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Abstract—In a communication scheme, there exist points at
the transmitter and at the receiver where the wave is reduced
to a finite set of functions of time which describe amplitudes
and phases. For instance, the information is summarized in
electrical cables which preceed or follow antennas. In many
cases, a random propagation time is sufficient to explain changes
induced by the medium. In this paper we study models based
on stable probability laws which explain power spectra due to
propagation of different kinds of waves in different media, for
instance, acoustics in quiet or turbulent atmosphere, ultrasonics
in liquids or tissues, or electromagnetic waves in free space or
in cables. Physical examples show that a sub-class of probability
laws appears in accordance with the causality property of linear
filters.

keywords: random propagation time, stationary process, stable
probability law, causality.

I. INTRODUCTION

Acoustic waves propagate through shocks between
molecules which move in the medium. Consequently any
(equivalent) time of propagation has a random nature. The
same property is true for electromagnetic waves which
propagate in a medium which is never totally empty and
then which is submitted to fluctuent fields. In both cases
the result U = {U (t) , t ∈ R} of propagation of the wave
Z = {Z (t) , t ∈ R} can be modelled as

U (t) = Z (t−A (t)) (1)

where the random process A = {A (t) , t ∈ R} is an equivalent
propagation time.

This paper addresses stable probability laws modelling
propagation times of waves [1], [2], [3], [4]. The main
effects of propagation are weakenings, changes in phases and
amplitudes, widenings of power spectra and Doppler effects. I
have shown that random propagation times explained these
transformations. For instance, in acoustics and ultrasonics,
where changes are ruled by the Beer-Lambert law, the (nearly)
Kramers-Krönig relations and selective attenuations [5], [6],
[7]. Also in electromagnetics, where literature highlights spec-
tral widenings and/or Doppler shifts. Examples can be taken in
radar domain [8], [9] or in optics for laser or natural light [10],
[11]. Propagation through coaxial cables shows a particular
form of weakenings and phase changes [12]. Let consider an
acoustic wave propagating in atmosphere or water. The path
can be divided into a sum of (approximately) independent
pieces. The application of some version of the central limit
theorem leads to a Gaussian probability law for the random

propagation time A, the random behavior being due to small
and random changes of the refraction index. We show in
section 3 that this explains the weakening of pure tones in
exp
[
−aω2

]
observed most of the time in acoustics (ω/2π is

the frequency), and many kinds of spectra [13]. But ultrasonics
show more general attenuations in exp

[
−aωb

]
, 0 < b ≤ 2,

where b is often different of 2. Stable probability laws gen-
eralize the central limit theorem and can be involved in this
situation [1], [2], [3]. They can be asymmetric when α 6= 2,
and we will see that this property allows to explain wave
dispersion (the celerity depends on the frequency).

The next section studies properties due to stationary random
propagation times. The Gaussian case and the more general
case of stable laws are explained in sections 3 and 4. Applica-
tions will be given in section 5 when stable probability laws
may be appealed. It is the case for acoustics, ultrasonics and
propagation through coaxial cables or in power cables, where
experiments can be done for wide enough frequency bands.
These examples highlight a particular sub-class of probability
laws which is in accordance with the causality property of
linear filters. In the appendix, we explain the construction of
stationary stable processes which seem well matched to given
examples.

II. RANDOM PROPAGATION TIMES

1) In what follows, we assume that Z (the real or complex
random process which propagates) is zero-mean and wide
sense stationary with power spectral density sZ (ω) defined
by

E [Z (t)Z∗ (t− τ)] =
∫ ∞
−∞

eiωτsZ (ω) dω. (2)

E[..] stands for the mathematical expectation (or ensemble
mean), the superscript ∗ for the complex conjugate and sZ (ω)
can be a mixing of regular functions and ”Dirac functions”. A
(the random propagation time involved in (1)) is a random
process independent of Z and such that the characteristic
functions {

E
[
e−iωA(t)

]
= ψ (ω)

E
[
e−iω(A(t)−A(t−τ))] = φ (τ, ω)

(3)

are independent of t. This defines a stationarity stronger than
the usual wide sense stationarity. The result of propagation U
defined by (1) can be split in the orthogonal sum (see [14]
and the appendix)

U (t) = G (t) + V (t)
E [G (t)V ∗ (t− τ)] = 0

(4)
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whatever τ ∈ R. The random process G is the output of a
linear invariant filter with input Z and complex gain ψ (ω) .
This means that

G (t) =
∫∞
−∞ Z (t− u) f (u) du

ψ (ω) =
∫∞
−∞ e−iωuf (u) du

sG (ω) =
[
|ψ|2 sZ

]
(ω)

(5)

for regular f (u) (it is together the probability density of
−A (t) and the filter impulse response). sG (ω) is the power
spectral density of G. Moreover

KV (τ) = E [V (t)V ∗ (t− τ)] =∫∞
−∞

[
φ (τ, ω)− |ψ (ω)|2

]
eiωτsZ (ω) dω.

