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Abstract

This paper presents a multi-band image fusion algorithnedbas unsupervised spectral un-
mixing for combining a high-spatial low-spectral resatutiimage and a low-spatial high-spectral
resolution image. The widely used linear observation magéth additive Gaussian noise) is
combined with the linear spectral mixture model to form thieelihoods of the observations.
The non-negativity and sum-to-one constraints resultiognfthe intrinsic physical properties of
the abundances are introduced as prior information to aeigel this ill-posed problem. The joint
fusion and unmixing problem is then formulated as maxingzime joint posterior distribution with
respect to the endmember signatures and abundance mapsppiimization problem is attacked
with an alternating optimization strategy. The two resigtsub-problems are convex and are solved
efficiently using the alternating direction method of mpligrs. Experiments are conducted for
both synthetic and semi-real data. Simulation results shaivthe proposed unmixing based fusion
scheme improves both the abundance and endmember estiroatigparing with the state-of-the-art

joint fusion and unmixing algorithms.
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I. INTRODUCTION

Fusing multiple multi-band images enables a synergetidoggption of complementary
information obtained by sensors of different spectral emngnd different spatial resolutions.
In general, a multi-band image can be represented as adhmemsional data cube indexed
by three exploratory variables, y, \), wherex andy are the two spatial dimensions of the
scene, and is the spectral dimension (covering a range of wavelengifygical examples
of multi-band images include hyperspectral (HS) imadges Rlilti-spectral (MS) images
[3], integral field spectrographsl[4], magnetic resonamEecsoscopy images|[5]. However,
multi-band images with high spectral resolution generall§fers from the limited spatial
resolution of the data acquisition devices, mainly due tgsptal and technological reasons.
These limitations make it infeasible to acquire a high spécesolution multi-band image
with a spatial resolution comparable to those of MS and pamohtic (PAN) images (which
are acquired in much fewer bands) [6]. For example, HS imdgaeefit from excellent
spectroscopic properties with several hundreds or thalssah contiguous bands but are
limited by their relatively low spatial resolution![7]. As eonsequence, reconstructing a
high-spatial and high-spectral multi-band image from ipldtand complementary observed
images, although challenging, is a crucial inverse proltlesh has been addressed in various
scenarios. In particular, fusing a high-spatial low-sp@atesolution image and a low-spatial
high-spectral image is an archetypal instance of multidbemage reconstruction, such as
pansharpening (MS+PAN) [[8] or HS pansharpening (HS+PAN) The interested reader
is invited to consult the references| [8] arid [9] for an ovewiof the HS pansharpening
problems and corresponding fusion algorithms.

In general, the degradation mechanisms in HS, MS, and PANjimgawith respect to
(w.r.t.) the target high-spatial and high-spectral image be summarized as spatial and
spectral transformations. Thus, the multi-band imageofugiroblem can be interpreted as
restoring a three dimensional data-cube from two degra@¢acubes, which is an inverse

problem. As this inverse problem is generally ill-posedtaducing prior distributions (reg-
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ularizers in the the regularization framework) to reguarihe target image has been widely
explored [10]-12]. Regarding regularization, the usughrspectral and spatial correlations
of the target images imply that they admit sparse or low ragkasentations, which has in
fact been exploited in, for examplé, [10]-[17].

In [14], amaximum a posterio(MAP) estimator incorporating a stochastic mixing model
has been designed for the fusion of HS and MS images._Ih [18lpranegative sparse
promoting algorithm for fusing HS and RGB images has beerldped by using an alter-
nating optimization algorithm. However, both approachegetbped in[[14] and [18] require
a very basic assumption that a low spatial resolution psa@htained by averaging the high
resolution pixels belonging to the same area, whose sizendispthe downsampling ratio.
This nontrivial assumption implies that the fusion of twoIthband images can be divided
into fusing small blocks, which greatly decreases the cemipl of the overall problem.
Note that this assumption has also been used_ih [17], [19]. [2owever, this averaging
assumption can be violated easily as the area in a high tesolumage corresponding to
a low resolution pixel can be arbitrarily large (dependingtbe spatial blurring) and the
downsampling ratio is generally fixed (depending on the @ephysical characteristics).

To overcome this limitation, a more general forward moddijol formulates the blurring
and downsampling as two separate operations, has beertlyedeveloped and widely used
[9], [A0], [12], [15], [21], |22]. Based on this model, a nowgative matrix factorization
pansharpening of HS image has been proposed_in [21]. Simdeks have been developed
independently in[[16],[[23],[[24]. Later, Yokoyat al. have proposed to use a coupled
nonnegative matrix factorization (CNMF) unmixing for thesfon of low-spatial-resolution
HS and high-spatial-resolution MS data, where both HS andds8 are alternately unmixed
into endmember and abundance matrices by the CNMF algofitBinThough this algorithm
is rooted in physical principles and easy to implement owtimgts simple update rules, it
does not use the abundances estimated from the HS image amhdimember signatures
estimated from the MS image, which makes the spectral antiakpaformation in both
images not fully exploited. It is worthy to note that a simifasion and unmixing framework
was recently introduced in [25], in which the alternating RIgteps in CNMF were replaced

by alternating proximal forward-backward steps.
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In this work, we formulate the unmixing based multi-band gagusion problem as an
inverse problem in which the regularization is implicitiyposed by a low rank representation
inherent to the linear spectral mixture model and by noratieiy and sum-to-one constraints
resulting from the intrinsic physical properties of the athances. In the proposed approach,
the endmember signatures and abundances are jointly éstinff@m the observed multi-
band images. The optimization w.r.t. the endmember sigestand the abundances are both
constrained linear regression problems, which can be dad¥iciently by the alternating
direction method of multipliers (ADMM).

