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ABSTRACT
We study the problem of decomposing a measured signal as a
sum of decaying exponentials. There is a direct connection to
sums of these types and positive semi-definite (PSD) Hankel
matrices, where the rank of these matrices equals the num-
ber of exponentials. We propose to solve the identification
problem by forming an optimization problem with a misfit
function combined with a rank penalty function that also
ensures the PSD-constraint. This problem is non-convex, but
we show that it is possible to compute the minimum of an
explicit closely related convexified problem. Moreover, this
minimum can be shown to often coincide with the minimum
of the original non-convex problem, and we provide a simple
criterion that enables to verify if this is the case.

Index Terms— Low rank approximation, structured ma-
trices, fixed-point algorithms.

I. INTRODUCTION
We consider the problem of approximating a given matrix

F by a structured matrix (i.e. belonging to some subspace
M) that is low rank and Positive Semi-Definite (PSD). While
structured low rank approximation (SLRA) problems arise
frequently in many contexts, cf., e.g., [1]–[3], the problem
with an additional PSD constraint has so far received limited
attention. As an application we consider the estimation of
superimposed decaying signals with different half-lives. In
other words, given a signal f of the form

f(t) =
KX

k=1

cke
�t/Tk

+ ✏(t), (1)

where ck > 0, Tk > 0 and ✏ represents either random
noise or structured artifacts in the measurement, we present
methods for estimation of the parameters K, Tk and ck,
k = 1, . . . ,K. We remark that, in the case when K is
known and ✏ is negligible, one can solve (1) by standard
methods, such as ESPRIT. The approach of this paper
is to construct a low-rank approximation of the Hankel
matrix that is generated from the measurements, where the
approximation is forced to have a Hankel structure and to
be PSD, a combination that ensures that the corresponding

signal is of the desired type [4]. Once such an approximation
is computed, the parameters can be obtained by e.g. ESPRIT.
The approximation is computed using a fixed-point method
based on convex envelope theory. The method is guaranteed
to converge to the minimum of the convex envelope of
the original problem. Furthermore, this minimum is often
identical with the global minimum of the original (non-
convex) problem, and the method provides a way to verify
if this is the case.

II. STRUCTURED LOW-RANK PSD MATRIX
APPROXIMATION

II-A. Convex envelopes
Let H denote the vector space of self-adjoint complex

matrices. Given F 2 H we first consider the (unstructured)
problem

argmin

A2H, A�0
⌧2rank(A) + kA� Fk2, (2)

where ⌧ > 0 is a fixed parameter. Setting

R(A) =

⇢
rank(A) A � 0

1 else , (3)

the problem (2) can be reformulated as finding the minimum
of

I(A) = ⌧2R(A) + kA� Fk2, A 2 H. (4)

A key observation for this paper is that the Fenchel-
conjugate, denoted I⇤, and double-Fenchel-conjugate (i.e.
the convex envelope) of I can be computed explicitly. More
precisely, letting (�n(A))

N
n=1 denote the eigenvalues of any

matrix A 2 H (ordered decreasingly), we have

I⇤
(A)=

NX

n=1

max

��
max(�n(A/2 + F )

2, 0)
�2� ⌧2, 0

�
. (5)

If we define r⌧ : R ! [0,1] by

r⌧ (�) =

⇢
⌧2 � (max{⌧ � �, 0})2 � � 0

1 � < 0

, (6)

and set

R⌧ (A) =

NX

n=1

r⌧ (�n(A)),
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Fig. 1. Functions r⌧ (�) and s⌧,2(�) defined in (6) and (8).

then we also have (compare with (4))

I⇤⇤
(A) = R⌧ (A) + kA� Fk2.

The global minimizer of both I and I⇤⇤ can easily be
found explicitly. However, if we add also a linear constraint
to (2), i.e., demand that A be in some subspace M, then
this is no longer the case. Being convex, one may attempt to
minimize the functional I⇤⇤ over M using several standard
algorithms for convex optimization (see [5] for an overview),
but to our knowledge no algorithm applies without modifica-
tion since I⇤⇤ can assume 1 and is neither C1 nor strictly
convex.

In this paper we further regularize to make it strictly
convex by addition of the term (q � 1)kA � Fk2, where
q > 1 is fixed, i.e.

Ireg
(A) = R⌧ (A) + qkA� Fk2.