(6)

We may assume that

lim
τ→∞

φ (τ, ω) = |ψ (ω)|2

with a fast enough convergence. This means that A (t) and
A (t− τ) become independent when τ is large enough. In
this case, V will have a regular power spectral density sV (ω)
defined by

KV (τ) =

∫ ∞
−∞

eiωτsV (ω) dω. (7)

2) Let assume that devices transmit a pure spectral line at
the frequency ω0/2π

Z (t) = eiω0t.

The fact that the mean depends on t has no importance. The
received wave verifies, from (5) , (6)

G (t) = eiω0tψ (ω0)
2πsV (ω) =∫∞

−∞

[
φ (τ, ω0)− |ψ (ω0)|2

]
ei(ω0−ω)τdτ.

(8)

The result of the propagation is the sum of a pure wave G
(which ends to a DC part after an amplitude demodulation of
shift ω0) and a band process V (the AC part). The powers of
the components are equal to |ψ (ω0)|2 (for the DC one) and

KV (0) = 1− |ψ (ω0)|2

(for the AC one). The sum of powers is equal to 1, i.e. the
propagation is lossless.

The DC/AC ratio r is the ratio of the respective powers [15]

r =
|ψ (ω0)|2

1− |ψ (ω0)|2
. (9)

Actually, devices of reception take into account a limited
band around the frequency ω0. As a consequence, it happens
that only the monochromatic part is viewed in more or less
important noise which is the sum of a surrounding medium
noise and a little part of the companion process V defined
by (4) , (5) and (6) . It is often the case in acoustics [5] and
in ultrasonics [7] or in propagation in coaxial cables [12].
Conversely the spectral line can disappear. For instance for
electromagnetic waves in free space. Light coming from stars
shows lines of hydrogen Hα, Hβ ... and of other elements
with various widths [11]. We know that laser emissions are

broadened when propagating in space [16]. Moreover, in the
computation of power spectra, the autocorrelation function
is cancelled for missing data (apodization). This leads to a
widening of pure spectral lines which can disappear in the
surrounding noise [13].

III. THE GAUSSIAN CASE

1) Let assume that A is a Gaussian process. If the prop-
agation time can be considered as a sum of approximately
independent components (for instance successive thicknesses
in the atmosphere), its mean, its variance and its covariance
are proportional to the propagation distance l. We assume that
these quantities depend only on the crossed medium (and not
on the wave properties). Then, the characteristic functions of
(3) are defined by

ψ (ω) = exp
[
−imlω − l (σω)2 /2

]
φ (τ, ω) = exp

[
−l (σω)2 (1− ρ (τ))

]
lσ2ρ (τ) = E [A (t)A (t− τ)]

(10)

where m is the mean, σ the standard deviation and ρ (τ)
the (normalized) autocorrelation function for the unit distance.
From (8), we have

G (t) = eiω0(t−ml)−l(σω0)
2/2. (11)

ml is the transit time of the pure wave on the distance l. The
celerity of the wave G is equal to m−1 and does not depend
on the frequency. Equivalently the refraction index is constant
(the medium is not dispersive). The dependence on l of the
amplitude and the phase of G (t) is a proof that we are in the
Beer-Lambert law context. Beside the monochromatic wave G
appears the process V with power spectral density defined by
(from (8))

2πsV (ω) =∫∞
−∞ e−i(ω−ω0)τ−l(σω0)

2
[
el(σω0)

2ρ(τ) − 1
]
dτ.

(12)

It is possible to choose ρ (τ) in sort that sV (ω) takes very
small values in the frequency bands viewed by devices. Then,
V will be neglected and/or plugged in other surrounding
noises.