The remaining of this paper is organized as follows. Sedfilmives a short introduction
of the widely used linear mixture model and forward modeldaulti-band images. Section
[T formulates the unmixing based fusion problem as an op@tion problem, which is
solved using the Bayesian framework by introducing the peopeonstraints associated with
the endmembers and abundances. The proposed fast afigriogiimization algorithm is
presented in Sectidn 1V. Secti@d V presents experimentailt® assessing the accuracy and
the numerical efficiency of the proposed method. Conclissame finally reported in Section

V1l

[I. PROBLEM STATEMENT

To better distinguish spectral and spatial properties,pixels of the target multi-band
image, which is of high-spatial and high-spectral resolutican be rearranged to build an
my X n matrix X, wherem, is the number of spectral bands amd-= n, x n. is the number
of pixels in each bandn( andn. represent the numbers of rows and columns respectively).
In other words, each column of the matiX consists of am,-valued pixel and each row

gathers all the pixel values in a given spectral band.

A. Linear Mixture Model
This work exploits an intrinsic property of multi-band inesg according to which each
spectral vector of an image can be represented by a lineaturaibof several spectral
signatures, referred to as endmembers. Mathematicallfyave
X =MA 1)
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whereM € R™*? is the endmember matrix whose columns are spectral sigggatamd
A € RP*™ is the corresponding abundance matrix whose columns amedahae fractions.
This linear mixture model has been widely used in HS unmixXisee [26] for a detailed

review).

B. Forward Model

Based on the pixel ordering introduced at the beginning oti&elll, any linear operation
applied to the left (resp. right) side & describes a spectral (resp. spatial) degradation action.
In this work, we assume that two complementary images of-Bgttral or high-spatial
resolutions, respectively, are available to reconstrhuettarget high-spectral and high-spatial
resolution target image. These images result from lineactspl and spatial degradations of

the full resolution imageX, according to the popular models

Yy = RX + Ny
(2)
Yu = XBS + Ny

where

« X € R™*" is the full resolution target image as described in Sedilef] |

e Yy € R™*™ and Yy € R™*™ are the observed spectrally degraded and spatially
degraded images.

« R € R™*™x js the spectral response of the MS sensor, which caa pgori known
or estimated by cross-calibration [27].

« B € R"" is a cyclic convolution operator acting on the bands.

« S € R"™™ is ad uniform downsampling operator (it has = n/d ones and zeros

elsewhere), which satisfies’'S = | ,,,.

Ny and Ny are additive terms that include both modeling errors andg@enoises.
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The noise matrices are assumed to be distributed accorditigetfollowing matrix normal

distribution
NM ~ MNm)”m(Om)\,WH AM7 Im>

NH ~ MNnA,n(OnA,na AHa In)

where 0,;, is ana x b matrix of zeros and, is the a x a identity matrix. The column
covariance matrices are assumed to be the identity matrieftect the fact that the noise
is pixel-independent. The row covariance matridggs and Ay are assumed to be diagonal
matrices, whose diagonal elements can vary depending onadise powers in the different
bands. More specificallyAy = diag [sf,,- -+, 5%, ] and Ay = diag [s3;, 53, ]
where diag is an operator transforming a vector into a diagonal matnkpse diagonal
terms are the elements of this vector.

The matrix equation{2) has been widely advocated for theslp@npening and HS pan-
sharpening problems, which consist of fusing a PAN imagé ait MS or an HS imagé [[9],
[28], [29]. Similarly, most of the techniques developed tiesd MS and HS images also rely
on a similar linear mode[ [11] [15], [30]=[34]. From an ajmaltion point of view, this model
is also important as motivated by recent national prograngs, the Japanese next-generation
space-borne HS image suite (HISUI), which acquires andsftise co-registered HS and MS

images for the same scene under the same conditions, foliothis linear model [35].

C. Composite Fusion Model

Combining the linear mixture modéll(1) and the forward ma@lleads to

Yv = RMA + Ny 3)
Yy = MABS + Ny

where all matrix dimensions and their respective relatiares summarized in Tablé |.

Note that the matriXM can be selected from a known spectral library| [36] or estaat

The probability density functiop(X|M, X, 3.) of a matrix normal distrioutionMN . .(M, .., £.) is defined by

exp (—3tr [£' (X - M)"2 (X - M)])

p(X|M72T7EC) = (27T)rc/2|20|r/2|2r|c/2

whereM € R"*¢ is the mean matrixx, € R"*" is the row covariance matrix antl. € R°*¢ is the column covariance
matrix.
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TABLE |: Matrix dimension summary

Notation Definition Relation
m  |no. of pixels in each row o¥' | m =n/d
n no. of pixels in each row o¥y|n =m x d

d decimation factor d=n/m
my no. of bands inYy my > nx
ny no. of bands inY ny <K mx

a priori from the HS data [37]. Also, it can be estimated jointly witte tabundance matrix
A [38]-[40], which will be the case in this work.

D. Statistical Methods

To summarize, the problem of fusing and unmixing high-séand high-spatial reso-
lution images can be formulated as estimating the unknowtricea M and A from (3),
which can be regarded as a joint non-negative matrix facaodn (NMF) problem. As is well
known, the NMF problem is non-convex and has no unique swiuteading to an ill-posed
problem. Thus, it is necessary to incorporate some intrinsnstraints or prior information
to regularize this problem, improving the conditioning b&tproblem.

Various priors have been already advocated to regularieenthlti-band image fusion
problem, such as Gaussian priors![10],/[41], sparse reptasens [11] or total variation
(TV) priors [12]. The choice of the prior usually depends be tnformation resulting from
previous experiments or from a subjective view of constgaffecting the unknown model
parameterd [42]/ [43]. The inference B and A (whatever the form chosen for the prior) is
a challenging task, mainly due to the large siz&o&nd to the presence of the downsampling
operatorS, which prevents any direct use of the Fourier transform &gdnalize the blurring
operatorB. To overcome this difficulty, several computational stgégs, including Markov
chain Monte Carlo (MCMC)[1l0], block coordinate descent mogk (BCD) [44], and tailored
variable splitting under the ADMM framework [112], have beproposed, both applied to
different kinds of priors, e.g., the empirical GaussiarpfiLQ], [41], the sparse presentation
based prior[[11], or the TV priof_[12]. More recently, comyrdo the algorithms described
above, a much more efficient method, nanRabust Fast fUsion based on Sylvester Equation

(R-FUSE)has been proposed to solve explicitly an underlying Sybrestuation associated
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with the fusion problem derived froni](3) [45]. This solutioan be implementeder seto
compute the maximum likelihood estimator in a computatigrefficient manner, which has
also the great advantage of being easily generalizablenwa@Bayesian framework when

considering various priors.