We will here present the extension of an algorithm from [6]
which is guaranteed to find the minimum of Ireg in any
subspace M.

II-B. The proximal operator

Following the theoretical setup in [6], we now compute
the proximal-type operator

S(W ) = argmin

Z2H
I⇤

(2(Z � F )) +

1

q � 1

kZ �Wk2, (7)

where W 2 H and Z = A/2 + F is introduced to sim-
plify the calculations, since this linear combination appears
naturally in (5). To evaluate this we introduce

s⌧,q(�) =

8
<

:

�/q q⌧  �
⌧ ⌧  �  q⌧
� �  ⌧

. (8)

If U⇤U⇤ is the spectral decomposition of W , it easily
follows by von-Neumann’s inequality that

S(W ) = U ˜

⇤U⇤

where ˜

⇤ is diagonal with diagonal elements s⌧,q(�n(W )).
(Using the notation of functional calculi for self-adjoint
matrices we simply have S(W ) = s⌧,q(W ), cf., e.g., [7]).
The functions r⌧ and s⌧,2 are illustrated in Fig. 1.

1 f u n c t i o n A= f i x e d p o i n t ( F , t au , N i t e r ) ,
2 W=0*F ;
3 f o r n =1: N i t e r ,
4 [ u , e ]= e i g (2* F+PMp(W) , ' v e c t o r ' ) ;
5 e=e / 2 . * ( e>2* t a u )+ t a u * ( e�t a u&e2* t a u )+ e . * ( e<t a u ) ;
6 W=u* d i a g ( e )* u ' ;
7 end ;
8 A=2*F�PM(W) ;

Table I. MATLAB implementation of the fixed-point algo-
rithm of Theorem 1 for the case of minimizing Ireg with
q = 2. It is assumed that PM and PMp are implementations
of the projection operators PM and PM? , respectively.

II-C. Fixed-point algorithm
We denote by PM and PM? the orthogonal projections

onto M and onto its complement M?, respectively, and set

B(W ) = S (qF + PM?(W )) . (9)

The following theorem is obtained by arguments similar to
those leading to [6, Theorem 5.1]:

Theorem 1. The Picard iteration Wn+1
= B(Wn

) con-
verges to a fixed point W �. Moreover, PM(W �

) is unique
and

A�
=

1

q � 1

�
qF � PM(W �

)

�
,

is the unique solution to

argmin

A2M
R⌧ (A) + qkA� Fk2. (10)

Note that the function R⌧ (A) induces that the minimum in
(10) is effectively constrained to PSD matrices. Furthermore,
the terms in q in (10) arise from making the objective
functional strictly convex. The fixed-point algorithm for
finding A� given F and ⌧ is summarized in MATLAB code
in Table I for the choice q = 2 (and can be adapted for any
number q greater than 1 by suitable modifications, cf., [6]).

A key observation is that Theorem 1 often provides a
solution to the original problem, and that whether this is the
case or not can be verified by inspection of the eigenvalues
of W �. This result can be obtained following arguments
analogous to those in [6, Theorem 5.2].

Theorem 2. Let W � and A� be as in Theorem 1. Then A�

solves
argmin

A
R⌧ (A) + kA�W �k2. (11)

Moreover, if W � has spectral decomposition U⇤U⇤, then
A�

= U ˜

⇤V ⇤, where ˜

⇤ is a diagonal matrix whose diagonal
values satisfy

8
><

>:

˜�j = �j , if �j > ⌧

0  ˜�j  �j , if �j = ⌧
˜�j = 0, if �j < ⌧

. (12)
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Fig. 2. Illustration of Theorem 2. Black crosses indicate
(sorted) eigenvalues of F , red circles indicate eigenvalues
of W � (�j) and the blue dots indicate eigenvalues of A�.
Left: Global optimum of (13) reached; No �j = ⌧ . Right:
Global optimum of (13) not reached; �j = ⌧ exist.

Finally, if 8j, �j 6= ⌧ , then A� is the solution to the non-
convex problem

argmin

A�0,A2M
⌧2rank(A) + qkA� Fk2. (13)

Note that (11) has the peculiar property that the global
minimum (over A 2 H) coincides with the restricted
minimum (over A 2 M) in (10).