2) Let assume that the behavior of ρ (τ) at the origin point
verifies

ρ (τ) = 1−
∣∣∣∣ ττ0
∣∣∣∣b + o

(∣∣∣∣ ττ0
∣∣∣∣b
)

(13)

with 0 < b ≤ 2. (13) rules the behavior of ρ (τ) nearby the
point τ = 0. ρ (τ) takes into account the celerity of variations
of the propagation time A by length unit. Practically, from
(12), this means that we have

sV

(
ω0 + ω µ

1/b

τ0

)
∼=

τ0µ
−1/b

2π

∫∞
−∞ e−iωu−|u|

b

du

µ = l (ω0σ)
2

(14)

when µ is sufficiently large. In the same time, the bandwidth
of V increases when τ0 decreases. τ0 has the same meaning
as a ”decorrelation time”.
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3) To a better understanding, let assume that ω0/2π = 106

(for instance in ultrasonics), l = 1 and

ω0σ = 1, ρ (τ) =


1− |τ/τ0| ,

∣∣∣ ττ0 ∣∣∣ < 1

0, |τ/τ0| ≥ 1
τ0 = 10−9.

We have respectively PG = e−1 (it is the power of G, the
height of the residual spectral line), PG + PV = 1 (PV is
the power of V). sV (ω) is almost constant in the interval(
ω0 − 108, ω0 + 108

)
with value less than 10−9. Clearly, the

process V cannot be distinguished by devices matched to the
extraction of the line G (i.e centered around the frequency
ω0/2π).

Conversely, when ω0/2π = 1014, l = 1 (for instance in
infrared), let assume that

ω0σ = 4, ρ (τ) =

{
1− |τ/τ0| , |τ | < τ0

0, |τ | ≥ τ0.
We obtain PG ' 0, PV ' 1. Furthermore, provided that τ0 is
not too large

πsV (ω + ω0) '
θ

θ2 + ω2
, θ =

16

τ0
.

ω0 is the gravity center of sV (ω) , and 4/
√
τ0 is a measure of

the bandwidth. If l = 2 and not l = 1, we obtain θ = 32/τ0.
This means that increases of l (like decreases of τ0) lead to
a flattening (a widening) of sV (ω) . The Lorentzian behavior
of sV (ω) is related to the value b = 1 in (13) . (14) defines
the links between the value of b and the shape of sV (ω) . For
instance b = 2 leads to a Gaussian spectrum.

IV. STABLE PROBABILITY LAWS

1) The probability law of A (t) is stable when the charac-
teristic function (c.f) ψ (ω) =E

[
e−iωA(t)

]
defined in (3) has

the shape [1], [2], [3]

lnψ (ω) =

−imω − a |ω|α
(
1 + iβ ω

|ω|h (|ω| , α)
) (15)

with real parameters (−m, a, α, β) and a > 0, 0 < α ≤
2, |β| ≤ 1. Moreover

h (|ω| , α) =
{

tan πα
2 , α 6= 1

2
π ln |ω| , α = 1.

(16)

The corresponding random variables have probability densities
with analytic closed form in three cases, α = 2 (Gaussian),
α = 1, β = 0 (Cauchy/ Lorentz) and α = 1/2, β = ±1 (Levy).
In other cases, series developments can be used [2], [3]. The
laws are always unimodal and they are one-sided only when
0 < α < 1, β = ±1. Formula (15) is matched to an unit
propagation length. For a length l, we can replace A by Al,
m by ml and a by al. This means that the r.v Al (t) , the
propagation time on a length l is the sum of l r.v which have
the same probability law that A (t) (for any integer l).

In the notations of [2], ψ (ω) is the c.f of the r.v −A (t) .
Then, the opposite A (t) follows a stable law of parameters
(m, a, α,−β) . We will see that the value of β has a great

importance. When β = 1, 0 < α < 1,m = 0, it is proved
that the r.v A (t) is such that

Pr [A (t) > 0] = 1.

Equivalently, the filter of complex gain ψ (ω) is causal, be-
cause the impulse response of this filter is the probability
density of A (t) (look at (3) and (6)).

For 1 < α < 2, the r.v A (t) is never one-sided. Neverthe-
less, the value β = 1 provides the most asymmetric possible
probability density, so that this value is the best choice with
respect to the causality property. When α = 1, we have to
take the value β = −1, which gives the same property. For
α = 2, the value of β is indifferent.

