett dataset:In this experiment, the reference image is an HS image of size100×

100×176 acquired over Moffett field, CA, in 1994 by the JPL/NASA airborne visible/infrared

imaging spectrometer (AVIRIS) [57]. This image was initially composed of224 bands that

have been reduced to176 bands after removing the water vapor absorption bands. A composite

color image of the scene of interest is shown in the top right of Fig. 1 and its scattered

data have been displayed as the red points in Fig. 2. As there is no ground truth for

endmembers and abundances for the reference image, we have first unmixed this image

(with any unsupervised unmixing method) and then reconstructed the reference imageX with

the estimated endmembers and abundances (after appropriate normalization). The number of

endmembers has been fixed top = 3 empirically as in [39].

The reference imageX is reconstructed from one HS and one coregistered PAN images.

The observed HS image has been generated by applying a7 × 7 Gaussian filter with zero

mean and standard deviationσB = 1.7 and by down-sampling every4 pixels in both vertical

and horizontal directions for each band ofX, as done in Section V-B1. In a second step, the

PAN image has been obtained by averaging the first 50 HS bands.The HS and PAN images

are both contaminated by additive Gaussian noises, whose SNRs are50dB for all the bands.

The scattered data are displayed in Fig. 2, showing that there is no pure pixel in the degraded

HS image.

To analyze the impact of endmember estimation, the proposedFUMI method has been

implemented in two scenarios: estimatingA with fixed M, referred to assupervised FUMI

(S-FUMI) and estimatingA andM jointly, referred to asunsupervised FUMI(UnS-FUMI).

In this work, the S-FUMI algorithm has been run with a matrixM obtained using SISAL.

The proposed FUMI algorithm (including both S-FUMI and UnS-FUMI) and other state-

of-the-art methods have been implemented to fuse the two observed images and to unmix the

HS image. The fusion results and RMSE maps (averaged over allthe bands) are shown in
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Figs. 1. Visually, S-FUMI and UnS-FUMI give better fused images than the other methods.

This result is confirmed by the RMSE maps, where the two FUMI methods offer much smaller

errors than the other two methods. Furthermore, the quantitative fusion results reported in

Table VI are consistent with this conclusion as S-FUMI and UnS-FUMI outperform the

other methods for all the fusion metrics. Regarding the computation time, S-FUMI and UnS-

FUMI cost more than the other two methods, mainly due to the alternating update of the

endmembers and abundances and also the ADMM updates within the alternating updates.

The unmixed endmembers and abundance maps are displayed in Figs. 3 and 4 whereas

quantitative unmixing results are reported in Table VII. FUMI offers competitive endmember

estimation and much better abundance estimation compared with Berne’s and Yokoya’s

methods. It is interesting to note that S-FUMI and UnS-FUMI share very similar fusion

results. However, the endmember estimation of UnS-FUMI is much better compared with

S-FUMI, which only exploits the HS image to estimate the endmembers. This demonstrates

that the estimation of endmembers benefits from being updated jointly with abundances,

thanks to the complementary spectral and spatial information contained in the HS and high

resolution PAN images.

TABLE VI: Fusion Performance for Moffett HS+PAN dataset: RSNR (in dB), UIQI, SAM
(in degree), ERGAS, DD (in10−2) and time (in second).

Methods RSNR UIQI SAM ERGAS DD Time

Berne2010 16.95 0.8923 4.446 3.777 3.1580.3
Yokoya2012 17.04 0.9002 4.391 3.734 3.132 1.1

S-FUMI 22.57 0.9799 2.184 2.184 1.48821.1
UnS-FUMI 22.15 0.9778 2.346 2.292 1.577 32.2

TABLE VII: Unmixing Performance for Moffett HS+PAN dataset: SAMM (in degree),
NMSEM (in dB) and NMSEA (in dB).

Methods SAMM NMSEM NMSEA

Berne2010 7.568 -16.425 -11.167
Yokoya2012 6.772 -17.405 -11.167

S-FUMI 7.579 -16.419 -14.172
UnS-FUMI 7.028 -16.685 -14.695
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Fig. 1: Hyperspectral pansharpening results (Moffett dataset): (Top 1) HS image. (Top 2) MS
image. (Top 3) Reference image. (Middle 1) Berne’s method. (Middle 2) Yokoya’s method.
(Middle 3) S-FUMI (Middle 4) UnS-FUMI. (Bottom 1-4) The corresponding RMSE maps.
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Fig. 2: Scattered Moffett data: The1st and the100th bands are selected as the coordinates.
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Fig. 3: Unmixed endmembers for Moffett HS+PAN dataset: (Topand bottom left) Estimated
three endmembers and ground truth. (Bottom right) Sum of absolute value of all endmember
errors as a function of wavelength.