Theorem 2 says that if the eigenvalues of W � are all
distinct from ⌧ at convergence, then the fixed-point algorithm
of Theorem 1 has converged to the solution of the non-
convex problem (13), which is simply a rescaling of the
original problem (2). The situation is illustrated in Figure 2.
In the left panel the global minimum of (13) is obtained. This
can be seen because there is no j such that �j = ⌧ . It is also
clear that the first three eigenvalues of W � and A� coincide,
as stipulated by (12). In the right panel, the global minimum
of (13) is not reached. In this case |�3�⌧ | < 1e�10 and ˜�3

is smaller than �3. Note also that there are several values of
�j that are close to ⌧ . This partially explains why the values
of ˜�j for j � 4 are not as close to zero as in the case where
the global minimum of (13) and the minimum of the convex
envelope counterpart coincide.

III. ESTIMATION OF HALF-LIFE PARAMETERS
III-A. PSD low rank Hankel matrices

We now provide the link between the above results and
estimation of half-life parameters. A Hankel matrix Hf can

be thought of as a summation operator acting on g 2 CN

via
�
Hf (g)

�
n
=

NX

m=1

fm+ngm,

whose continuous counterpart is the integral operator

�f (g)(t) =

Z 1

0
f(t+ s)g(s) ds. (14)

The connection between these two operators is studied in
[8], where it is shown that �f has rank K and is PSD if and
only if f is of the form

f(x) =

KX

k=1

cke
⇠kt (15)

where ck > 0 and ⇠k 2 R. Results of this type for Hankel
matrices date back to 1911 (Fischer’s theorem, [4]), but are
unfortunately not as clean as the situation for continuous
variables. We refer to [8] for a more thorough discussion of
these matters. For the purposes of this paper it is sufficient
to note that a given Hankel operator Hf has rank K < N
and is PSD if f comes from a sampling of (15), and the
converse also holds “generically”.

III-B. Half-life parameter estimation
Let f be a sampling of the signal (1). By the previous

section we see that if the noise ✏ is zero, then Hf will be
a PSD matrix and have rank K. In the presence of noise,
neither of these statements become true. To remove the noise
from the signal, we thus pose the following problem

argmin

g: Hg�0
⌧2rank(Hg) + qkHg �Hfk2. (16)

This problem is non-convex and hence can not be expected
to be solved using standard (gradient type) optimization
methods. However, if we let M be the subspace of Hankel
matrices, then by Theorem 1 with F = Hf and A = Hg , the
algorithm of Theorem 1 solves the closely related problem

argmin

g
R⌧ (Hg) + qkHg �Hfk2. (17)

Moreover, if the eigenvalues of the fixed point W � are all
distinct from ⌧ , then it also solves (16) (cf., Theorem 2).
Once the algorithm has converged to a function of the form
(15), one may use standard methods for the estimation of
the parameters K, Tk and ck.

III-C. Choosing ⌧ and q

We finally discuss the relationship between the desired
rank K, the penalty level ⌧ and the regularization parameter
q, in the presence of noise. Given f of the form (1), let
fp denote the noise free part and ✏ the noise. By the
previous sections, we know that Hfp has rank K, whereas
H✏ most likely has full rank. If �K(Hfp)  �1(H✏), it
is not likely that the method presented in this paper can
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Fig. 3. Exponentials cke
�t/Tk , k = 1, 2, 3 and function

f(t) =
PK

k=1 cke
�t/Tk without and with noise.
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Fig. 4. Empirical probability for convergence of the algo-
rithm to the global minimum of the non-convex problem
(16).

recover all K parameters Tk, k = 1, . . . ,K, accurately.
However, when �K(Hfp) > �1(H✏), a choice of ⌧ such thatp
q�K(Hfp) < ⌧ <

p
q�1(H✏) yields accurate estimates

for Tk. Of course, in a real situation, neither �K(Hfp)

nor �1(H✏) are known, but under the assumption that the
noise level is below �K(Hfp), both can be approximated by
�K(Hf ) and �K+1(Hf ) (since eigenvalues depend contin-
uously on perturbations). We thus arrive at the recommen-
dation p

q�K(Hf ) < ⌧ <
p
q�K+1(Hf ) (18)

for obtaining an approximation for f with K exponential
functions and thus estimates for Tk. To motivate this choice
theoretically, note that under our assumptions on the data,
the (K+1)st eigenvector will contain mainly noise, and we
would like the functional I to be such that it is decreased
when this eigenvector is excluded. The exclusion of this vec-
tor will lead to an increase of the data fit term kHg �Hfk2
by q�2

K+1(Hf ), whereas ⌧2rank(Hg) will increase by ⌧2,
thus yielding ⌧ >

p
q�K+1(Hf ). For the other inequality in

(18) one can argue similarly.
Concerning the regularization parameter q, we note that

the function s⌧,q becomes the identity function in the limit
q = 1, and consequently the algorithm converges slowly
for values near 1. We have found that q = 2 works well
in practice. The numerical illustrations reported below have
been conducted with ⌧ =

p
2(�K(Hf ) + �K+1(Hf ))/2.