2) The choice of this class of probability laws will be
justified in the following section by practical examples. Ex-
periments often show that the r.v. A (t) has to be Gaussian
for each t (the particular case α = 2). In this situation it is
natural to assume that the entire process A is Gaussian which
implies that the margins A (t) and the linear combinations
A (t)−A (t− τ) are Gaussian. It is not a great bet though the
knowledge of margins does not define entirely the underlying
probability laws most of the time. This kind of problem is
complex [18].

The propagation of ultrasonic waves involves stable laws
more general than the Gaussian one, see section 5.2 and [6],
[7]. In appendix, we prove that it is possible to construct
processes A such that both A (t) and A (t)−A (t− τ) follow
stable laws with the same exponent α, whatever its value in
]0, 2]. This means that the Gaussian model can be naturally
generalized. To take α different of 2 in (15) does not really
limit the possibilities for spectral densities of V (defined in
section 2). In this expanded context it is possible to model
propagations with mixed results (neither G nor V is negligible
[17]).

3) We have seen in section 2 that ψ (ω) can be viewed as the
complex gain of a linear invariant filter (which provides the
process G). ψ (ω0) exp [iω0t] is the answer of some device to
the pure tone exp [iω0t] . In the Gaussian framework which
is described by (10), the wave amplitude is weakened by
exp

[
−lω2

0σ
2/2
]

and delayed by the constant ml. c = 1/m is
the celerity of the wave in the medium and does not depend
on ω0. More generally, when ψ (ω) verifies (15) , the wave
weakening is equal to

exp [−a |ω0|α] .
The propagation time of the monochromatic part G is no
longer a constant (apart when α = 2) but it becomes the
quantity (ω0 > 0)

m+ aβωα−10

{
tan (πα/2) , α 6= 1

2
π lnω0, α = 1.

Except for α = 2 (the Gaussian case), this means that we deal
with a dispersive medium in which the celerity is a function
of the frequency. Experiments described below prove that the
parameter β in (15) has to take one of particular values 1 or
−1. It is of huge importance for the model validity because
these values are closely linked to the notion of causality (i.e
the consequence of an action appears only after the action).
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4) Figures 1, 2, 3 illustrate stable laws properties linked to
probability densities (which are always regular and unimodal).
Figure 1 depicts the case (0,1,1/2,β), for some values of β. The
value β = −1 provides the only one-sided probability density
(which leads to causality). In Figure 2, the case (0,1,3/2,β)
is studied. The value β = −1 does not provide a one-sided
probability density, but it is the best bet for approaching the
causality property. Figure 3 shows the case (0,a, 3/2,−1). We
see that the ”width” of the probability density decreases in the
same time that a.

−3 −2 −1 0 1 2 3 4 5
0
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0.3
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0.5

0.6

0.7
β = −1
β = −0.7
β = −0.3
β = 0

Fig. 1. Probability density of A(t) for α = 1
2

, a = 1 as a function of β
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5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35
β = −1
β = −0.7
β = −0.3
β = 0

Fig. 2. Probability density of A(t) for α = 3
2

, a = 1 as a function of β

V. EXAMPLES

A. Acoustics

No propagation phenomenon was better studied than acous-
tic waves through atmosphere and sea water (mainly for
military aims in the latter case). In frequency bands where
physical conditions in the medium are invariant, the complex
amplitude Fl (ω) of the monochromatic wave eiωt measured

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8
a = 2
a = 0.8
a = 0.4
a = 0.2

Fig. 3. Probability density of A(t) for α = 3
2

, β = −1 as a function of a

at the distance l is in the form (ω/2π is the frequency)

Fl (ω) = e−l[aω
2+iω/c] (17)

where a depends on the temperature, viscosity, composition....
The celerity c of the wave has the same property [19],
[20]. (17) is true for frequencies going up to dozens of
MHz and whatever the path length l up to kilometres if the
medium is subjected to constant conditions. These conditions
are able to change because some kinds of molecules in
atmosphere (H2O, CO2..) or in water (MgSO4, B(OH)3..)
interact at characteristic frequencies. a is constant in frequency
bands which depend on the kind of molecules and on their
concentrations. In frequency bands where a and c can be
considered as constant, (17) shows that the medium on a
length l reacts like a linear invariant filter of complex gain
Fl (ω) . Consequently, the Gaussian model of propagation
studied in section 3 is available. The random propagation time
A is a Gaussian process with ψ (ω) = Fl (ω) . The received
wave is the component G. The component V has likely a
flat power spectrum which makes it invisible among ambient
noises, because measurements devices are matched to the
transmitted frequency. Let note that literature is very detailed
for variations of a with respect to frequency, temperature
and other parameters. But I do not know references about
variations of c versus the frequency. This means that we have
to admit that the medium is not dispersive in this occurence.