2) Pavia dataset:In this section, we test the proposed algorithm on another dataset, in

which the reference image is a100× 100× 93 HS image acquired over Pavia, Italy, by the

reflective optics system imaging spectrometer (ROSIS). This image was initially composed

of 115 bands that have been reduced to93 bands after removing the water vapor absorption

bands. A composite color image of the scene of interest is shown in the top right of Figs.

5. The observed HS and co-registered PAN images are simulated similarly to the Moffet

dataset and are shown in the top left and middle of Figs. 5. Thescattered reference and HS

data are displayed in Fig. 6, showing the high mixture of endmembers in the HS image. The

fusion results are displayed in Figs. 5 whereas the unmixed endmembers and abundance maps

are shown in Figs. 7 and 8. The corresponding quantitative fusion and unmixing results are

reported in Tables VIII and IX. These results are consistentwith the analysis associated with

the Moffet dataset. Both visually and quantitatively, S-FUMI and UnS-FUMI give competitive
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Fig. 4: Unmixed abundance maps for Moffett HS+PAN dataset: Estimated abundance maps
using (Row 1) Berne’s method, (Row 2) Yokoya’s method, and (Row 3) UnS-FUMI. (Row
4) Reference abundance maps.

results, which are much better than the other methods. In terms of unmixing, UnS-FUMI

outperforms S-FUMI for both endmember and abundance estimations, due to the alternating

update of endmembers and abundances.
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Fig. 5: Hyperspectral pansharpening results (Pavia dataset): (Top 1) HS image. (Top 2) PAN
image. (Top 3) Reference image. (Middle 1) Berne’s method. (Middle 2) Yokoya’s method.
(Middle 3) S-FUMI method. (Middle 4) UnS-FUMI method. (Bottom 1-4) The corresponding
RMSE maps.

TABLE VIII: Fusion Performance for Pavia HS+PAN dataset: RSNR (in dB), UIQI, SAM
(in degree), ERGAS, DD (in10−2) and time (in second).

Methods RSNR UIQI SAM ERGAS DD Time

Berne2010 21.53 0.9023 2.499 1.692 1.4250.6
Yokoya2012 21.73 0.9119 2.416 1.655 1.388 3.3

S-FUMI 24.13 0.9456 1.504 1.261 0.948 4.9
UnS-FUMI 24.26 0.9504 1.541 1.215 0.925 34.3

VI. CONCLUSION

This paper proposed a new algorithm based on spectral unmixing for fusing multi-band

images. In this algorithm, the endmembers and abundances were updated alternatively, both
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Fig. 6: Scattered Pavia data: The 30th and the 80th bands are selected as the coordinates.
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Fig. 7: Unmixed endmembers for Pavia HS+PAN dataset: (Top and bottom left) Estimated
three endmembers and ground truth. (Bottom right) Sum of absolute value of all endmember
errors as a function of wavelength.

using an alternating direction method of multipliers. The updates for abundances consisted

of solving a Sylvester matrix equation and projecting onto asimplex. Thanks to the recently

developed R-FUSE algorithm, this Sylvester equation was solved analytically thus efficiently,
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Fig. 8: Unmixed abundance maps for Pavia HS+PAN dataset: Estimated abundance maps
using (Row 1) Berne’s method, (Row 2) Yokoya’s method, and (Row 3) UnS-FUMI. (Row
4) Reference abundance maps.

requiring no iterative update. The endmember updating was divided into two steps: a least

square regression and a thresholding, that are both not computationally intensive. Numerical

experiments showed that the proposed joint fusion and unmixing algorithm compared compet-

itively with two state-of-the-art methods, with the advantage of improving the performance for
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TABLE IX: Unmixing Performance for Pavia HS+PAN dataset: SAMM (in degree), NMSEM
(in dB) and NMSEA (in dB).

Methods SAMM NMSEM NMSEA

Berne2010 11.77 -8.78 -7.21
Yokoya2012 10.43 -9.21 -7.26

S-FUMI 11.80 -8.78 -6.19
UnS-FUMI 9.71 -10.04 -8.06

both fusion and unmixing. Future work will consist of incorporating the spatial and spectral

degradation into the estimation framework.
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