IV. NUMERICAL ILLUSTRATIONS
Let us look at some numerical examples to illustrate the

theoretical results presented in the previous sections. Before

10 15 20 25 30 35 40 45 50
-1

-0.5

0

0.5

SNR (dB)

λK(Hf)
λK+1(Hf)
λK(Hfp)
τ

Fig. 5. Median values of �K(Hf ), �K+1(Hf ), �K(Hfp)

and ⌧ .

doing so, it should be stressed that the problem of detecting
half-life parameters is quite different from the usual (com-
plex) frequency estimation problem [9] since it becomes
severely ill-posed in the absence of oscillations. A reason
for this is that the functions that are composed of decaying
exponentials are close to parallel (in terms of orthogonal
basis), and a linear combination of incorrect exponentials
may give a good fit to the function. Accurate estimation
of the decay parameters is therefore a hard problem, see
[10], [11], and traditional means of measuring the impact
of noise, like the Signal-to-Noise Ratio (SNR), fall short
in capturing the difficulties of this problem. Also, since the
only information that distinguishes the different exponentials
from each other is the decay rate, or ratio between their
largest and smallest values, it is implicit in the problem that
the amount of information differs substantially in different
parts of the signal. To conclude, it is hard to tailor a test
environment that would fit all of the particularities of this
specific problem.

The numerical results that we present here are therefore
nevertheless based on the standard tests that usually are
conducted in the signal processing community, that is, quan-
tifying the impact of white Gaussian noise for different SNR
values. We choose a signal that is composed of K = 3

exponential functions, with half times T1 = 0.01, T2 = 0.05
and T3 = 0.3, on the interval [0, 1]. The corresponding
coefficients ck, k = 1, 2, 3, are chosen so that the three
exponentials have the same `2 norm. The exponentials are
depicted in Fig. 3, where the sum is also shown as well as
a realization of a noisy signal (SNR=27.5dB). Results are
obtained for 100 independent realizations of noise for each
SNR value, the matrix size is N = 256 and q = 2.

The fixed-point algorithm in Table I is guaranteed to
converge to a W � from which the minimum of (17) can
be computed, and Theorem 2 provides a test for when this
minimum coincide with the minimum of the non-convex
problem (16). This property is illustrated in Fig. 4, which
plots the empirical probability of the minima of (16) and
(17) to coincide, and hence of the output of the algorithm to
succeed in finding the global minimum to the original non-
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convex problem. We see that this success rate is 100% for
large values of SNR, and then rapidly drops to zero below
a certain threshold SNR (for this specific example, below
⇡ 27.5dB). This behavior is further investigated in Fig. 5,
which plots the eigenvalues �K(Hf ), �K+1(Hf ), �K(Hfp)

as well as the values selected for ⌧ (medians over 100
realizations) and shows that the threshold value for the SNR
above which the algorithm succeeds in finding the global
minimum of the non-convex problem corresponds with the
SNR level above which the penalty level ⌧ is smaller than
�K(Hfp) (see also the discussion of Fig. 2).

While the fixed-point algorithm in Table I does not always
succeed in finding the global minimum of the non-convex
problem (16), it is guaranteed to find the solution of (17).
Fig. 6 illustrates the reconstructions of the function fp
obtained when the minimum of (16) does not and when it
does correspond with the minimum of (17) (left and right
column, respectively). The results indicate that even in the
situation where the solution found by the algorithm is not
identical with the minimum of (16), the reconstruction and
the estimates of the parameters Tk are of good quality.

V. CONCLUSIONS
A fixed-point algorithm for the estimation of half life

parameters is investigated. The theory is based on explicit
formulas for convex envelopes and structure results for PSD
Hankel matrices. The algorithm converge to the minima
of a modified convex problem, and we show that for low
to moderate noise levels, this minima coincides with the
minima of the original non-convex functional, which is easily
verified based on the theory.
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