B. Ultrasonics

Ultrasonic waves crossing various materials on small dis-
tances (for instance for echography) lead to more general for-
mulas [7]. In this case, we often measure complex amplitudes
Fl (ω) (for monochromatic transmitted waves at the frequency
ω/2π on a length l)

Fl (ω) = e−iω(l/c)−al|ω|
α(1+i(sgnω) tan(πα/2))

0 < α ≤ 2, α 6= 1.
(18)

or, for α = 1

Fl (ω) = e−iω(l/c)−al|ω|(1−
2
π i(sgnω) ln|ω|)
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We recognize particular cases of (15) about stable probability
laws with β = ±1.

This model is available with β = 1 for very different
media like castor oil (α = 1.66), polyethylene (α = 1.1),
rubber (α = 1.38) and also brass tube (α = 0.5 but for
acoustic low frequencies) [21], [22], [23]. The case α = 1
(with β = −1) is encountered for instance when modeling
evaporated milk. The value β = ±1 is often well-fitted and has
a particularly physical meaning. When α < 1, the probability
density of Fl (ω) is one-sided (it is false for other values of
β). Equivalently, the linear invariant filter of complex gain
Fl (ω) is causal (the result G is viewed by devices). When
α ≥ 1, these values of β minimize a tail of distribution
or equivalently they are the most favourable with respect to
the causality property. Of course it is a huge argument for
physicists. Values of β different of ±1 are also encountered
for example for egg yolk (α = 1.54, β = 0.85) and lucite
(α = 0.625, β = 0.71) [7]. But measurements of the celerity
in the medium which rules the value of β are difficult and
can be less accurate than measurements of α which rules the
attenuation variations. Like in the acoustic case, the second
component (noted V in section 2) is not detected by devices.
This means that the V-power spectrum is very flat and spread
with respect to the frequencial window of reception devices.

C. Coaxial cables

Propagation in coaxial cables can be compared to propa-
gation of acoustic or ultrasonic waves (Drude model). In the
latter cases, the propagation is due to interactions between
molecules and in the first case, to interactions between elec-
trons of conduction and the medium. From a classical theory
and for an infinite line, a length l of cable is equivalent to a
linear invariant filter of complex gain

Fl (ω) = e−l
√

(R+iLω)(G+iCω)

where R,L,C,G are the series resistance, the series induc-
tance, the shunt capacitance and the shunt conductance by
length unit. Actually, R depends on ω due to the ”skin effect”,
G is small, which leads to the formula

Fl (ω) = e
−l

(
imω+a

√
|ω|(1+isgnω)

)
. (19)

This formula is for example available for the Belden 8281
cable up to 1GHz [24], [12]. Then we see that −A (t) follows
a stable probability law of parameters ( see section 4)

(−ml, al, 1/2, 1) .

The parameter 1/m (the wave celerity) is close to 2/3 the
light celerity in the vacuum, a depends on the manufacturing
process. The value α = 1/2 is not encountered in ultrasonics
(at my knowledge we have α ≥ 1 in this domain) but we find
this value in [23] (propagation in brass tubes at low frequency).
We have explained in the section above that the value β = 1
has a particular sense. It means that the propagation on a
distance l is equivalent to a causal linear invariant filter with
complex gain Fl (ω). The causality property is verified only for
this value of β. As usual, the output of this filter is identified to

the process G defined in section 2. The process V summarizes
losses which are not taken into account by devices.

The stable probability law model is available for other
conductors like XLPE cables for energy transmission. In
figure 1 of [25], attenuation versus frequency is well-fitted
by y = axα (in dB) with α = 1.13 up to 50MHz for a cable
in a good state of repair. Unfortunately, the authors do not
give curves about the celerity, and it is not possible to verify
the shape of the imaginary part in (15) (and then the value
of the parameter β). Figure 4 in this paper shows the fit of
attenuation for data in [26] and three species of cables in good
state. We find α = 1.23 − 1.24. Moreover the study of data
giving the variation of the wave celerity leads to the values

β = 1− 0.74− 0.66.

Recall that the causality of filters corresponds to the value
β = 1.