In our work, we propose to form priors by exploiting the ingic physical properties of
abundances and endmembers, which is widely used in coowmahtunmixing, to inferA

andM from the observed daf¥,; and Y. More details will be give in following sections.

I1l. PROBLEM FORMULATION

Following the Bayes rule, the posterior distribution of the&known parameterdI and A
can be obtained by the product of their likelihoods and pdistributions, which are detailed

in what follows.

A. Likelihoods (Data Fidelity Term)

Using the statistical properties of the noise matridbgs andNy, Yy andYy have matrix

Gaussian distributions, i.e.,

p(YM|M,A) = MNnA’n(RMA,AM, In) (4)

p(Yu|M,A) = MN o (MABS, Ay, 1,,).

As the collected measurements,; and Yy have been acquired by different (possibly
heterogeneous) sensors, the noise mati§gsand Ny are sensor-dependent and can be
generally assumed to be statistically independent. Toerel',; and Yy are independent
conditionally upon the unobserved sceXe= MA. As a consequence, the joint likelihood

function of the observed data is

p(Yym, Yu|M,A) = p(Yu|/M,A)p(Yu/M,A). %)
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The negative logarithm of the likelihood is

—logp (Ym, Yu|M, A)
= —logp(Ynu|M,A) —log p (Yu|M,A)+C
= 3|Ay? (Yu — MABS) [} + Ay (Ys — RMA) ||}

+C

where || X||r = y/trace(XTX) is the Frobenius norm aX andC' is a constant.

B. Priors (Regularization Term)

1) Abundances:As the mixing coefficients; ; (the element located in th&h row and
jth column of A) represents the proportion (or probability of occurrenoé)he theith
endmember in thgth measurement [26]] [46], the abundance vectors satigfyfdtowing

abundance non-negativity constraifANC) and abundance sum-to-one constra{itSC)
a; >0 and 1la;=1Vje{l,--- n} (6)

wherea; is the jth column of A, > means “element-wise greater than” ah;ﬁ isapx1
vector with all ones. Accounting for all the image pixelsg ttonstraints(6) can be rewritten
in matrix form

A>0 and 1JA=1]. (7)

Moreover, the ANC and ASC constraints can be converted intniform distribution forA

on the feasible region, i.e.,

0 elsewhere

where A = {A|A > 0,1]A =17}, ca = 1/vol(A) andvol(A) = [,_, dA is the volume
of the setA.

2) Endmembers:As the endmember signatures represent the reflectancesfferfedt
materials, each element of the matid should be betweefi and 1. Thus, the constraints
for M can be written as

0<M< 1. 9
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Similarly, these constraints for the matiM can be converted into a uniform distribution on

the feasible region\

M if M eM
p(M) =
0 elsewhere

where M = {M|0 < M < 1} and ¢y = 1/vol(M).

C. Posteriors (Constrained Optimization)

Combining the likelihoodd (5) and the prigggM) andp (A), the Bayes theorem provides
the posterior distribution oM and A

p (M> A|YH7 YM)
o< p (Yu/M, A)p (Yu/M,A)p(M)p(A)

wherex means “proportional to”. Thus, the unmixing based fusiarbpgm can be interpreted
as maximizing the joint posterior distribution & and M. Moreover, by taking the negative
logarithm of p (M, A|Ywx, Yu), the MAP estimator of A, M) can be obtained by solving
the minimization

11\%;2 L(M,A) st. A>0 and 1JA=1]

(10)
0<M<1

where
1 _1
LM, A) = Z[[Ay* (Y — MABS) ||,

+ [ Ay? (Yar — RMA) ||

In this formulation, the fusion problem can be regarded asreecplized unmixing problem,
which includes two data fidelity terms. Thus, both imagedrioute to the estimation of the
endmember signatures (endmember extraction step) andghedsolution abundance maps
(inversion step). For the endmember estimation, a poputategy is to use a subspace

transformation as a preprocessing step, such &s in [39], |d general, the subspace trans-

formation is learnea priori from the high-spectral resolution image empirically, efgom
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the HS data. This empirical subspace transformation allesi the computational burden

greatly and can be incorporated in our framework easily.

IV. ALTERNATING OPTIMIZATION SCHEME

Even though probleni (10) is convex w.tA.andM separately, it is non-convex w.r.t. these
two matrices jointly and has more than one solution. We psepen optimization technique
that alternates optimizations w.rA and M, which is also referred to as a BCD algorithm.
The optimization w.r.tA (resp.M) conditional onM (resp.A) can be achieved efficiently
with the ADMM algorithm [48], which converges to a solutior the respective convex
optimization under some mild conditions. The resultingating optimization algorithm,
referred to as Fusion based on Unmixing for Multi-band InsagleUMI), is detailed in
Algorithm [1, where EEAYy) in line 1 represents an endmember extraction algorithm to
estimate endmembers from HS data. The optimization steps W. and M are detailed

below.