7 7.2 7.4 7.6 7.8 8 8.2 8.4
−2

−1.5
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−0.5
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0.5

log(τ)

lo
g
(a
tt
en
u
at
io
n
)

β = 1
β = 0.74
β = 0.66

Fig. 4. Log(attenuation) plot of XLPE cable from measurements in [26]

D. The Mintzer’s law

Propagation of acoustics in water or atmosphere is well
explained by Gaussian propagation times (see section 5.1).
The parameters are defined by the macroscospic characteristics
of the medium, like temperature, viscosity, composition....
About the propagation of the monochromatic wave eiω0t on
the distance l, the amplitude is constant and equal to e−alω

2
0

(see section 5.1). In the case of a turbulent medium, for
instance induced by a heated grid [27], we may consider that
the weakening parameter a is a slowly time-variant quantity
B (t), which has a random behavior linked to the strength of
turbulences. Consequently, the wave amplitude C (t) at the
distance l becomes the random quantity

C (t) = exp
[
−B (t) lω2

0

]
. (20)

Classically, the ”coefficient of variation” µ of the r.v (random
variable) C (t) is defined by [15]

µ =

√
VarC (t)

E [C (t)]
.
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The Mintzer’s law asserts that µ varies like ω0

√
l [28]. We

ask to find probability laws for B (t) which are able to explain
such a result (we assume that the process B is stationary).

Let assume the existence of the moment-generating function

ξ (s) = E
[
e−sB(t)

]
, s ≥ 0.

It is a strong hypothesis when the probability laws are not
one-sided [3]. We have the equality

µ =

√
ξ (2lω2

0)− ξ2 (lω2
0)

ξ (lω2
0)

(21)

When B (t) follows a stable law with parameters (m′, θ, 1, 1) ,
we know that ξ (s) exists and that [3]

ξ (s) = exp [θs ln s−m′s] . (22)

In this case, (21) becomes

µ =
√

exp [2θlω2
0 ln 2]− 1.

For small µ corresponding to small lω2
0 , we have

µ ∼
√
2θ ln 2ω0

√
l (23)

in agreement with the Mintzer’s law. Experimental values
found in literature (see [5]) justify the limited development.
For stable laws with parameters (m, θ, α,−1) , α 6= 1, ξ (s)
exists (and not in other cases, except the preceeding one [3]),
and we obtain

µ ∼
√
θ |2− 2α|

(
lω2

0

)α/2
which returns to (23) when α → 1. In [5], we show that the
half-Cauchy law, which is not stable, leads to the Mintzer’s
property. It is a law with discontinuous probability density,
but which has the advantage to be one-sided (it is not true
for (22)). Let note that physicists study moments of the
log-amplitude. In the situations which are developed in this
section, these quantities do not exist.

E. Backscatter from trees

In paper [29], a radar at 8GHz interacts with crowns of
trees. Each experiment addresses a particular tree among six
species, and at two different wind celerities. Measurements
of autocorrelation functions K (τ) of the backscatter are com-
pared with the so-called Wong model (a mixture of Gaussians)
[31]. If we consider the curves up to the ”decorrelation time”
τ0 (defined by K (τ0) = 1/e), they are very well fitted by
(after demodulation in baseband)

K (τ) = exp [− (τ/τ0)
α
]

where 1.65≤ α ≤ 2, following the specy of tree and the
wind speed [8]. We know that the accuracy of measurements
decreases with τ, due to apodization and variations of the fre-
quency. It is the reason which leads to neglect measurements
above the decorrelation time, and in the same time to admit
that limτ→∞K (τ) = 0. Nevertheless, all data of [29] drawn
in the set of coordinates

(x = ln τ, y = − ln [− lnK (τ)])

are above the line

y = αx− α ln τ0

which cannot be due only to inaccuracies. Taking into account
data above τ0 leads to the model

K (τ) = c+ (1− c) exp [− (τ/τ0)
α
] .

We see that a specular component appears with a power equal
to c and a DC/AC ratio r equal to (see(9))

r = c/ (1− c) .
Figures 5 and 6 from [13] illustrate the fits for apple tree
and white mulberry. Gaussian propagation times explain these
results. Neither the G part (here the DC component) nor the
V part (the AC component) disappears.

2.5 3 3.5 4 4.5 5 5.5
−2

0

2

4

ln(τ)

−
ln
(−

ln
(K

(τ
))
)

c = 0.22 ; α = 1.7 ; τ0 = 90

With spectral line
Without spectral line

Fig. 5. Autocorrelation plot of apple tree at a windspeed of 3.8 m/s

1 1.5 2 2.5 3 3.5 4
−2

0

2

4

ln(τ)

−
ln
(−

ln
(K

(τ
))
)

c = 0.19 ; α = 2 ; τ0 = 20

With spectral line
Without spectral line

Fig. 6. Autocorrelation plot of white mulberry at a windspeed of 7.9 m/s

F. Electromagnetic waves in free space

Generally, propagation of electromagnetic waves in free
space or atmosphere leads to weakenings, spectral widenings
and Doppler shifts. The disappearance of spectral lines is
easily explained by Gaussian random propagation times. The
weakening of the line exp [iω0t] is measured by the quantity
exp
[
−ω2

0σ
2/2
]

where the standard deviation σ =
√

VarA (t)
characterizes the amplitude of time variations of the wave
trajectory. For a He/Ne laser at 0.633µm (in the visible) on
a propagation distance of 15m, ω0σ = 10 for σ = 3.10−14s.
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This value corresponds to 10−6 times the mean propagation
time, which is likely much smaller than uncertainties about the
propagation length. Clearly, the line disappears and is totally
replaced by a continuous spectral component. In this situation,
the characteristic function ψ (ω) cannot be measured. Even
when a part of the line can be highlighted [13], the transmitters
(radar, laser,...) work generally at only one frequency, which
does not allow to measure functions of the frequency. Never-
theless, the classical central limit theorem works for acoustics
and ultrasonics in free space (ω0 has not the same order of
magnitude, it remains a pure spectral line, see sections 5.1
and 5.2), and, because the lack of data, the Gaussian model
seems the best bet about electromagnetic propagation in free
space. In this context, the behavior close to the origin of ρ (τ)
defined in (13) , allows to fit spectral densities in the form

KV (τ) = a exp [−bτα]
where 0 < α ≤ 2 [13]. Moreover, Doppler shifts appear when
moving targets and /or continuous spectra of transmitters [8],
[11], [9].

VI. REMARKS

1) We can admit that, when the model of stable laws is
available, the value of β is 1 or −1 following that α is equal
or different from 1 (see examples 2 and 3). These values
correspond to the best value with respect to the causality prop-
erty (strictly verified only when 0 < α < 1). Consequently,
when the propagation is free of dispersion (the wave celerity
is constant whatever the frequency), the only possibility is
α = 2 (the Gaussian case). It seems that this situation
appears for propagation in free space, together for acoustics
and for electromagnetic waves, though physical models are
very different.

2) In literature, the Kramers-Krönig relations were proved
under the causality condition. If the (integrable) impulse
response f (t) of a filter verifies

f (t) = 0, t < 0

and if its Fourier transform (the complex gain)

F (ω) =

∫ ∞
−∞

f (t) e−iωtdt

is such that |F (ω)| →|ω|→∞ 0 faster than 1/ |ω| , the real
and imaginary parts of F (ω) are Hilbert transforms the one
with respect to the other (except for a sign). The proof is
based on the fact that F (z) is analytic in the lower half plane.
Equivalently, the Laplace transform F (z) of f (t) exists for
y < 0 (z = x + iy). In this paper, the characteristic function
ψ (ω) is the complex gain. We know that, for the admitted
values of β (1 or −1 following the α value), ψ (z) has the
property of analicity and its behavior at ±∞ is fast enough
[3]. Consequently, the Kramers-Krönig relations are true, even
if the probability density of ψ (ω) does not cancel, which is
the case for 1 ≤ α < 2. In this case, the causality condition
is not verified.

3) We have admitted in many cases that A (t) follows a
stable law with parameters (l/c, al, α,±1) . l/c is a parameter

of position and al is a scale parameter. The dependency in l
is a consequence of the Beer-Lambert law. When 1 < α ≤ 2,
the filter linked to ψ (ω) is not causal, but this drawback
becomes more and more weak when l increases, because
A (t) /l follows a stable law with parameters(

1/c, al1−α, α,±1
)

which shows that the ratio scale parameter versus parameter
of position is more and more weak. For α = 1, the ratio is
constant.

VII. CONCLUSION

I had shown for a long time and in this journal that random
clock changes provide interesting models for wave propagation
[14], [31], [32]. Gaussian processes soon gave an interesting
panel of applications, but they often are not available outside
the atmosphere.