Algorithm 1: Multi-band Image Fusion based on Spectral Unmixing (FUMI)
Input: YM, YH’ AM, AH’ R, B, S
/= Initialize M * [
1 MO < EEA(Yn);
2 for t=1,2,... to stopping ruledo
[ Optimze w.r.t. A using ADMM (see Al gorithm[2) */
3 | AW carg gleiﬂ L(M®D A);
[+ Optimze w.r.t. M using ADW (see Al gorithmk) */
4 | M® € arg min L(M,A®);
MeM
5 end
6 SetA = A andM = M®;
Output: A andM

A. Convergence Analysis
To analyze the convergence of Algorittiin 1, we recall a cayeece criterion for the BCD

algorithm stated in[[44, p. 273].

Theorem 1 (Bertsekas, [44]; Proposition 2.7.13uppose thak is continuously differentiable
w.rt. A and M over the convex setl x M. Suppose also that for ead\, M}, L(A, M)

March 30, 2016 DRAFT



12

viewed as a function oA, attains a unique minimum.. The similar uniqueness also holds
for M. Let {A), M} be the sequence generated by the BCD method as in Algdrthm 1.

Then, every limit point of A®), M("} is a stationary point.

The target function defined if_(110) is continuously diffdieble. Note that it is not
guaranteed that the minima w.rA. or M are unique. We may however argue that a simple
modification of the objective function, consisting in adglithe quadratic term,||A||% +
as||M||%, wherea; anda, are very small thus obtaining a strictly convex objectivediion,
ensures that the minima df (11) aid](15) are uniquely attiared thus we may invoke the
Theorem[(ll). In practice, even without including the quédrzrms, we have systematically

observed convergence of AlgoritHm 1.

B. Optimization w.r.t. the Abundance Matrix (M fixed)

The minimization of L(M, A) w.r.t. the abundance matriA conditional onM can be

formulated as

N T, 2 1, ,-1 2
mAHQHAH (YH—MABS)HF""QHAM (YM_RMA)HF (11)

st. A>0 and 1JA=1].
This constrained minimization problem can be solved byothicing an auxiliary variable
to split the objective and the constraints, which is theispirthe ADMM algorithm. More
specifically, by introducing the splittiny’ = A, the optimization probleni(11) w.r.A can
be written as

121\1}L1(A) +4(V) stV =A
whereL,(A) =
1,,.-1 2 1, ,-1 2
5HAH (Yu — MABS) ||, + 5HAM (Yn —RMA) ||,

and

V) 0 if VeA
LA =
+o00 otherwise.

Recall thatd = {A|A > 0,17A =1,}.
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13
The augmented Lagrangian associated with the optimizatioh can be written as
1 1
L(A,V.G) = Z|[Ay* (Yn — MABS) 15 4 1a(V)

1 1
+5lAw (Y- RMA) [+ 2[a - V-Gl (12)

whereG is the so-called scaled dual variable and 0 is the augmented Lagrange multiplier,
weighting the augmented Lagrangian tefm![48]. The ADMM suariged in Algorithm[2,
consists of anA-minimization step, av-minimization step and a dual variab(@ update
step (seel[48] for further details about ADMM). Note that tperatorlly(X) in Algorithm

represents projecting the varial¥e onto a setY, which is defined as

Iy (X) = arglznei;(l |Z - XHQF

Algorithm 2: ADMM sub-iterations to estimaté
Input: YM, YH, AM, AH, R, B, S, n> 0
1 Initialization : V© G©);
2 for k =0 to stopping ruledo

[ Optimze wr.t A (Algorithm[3) */
3 | AR ¢ arg min LA, VE GH)Y;

[ Optimze wr.t V (Algorithmf) */
4 V(kJrl) s HA(A(t,kJrl) o G(k)),

/* Update Dual Variable G */
5 G+ gk — (A(t,k—i—l) _ V(k—i—l));
6 end

Set At+D = ABE+D):
Output: A+

~

Given that the functiond.;(A) and (4(V) are both closed, proper, and convex, thus,
invoking the Eckstein and Bertsekas theoren [49, Theorerth8]convergence of Algorithm

to a solution of[(I11) is guaranteed.

1) UpdatingA: In order to minimize[(I2) w.r.tA, we solve the equatiofC(A, V*) G*) /oA =

0, which is equivalent to the generalized Sylvester equation

CiA +AC, =G5 (13)
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where
C, = (MTA;'M) ™' ((RM)TAI;;RM + ulp)
C, = BS(BS)"
Cs = (MTA;'M) ™ (M7A;"Yy (BS)”
+ (BRM) A Yy + (VP + GW)).

Eq. (I3) can be solved analytically by exploiting the prajesrof the circulant and down-
sampling matrice8 and S, as summarized in Algorithinl 3 and demonstrated_in [45]. Note
that the matrixF' represents the FFT operation and its conjugate transpasiEdinitian
transpose)f? represents the iFFT operation. The matfixc C"*" is a diagonal matrix,

which has eigenvalues of the matidiX in its diagonal line and can be rewritten as

D, 0 --- 0

0 D, --- 0
D=

0 0 --- Dy

o d d )
whereD; € C™™. Thus, we haveD?D = Y>> DD, = Y D? whereD = D (1, ®1,,).
t=1 t=1

Similarly, the diagonal matrixXAc has eigenvalues of the matrik; in its diagonal line

(denoted as\,, - - - , A\, and\; > 0, V). The matrixQ contains eigenvectors of the matf
in its columns. The auxiliary matriA € C™*" is decomposed aA = [a!,a?,--- ,dg]T.

2) Updating V: The update ofV can be made by simply computing the Euclidean
projection of A®*+1) — G*+1) onto the canonical simplex, which can be expressed as

follows

~

_ .M k41 E+1)Y ||2
V = arglr{}ngHV — (ABFD — GEEDY [+ (V)
_ H.A (A(t,kJrl) o G(k+1))
wherell 4, denotes the projection (in the sense of the Euclidean nomnto the simplexA.