The examples given in section 5 show that random propaga-
tion times following Gaussian or non-Gaussian stable proba-
bility laws are good models in acoustics, ultrasonics and in the
domain of electromagnetic waves. Except for the Gaussian, the
used laws are not symmetric and the most possible asymmetric
(symmetric stable laws are referred as SαS in literature and
widely used [30]). The extreme case of asymmetry appears
for the values β = ±1. This occurence is found in the given
examples and it is a strong argument for the model validity,
because of links with the causality of filters. The random
propagation time A is not sufficiently defined by its one-
dimensional probability laws, and we need insights about two-
dimensional laws. The difficulty lies in the fact that the order
two moment of the r.v A (t) does not exist, so that the problem
is outside the familiar framework of stationary processes with
finite autocorrelations and power spectra. In the appendix, we
propose a solution to this drawback.

VIII. APPENDIX

1) Let assume that the r.v. (random variables) Xn, n ∈ Z, are
(mutually) independent obeing same probability stable laws
with parameters m = 0 and any a, α, β defined by (15) .
Except when α = 2 (the Gaussian), E

[
X2
n

]
= ∞. It is a

drawback which forbids the use of mean-square tools. We
define the r.v. Y from the sequence of positive real numbers
a={ak, k ∈ Z} by

Y =

∞∑
k=−∞

akXk, ak ≥ 0.

From the independence of the Xk we have

E [exp (−∑n
k=m iωakXk)] =

n∏
k=m

E [exp (−iωakXk)] =

exp [−a |ω|α c (ω)∑n
k=m a

α
k ]

with c (ω) = 1 − ib tan πα
2 sgnω (for α 6= 1). The Levy

continuity theorem learns us that the r.v Y exists in the sense
of the convergence in law if and only if [2]

∞∑
k=−∞

aαk <∞.
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In this situation the probability law of Y is stable with
parameters (

0, a

∞∑
k=−∞

aαk , α, β

)
.

When |x| → ∞, the probability density of the Xk converges
to 0 at least like |x|−1−α [2]. This allows to assert the
existence a.s (almost sure) of Y by application of the three-
series theorem of Kolmogorov [1].

2) For any h > 0, we define Uh = {Uh (t) , t ∈ R} by

Uh (t) = h1/α
∞∑

k=−∞
f (t− kh)Xk (24)

where f (t) is some positive, even and regular enough func-
tion, decreasing on R+. Uh (t) is well defined provided that

∞∑
k=−∞

fα (t− kh) <∞.

The parameters of the stable law linked to Uh (t) are

(0, θh, α, β)

where θh (t) is defined by

θh (t) = ah

∞∑
k=−∞

fα (t− kh)

which can be chosen arbitrary close to the constant

θ0 = 2a

∫ ∞
0

fα (u) du (25)

when h is small enough and assuming the existence of the
integral. In this case, Uh (t) converges in law when h→ 0 to
the stable law

(0, θ0, α, β) .

It is easy to construct simple examples which show that Uh (t)
does not converge a.s when h→ 0.

3) For t = 2mh, τ = 2nh > 0, we can write (f is an even
function)

Uh (t)− Uh (t− τ) = h1/α [A−B]
A =∑∞

l=0 [f ((n− l)h)− f ((n+ l)h)]Xl+2m−n
B =∑∞

l=0 [f ((n− l)h)− f ((n+ l)h)]X−l+2m−n

which leads to (the coefficients of the Xk in A and B are
positive because f (t) is assumed decreasing on R+)

E
[
e−iω[Uh(t)−Uh(t−τ)]

]
=

exp [−2aµh (τ) |ω|α]
µh (τ) =∑∞

l=0

[
f
(
τ
2 − lh

)
− f

(
τ
2 + lh

)]α
µh (τ) is independent of t. When h→ 0, we obtain

limh→0 E
[
e−iω[Uh(t)−Uh(t−τ)]

]
=

exp [−2aµ0 (τ) |ω|α]
µ0 (τ) =∫∞

0

[
f
(
τ
2 − u

)
− f

(
τ
2 + u

)]α
du.

(26)

Let note that the last probability law does not depend on t.
When α = 2 (the Gaussian case), we obtain a wide

class of characteristic functions but not the whole possibilities
(Khinchine’s criterion, see [2]). With this construction, it is
possible to obtain a behavior nearby the origin point like

µ0 (τ) =
∣∣∣ ττ0 ∣∣∣γ + o (|τ |γ)

γ = 1 when 0 < α < 1
1 < γ < α when 1 < α < 2.

(27)
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