This classical projection problem has been widely studiedl @n be achieved by numerous

methods [[50]+[53]. In this work, we adopt the popular sggtéirst proposed in[[50] and
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Algorithm 3: A closed-form solution of[(13) w.r.tA

Input: Y, Y, Ay, A, R, B, S, VB, G® | >0

[+ Circulant matrix deconposition: B=FDF? */
1 D + EigDec(B);

[+ Cal culate C; * [
3 C) « (MTA;'M) ™! ((RM)TAQRM + ,up);

/ = Ei gen-deconposition of C;: C;=QA-Q! */
4 (Q,A.) < EigDec(C,);

[* Cal cul ate C; * [
5 Cy — (M7AZ'M) " (MTAL' Yy (BS)T +(RM) A Yy + u(V® + GW));

/* Cal cul ate C; * |
6 Cg < Q71C3F;

/= Cal culate A band by band */
7 forl=1to pdo

/* Cal culate the ith band */

_ o d _
8 | a < N\'(C3z)— A\ (Cs)D <)\ldlm +3 D?) D#;
t=1
9 end

10 SetA = QAFZ;
Output: A

summarized in Algorithril4. Note that the above optimizatodecoupled w.r.t. the columns

of V, denoted by(V)y,---,(V),, which accelerates the projection dramatically.

Algorithm 4: Projection onto the Simplext
Input: A®FD — GK)
1 fori=1tondo
2 | (A —G); £ i" column of AG*+D — G,
/+ Sorting the elenents of (A—-G); */
3 Sort(A —G); intoy: y; > --- >y, ;

4 | SetK := max {k| (Zﬁ:l Yr — 1) [k < yr};

1<k<p
5 Setr = (Zle Yr — 1) /K;
/* The max operation is conponent-w se */
6 Set(V); := max{(A — G); — 7,0};
7 end

Output: VEHD) = v

In practice, the ASC constraint is sometimes criticized riot being able to account for

every material in a pixel or due to endmember variability][2@ this case, the sum-to-
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one constraint can be simply removed. Thus, the Algorithmiltdegenerate to projecting
(A — G); onto the non-negative half-space, which simply consistseatfing the negative

values of(A — G); to zeros.

C. Optimization w.r.t. the Endmember MatiM (A fixed)

The minimization of [(ID) w.r.t. the abundance maihk conditional onA can be formu-
lated as

ml\}ln Li(M) + tp(M) (14)
where L; (M) =
1,,-1 1,.-1
SIAu® (Y = MAW) [+ S [[Ay* (Yu - RMA) [}

and Ay = ABS. By splitting the quadratic data fidelity term and the indgyaonstraints,

the augmented Lagrangian far {15) can be expressed as
by 4 A A 2
L(M,T,G):Ll(M)+LM(AHT)+§HAH M-T -G (15)

The optimization of£(M, T, G) consists of updating/I, T andG iteratively as summarized
in Algorithm[8 and detailed below. As,(M) and:,(AZT) are closed, proper and convex

1
functions andA; has full column rank, the ADMM is guaranteed to converge tolaton

of problem [I#).
1) UpdatingM: Forcing the derivative of (15) w.r.M to be zero leads to the following

Sylvester equation

H,M + MH, = H, (16)

where
H, = AyRTA/R
H, = (AgAy” +pul,) (AAT) ™
H; =

1

[YuAl + ARTAGY VAT + pAf (T +G)| (AAT)
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Algorithm 5: ADMM sub-iterations to estimatd1
Input: Y, Y, AM, AH, R, B, S, A, n> 0
1 Initialization : T© G©;
2 for k = 0 to stopping ruledo

[+ Optimze wr.t M * [
3 | M®HD ¢ arg min LM, T® G®);

[+ Optimze wr.t T */
. | e HT(AI;%M(t,k-H) _ GW);

/* Update Dual Variable G */
s | gk gk _ <A£%M(k+1) _ T(k+1)>;
6 end

SetM(t-l—l) — M(t,k-i—l);
Output: M+

~

Note that ve¢AXB) = (B” ® A) veqX), where ve¢X) denotes the vectorization of the
matrix X formed by stacking the columns & into a single column vector ang denotes

the Kronecker product [54]. Thus, vectorizing both sideqId) leads
WvedM) = vedHs) (17)

whereW = (I, ® H; + H} ®,,,). Thus, vec(M) = W~lveqH3). Note thatW~! can

be computed and stored in advance instead of being computeach iteration.

Alternatively, there exists a more efficient way to calcel#éte solutionM analytically
(avoiding to compute the inverse of the matWX). Note that the matricebl; € R"»*"
andH, € RP*? are both the products of two symmetric positive definite ras. According
to the Lemma 1 in[[55],H; and H, can be diagonalized by eigen-decomposition, i.e.,
H, = V,0,V;! andH, = V,0,V, !, whereO, and O, are diagonal matrices denoted as

01 = diag{sl, cee 75m,\} (18)

0O, = diag{tl, s ,tp}.

2The vectorization of the matric®I,H; andH, is easy to do as the size of these matrices are small, whicbt isue
for the matricesA, C; and C: in (I3).
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Thus, [16) can be transformed to

O:M + MO, = V{'H;V,. (19)

whereM = V;!MYV,. Straightforward computations lead to

HoM = V;'H;V, (20)
where _ -
51+ 1 si+ty -0 st
- So + 11 Sot+ty -0 Sat 1)
I Smy T 11 Smy, Fl2 0 Smytt, |

and o represents the Hadamard product, defined as the compomntproduct of two
matrices (having the same size). Thé, can be calculated by component-wise division
of V{'H;V, and H. Finally, M can be estimated adI = V;MV,;'. Note that the
computational complexity of the latter strategy is of ord¥max(m3, p*)), which is lower

than the complexity orde®((m,p)?)) of solving [IT).

2) UpdatingT: The optimization w.r.tT can be transformed as
1 _1
argm%n§HT—AH2M+GH +¢7(T) (22)

1 _1
where.r(T) = ey (AAT). As Ay ? is a diagonal matrix, the solution df (22) can be obtained
easily by setting
~ _1 1
T = Ay° min (max (M - ARG, 0) , 1) (23)

wheremin andmax are to be understood component-wise.

Remark. If the endmember signatures are fixed a priori, idel,is known, the unsupervised
unmixing and fusion will degenerate to a supervised unrmgiband fusion by simply not
updatingM. In this case, the alternating scheme is not necessarye higorithm(1 reduces
to Algorithm[2. Note that fixing\I a priori transforms the non-convex probled) into a

convex one, which can be solved much more efficiently. Thé@oproduced by the resulting
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algorithm is also guaranteed to be the global optimal pomdtead of a stationary point.

V. EXPERIMENTAL RESULTS

This section applies the proposed unmixing based fusiorh@deto multi-band images
associated with both synthetic and semi-real data. All tgerdhms have been implemented
using MATLAB R2014A on a computer with Intel(R) Core(TM) PB00 CPU@3.40GHz
and 8GB RAM.

A. Quality metrics

1) Fusion quality: To evaluate the quality of the proposed fusion strategy,ifinage qual-
ity measures have been investigated. Referring to [L1], (i@ propose to use the restored
signal to noise ratio (RSNR), the averaged spectral angfgera SAM), the universal image
quality index (UIQI), the relative dimensionless globatogrin synthesis (ERGAS) and the
degree of distortion (DD) as quantitative measures. ThgetaRSNR and UIQI, the better
the fusion. The smaller SAM, ERGAS and DD, the better theoiusi

2) Unmixing quality: In order to analyze the quality of the unmixing results, wasider

the normalized mean square error (NMSE) for both endmemiérabundance matrices

M — M||%

NMSEy = ———+——
M2

|A — Al

NMSEp, = ———«+—-—.
1A%

The smaller NMSE, the better the quality of the unmixing. &M between the actual
and estimated endmembers (different from SAM defined puslyofor pixel vectors) is a
measure of spectral distortion defined as

SAMy (M, my,) = arccos(M) )
[m|2|772,] )2

The overall SAM is finally obtained by averaging the SAMs cantgal from all endmembers.
Note that the value of SAM is expressed in degrees and thosgeto(—90, 90]. The smaller

the absolute value of SAM, the less important the spectistbdion.
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B. Synthetic data

This section applies the proposed FUMI method to synthedta énd compares it with
the joint unmixing and fusion methods investigated/inl [2t§ {15]. Note that the method
studied in[[21] can be regarded as a one-step version of [15].

The reference endmembers arereflectance spectra selected randomly from the United
States Geological Survey (USGS) digital spectral libtaBach reflectance spectrum consists
of L = 224 spectral bands fron383 nm to 2508 nm. In this simulation, the number of
endmembers is fixed tp = 5. The abundanced are generated according to a Dirichlet
distribution over the simplex defined by the ANC and ASC craists. There is one vector
of abundance per pixel, i.eA € R5%19”  for the considered image of siz60 x 100 pixels.
The synthetic image is then generated by the product of enmdraes and abundances, i.e.,
X = MA.

. Initialization : As shown in Algorithm[l, the proposed algorithm only regsirthe
initialization of the endmember matriv. Theoretically, any endmember extraction
algorithm (EEA) can be used to initializ&l. In this work, we have used th@mplex
identification via split augmented LagrangidB8ISAL) method [[56], which is a state-
of-the-art method that does not require the presence of pixeds in the image.

« Subspace Identification For the endmember estimation, a popular strategy is to use a
subspace transformation as a preprocessing step, such[24@],if47]. In general, the
subspace transformation is estimategbriori from the high-spectral resolution image,
e.g., from the HS data. In this work, the projection matrig baen learned by computing
the singular value decomposition (SVD) &fy and retaining the left-singular vectors
associated with the largest eigenvalues. Then the input &8 Yy, the HS noise
covariance matri\y and the spectral responBein Algorithm([1 are replaced with their
projections onto the learned subspaceYas< E'Yy, Ay <+ ETAzE andR <+ RE,
whereE € R™*™ s the estimated orthogonal basis using SVD and< m,. Given
that the formulation using the transformed entities is egjent to the original one but

the matrix dimension is now much smaller, the subspace framation brings huge

3http://speclab.cr.usgs.gov/spectral.lib06/
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numerical advantage.

. Parameters in ADMM: The value ofy adopted in all the experiments is fixed to the
average of the noise power of HS and MS images, which is ntetivAy balancing
the data term and regularization term. As ADMM is used to sdub-problems, it is
not necessary to use complicated stopping rule to run ADMaestively. Thus, the
number of ADMM iterations has been fixed 30. Experiments have demonstrated that
varying these parameters do not affect much the convergainttes whole algorithm.

« Stopping rule: The stopping rule for Algorithrill is that the relative difece for the
successive updates of the objectiveM, A) is less thanl0~4, i.e.,

|L(M(t+1),A(t+1)) o L(M(t),A(t))|
[L(M®, AD)]

<1074

1) HS and MS image fusiontn this section, we consider the fusion of HS and MS
images. The HS imag&'y has been generated by applying’ & 7 Gaussian filter (with
zero mean and standard deviatiep = 1.7) and then by down-sampling evedypixels in
both vertical and horizontal directions for each band of iéference image. A-band MS
image Y,; has been obtained by filteriny with the LANDSAT-like reflectance spectral
responses. The HS and MS images are both contaminated byneano additive Gaussian
noises. Our simulations have been conducted with $§NR50dB for all the HS bands with

I(RX), 1%

SNRy,; = 10log (M) For the MS image SNR, = 101log (7) — 50dB for

H,i M,j
all spectral bands.

As the endmembers are selected randomly from the USGSyjia@rMonte Carlo sim-
ulations have been implemented and all the results have blemmed by averaging these
30 Monte Carlo runs. The fusion and unmixing results usirffgiint methods are reported
in TablesIl andll, respectively. For fusion performantee proposed FUMI method out-
performs the other two methods, with a competitive time clexify. Regarding unmixing,
Berne’s method and FUMI perform similarly for endmembeiireation, both much better

than Yokoya’s. In terms of abundance estimation, FUMI odtpens the other methods.

2) HS and PAN image fusioriWhen the number of MS bands degrade to one, the fusion

of HS and MS degenerates to HS pansharpening, which is a rhatkerging problem. In
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TABLE II: Fusion Performance for Synthetic HS+MS dataseBNR (in dB), UIQI, SAM
(in degree), ERGAS, DD (in0~3) and time (in second).

| Methods |[RSNR UIQI SAM ERGAS DD Time|
Berne2010 [48.871 0.9995 0.169 0.1011 1.4048.13
Yokoya2012 |48.278 0.9995 0.188 0.1077 1.513 29/95
Proposed FUMI| 50.100 0.9996 0.146 0.0877 1.238.50

TABLE Ill: Unmixing Performance for Synthetic HS+MS datas&AM,, (in degree),
NMSEy,; (in dB) and NMSE, (in dB).

| Methods [ SAMy NMSEy  NMSE, |
Berne2010 0549 -3944  -18.22
Yokoya2012 | 1.443  -31.91  -13.97
Proposed FUMI 0.690 -39.71 -22.44

this experiment, the PAN image is obtained by averaging tisé 30 bands of the reference
image. The quantitative results obtained after averagihgyldnte Carlo runs for fusion and
unmixing are summarized in Tables]IV andl V, respectivelytelims of fusion performance,
the proposed FUMI method performs the best for all the quatieasures, with the least
CPU time. Regarding the unmixing performance, Berne’s otethives the best estimation
for endmembers whereas FUMI gives best abundance estimatio

TABLE 1V: Fusion Performance for Synthetic HS+PAN datas®BNR (in dB), UIQI, SAM
(in degree), ERGAS, DD (in0~3) and time (in second).

| Methods |RSNR UIQI SAM ERGAS DD Time
Berne2010 | 32.34 0.9887 0.669 0.682 6.776 6.74
Yokoya2012 | 33.00 0.9901 0.592 0.633 6.072 1165
Proposed FUM| 36.16 0.9960 0.399 0.458 3.899 6.36

TABLE V: Unmixing Performance for Synthetic HS+PAN datas&AM,; (in degree),
NMSE,; (in dB) and NMSE, (in dB).

| Methods | SAMy NMSEy NMSE, |
Berne2010 | 0.566  -39.03 -16.38
Yokoya2012 | 1.543 -29.31  -14.09
Proposed FUMI 0.716 -38.07 -18.49
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C. Semi-real data

In this section, we test the proposed FUMI algorithm on sezal-datasets, for which we
have the real HS image as the reference image and have shtie&t degraded images from

the reference image.

1) Moffett dataset:In this experiment, the reference image is an HS image of i§iaex
100 x 176 acquired over Moffett field, CA, in 1994 by the JPL/NASA airbe visible/infrared
imaging spectrometer (AVIRIS) [57]. This image was inittatomposed of224 bands that
have been reduced 16 bands after removing the water vapor absorption bands. Aosite
color image of the scene of interest is shown in the top righFig. I and its scattered
data have been displayed as the red points in [Hig. 2. As tleemoiground truth for
endmembers and abundances for the reference image, we mstvenimixed this image
(with any unsupervised unmixing method) and then recoostdithe reference image with
the estimated endmembers and abundances (after appeopoiahalization). The number of

endmembers has been fixedyte= 3 empirically as in[[39].

The reference imagX is reconstructed from one HS and one coregistered PAN images
The observed HS image has been generated by applyihg @ Gaussian filter with zero
mean and standard deviatiog = 1.7 and by down-sampling every pixels in both vertical
and horizontal directions for each bandXf as done in Section V-B1. In a second step, the
PAN image has been obtained by averaging the first 50 HS bahesHS and PAN images
are both contaminated by additive Gaussian noises, whoses Sie50dB for all the bands.
The scattered data are displayed in Eig. 2, showing thag tisemo pure pixel in the degraded
HS image.

To analyze the impact of endmember estimation, the prop&sddl method has been
implemented in two scenarios: estimatidgwith fixed M, referred to asupervised FUMI
(S-FUMI) and estimating\ andM jointly, referred to asunsupervised FUM{UnS-FUMI).

In this work, the S-FUMI algorithm has been run with a mafkik obtained using SISAL.

The proposed FUMI algorithm (including both S-FUMI and URBMI) and other state-
of-the-art methods have been implemented to fuse the tweredd images and to unmix the

HS image. The fusion results and RMSE maps (averaged ovénelbands) are shown in
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Figs.[d. Visually, S-FUMI and UnS-FUMI give better fused iges than the other methods.
This result is confirmed by the RMSE maps, where the two FUMhoes offer much smaller
errors than the other two methods. Furthermore, the qagimétfusion results reported in
Table[V] are consistent with this conclusion as S-FUMI andStRUMI outperform the
other methods for all the fusion metrics. Regarding the aaatpon time, S-FUMI and UnS-
FUMI cost more than the other two methods, mainly due to thersting update of the
endmembers and abundances and also the ADMM updates whhialternating updates.

The unmixed endmembers and abundance maps are displayegsii3Fand’% whereas
quantitative unmixing results are reported in Tdbld VII.NFlbffers competitive endmember
estimation and much better abundance estimation compaiéd Berne’s and Yokoya’s
methods. It is interesting to note that S-FUMI and UnS-FUM&re very similar fusion
results. However, the endmember estimation of UnS-FUMI i&mbetter compared with
S-FUMI, which only exploits the HS image to estimate the eadrhers. This demonstrates
that the estimation of endmembers benefits from being ugddmietly with abundances,
thanks to the complementary spectral and spatial infoonatontained in the HS and high
resolution PAN images.

TABLE VI: Fusion Performance for Moffett HS+PAN dataset: WS (in dB), UIQI, SAM
(in degree), ERGAS, DD (in0~2) and time (in second).

| Methods | RSNR UIQI SAM ERGAS DD Time

Berne2010| 16.95 0.8923 4.446 3.777 3.1580.3
Yokoya2012| 17.04 0.9002 4.391 3.734 3.132 141
S-FUMI 2257 09799 2184 2184 1.4881.1
UnS-FUMI | 22.15 09778 2.346 2.292 1577 322

TABLE VII: Unmixing Performance for Moffett HS+PAN dataseSAM,; (in degree),
NMSEy; (in dB) and NMSE, (in dB).

| Methods | SAMM  NMSEy  NMSEa
Berne2010| 7.568 -16.425 -11.167
Yokoya2012| 6.772 -17.405 -11.167
S-FUMI | 7579 -16.419 -14.172
UnS-FUMI | 7.028 -16.685 -14.695
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Fig. 1: Hyperspectral pansharpening results (Moffett sietha (Top 1) HS image. (Top 2) MS
image. (Top 3) Reference image. (Middle 1) Berne’'s methbtiddle 2) Yokoya’s method.
(Middle 3) S-FUMI (Middle 4) UnS-FUMI. (Bottom 1-4) The ca@sponding RMSE maps.

* Reference data
o * HS data
o Endmembers

0 I I I I I I I I o
0.06 008 01 012 014 016 018 02 022 024 0.26

Fig. 2: Scattered Moffett data: Thiesst and thel00th bands are selected as the coordinates.
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Fig. 3: Unmixed endmembers for Moffett HS+PAN dataset: (@iod bottom left) Estimated
three endmembers and ground truth. (Bottom right) Sum aoblabes value of all endmember
errors as a function of wavelength.

2) Pavia dataset:In this section, we test the proposed algorithm on anothtaseg in
which the reference image is180 x 100 x 93 HS image acquired over Pavia, Italy, by the
reflective optics system imaging spectrometer (ROSIS)s Tinage was initially composed
of 115 bands that have been reducedtbands after removing the water vapor absorption
bands. A composite color image of the scene of interest isvshio the top right of Figs.

B. The observed HS and co-registered PAN images are sirdutatglarly to the Moffet
dataset and are shown in the top left and middle of Kigs. 5.sEattered reference and HS
data are displayed in Fig] 6, showing the high mixture of emahipers in the HS image. The
fusion results are displayed in Fig$. 5 whereas the unmirdchembers and abundance maps
are shown in Figd]7 arld 8. The corresponding quantitatismifuand unmixing results are
reported in Tables VIl and IX. These results are consisiétit the analysis associated with

the Moffet dataset. Both visually and quantitatively, SNHLAnd UnS-FUMI give competitive

DRAFT March 30, 2016



27

Fig. 4. Unmixed abundance maps for Moffett HS+PAN datasstintated abundance maps
using (Row 1) Berne’s method, (Row 2) Yokoya’'s method, andwR) UnS-FUMI. (Row
4) Reference abundance maps.

results, which are much better than the other methods. mstef unmixing, UnS-FUMI
outperforms S-FUMI for both endmember and abundance etinsa due to the alternating

update of endmembers and abundances.
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Fig. 5: Hyperspectral pansharpening results (Pavia datg3ep 1) HS image. (Top 2) PAN
image. (Top 3) Reference image. (Middle 1) Berne’'s methbtiddle 2) Yokoya’s method.
(Middle 3) S-FUMI method. (Middle 4) UnS-FUMI method. (Boih 1-4) The corresponding
RMSE maps.

TABLE VIII: Fusion Performance for Pavia HS+PAN dataset:NES (in dB), UIQI, SAM
(in degree), ERGAS, DD (in0~2) and time (in second).

| Methods | RSNR UIQI SAM ERGAS DD Time

Berne2010| 21.53 0.9023 2.499 1.692 1.4250.6
Yokoya2012| 21.73 0.9119 2416 1.655 1.388 33
S-FUMI 2413 0.9456 1.504 1.261 0.948 49
UnS-FUMI | 24.26 0.9504 1.541 1.215 0.925 34.3

VI. CONCLUSION

This paper proposed a new algorithm based on spectral ungnfeir fusing multi-band

images. In this algorithm, the endmembers and abundancesupeated alternatively, both
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Fig. 7: Unmixed endmembers for Pavia HS+PAN dataset: (Tapkmoitom left) Estimated
three endmembers and ground truth. (Bottom right) Sum ablatbes value of all endmember
errors as a function of wavelength.

using an alternating direction method of multipliers. Ttpdates for abundances consisted
of solving a Sylvester matrix equation and projecting onsgimaplex. Thanks to the recently

developed R-FUSE algorithm, this Sylvester equation wasdanalytically thus efficiently,

March 30, 2016 DRAFT



30

Fig. 8: Unmixed abundance maps for Pavia HS+PAN dataseim&std abundance maps
using (Row 1) Berne’s method, (Row 2) Yokoya’'s method, andwR) UnS-FUMI. (Row
4) Reference abundance maps.

requiring no iterative update. The endmember updating waded! into two steps: a least
square regression and a thresholding, that are both notwtatignally intensive. Numerical
experiments showed that the proposed joint fusion and unmadgorithm compared compet-

itively with two state-of-the-art methods, with the advege of improving the performance for
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TABLE IX: Unmixing Performance for Pavia HS+PAN dataset:\84 (in degree), NMSk;
(in dB) and NMSE, (in dB).

| Methods | SAMy NMSEy NMSE, |

Berne2010| 11.77 -8.78 -7.21
Yokoya2012| 10.43 -9.21 -7.26

S-FUMI 11.80 -8.78 -6.19
unS-FUMI 9.71 -10.04 -8.06

both fusion and unmixing. Future work will consist of incorpting the spatial and spectral

degradation into the estimation framework.
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