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Abstract—Efficient sampling from high-dimensional distribu- adjusted Langevin algorithm (MALA) of [7, 8], or the high-
tions is a challenging issue which is encountered in many lge  dimensional Gaussian sampling methods of [9, 10]. To handle
data recovery problems involving Markov chain Monte Carlo log-concave smooth probability distributions, a Hamileon

schemes. In this context, sampling using Hamiltonian dynains . .
is one of the recent techniques that have been proposed to eap  Vionte Carlo (HMC) sampling technique has recently been

the target distribution geometry. Such schemes have clearlbeen Proposed in [11,12]. This technique uses the analogy with
shown to be efficient for multi-dimensional sampling, but ae the kinetic energy conservation in physics to design efficie
rather adapted to the exponential families of distributions with proposals that better follow the target distribution’s gedry.
smooth energy function. In this paper, we address the probR  y\ic has recently been investigated in a number of works

of using Hamiltonian dynamics to sample from probability dealing with multi-dimensional sampling problems for wars
distributions having non-differentiable energy functions such as 9 pliing p

¢1. Such distributions are being more and more used in sparse applications [13,14], which demonstrates the efficiency of
signal and image recovery applications. The proposed tecique such sampling schemes. Efficient sampling is obtained using
uses a modified leapfrog transform involving a proximal step these strategies where the convergence and mixing pregerti

The resulting non-smooth Hamiltonian Monte Carlo (ns-HMC) ¢ the simulated chains are improved compared to classical

method is tested and validated on a number of experiments. l h h the Gibb d MH alqorith
Results show its ability to accurately sample according toarious sampling schemes such as the GIbbs an aigorithms.

multivariate target distributions. The proposed technique is However, these techniques are only adapted to log-concave
illustrated on synthetic examples and is applied to an image probability distributions with smooth energy functionsice

denoising problem. the gradient of these functions has to be calculated. This
Index Terms—Sparse sampling, Bayesian methods, MCMC, constraint represents a real limitation in some applicatio
Hamiltonian, proximity operator, leapfrog. where sparsity is one of the main processing ingredients

especially for large data. Indeed, sparsity promoting arob
bility distributions generally have a non-differentialdeergy

) , i , ) function such as the Laplace or the generalized Gaussian
Sparse signal and image recovery is a hot topic which ;?56) [15] distributions which involveé; and/, energy func-

gained a lot of interest during the last decad_es, especi Ié’ns, respectively. Such distributions have been usediassp
after the emergence of the compressed sensing theory Ll we (arget signals or images in a number of works where

In addition, most of the recent applications such as remqiGese problems are handled in a Bayesian framework [16—

sensing [2] and medical image reconstruction [3, 4] geeerglg; ging the HMC technique in this context is therefore not
large and intractable data volumes that have to be proces&g sible.

either independently or jointly. To handle such inversebpro-l-hiS paper presents a modified HMC scheme that makes it

lems, _Bayesian techniques have demonstrated th(_air ueefEUII'}:Jossible to sample from log-concave probability distrits
especially when the model hyperparameters are difficulixto fl, i, o _gifferentiable energy functions. The so callechno

Such techniques generally rely on a maximum a posteriQil, oth HMC (ns-HMC) sampling scheme relies on a mod-
(MAP) estimation built upon the signalfimage likelihooddan ified leapfrog transform [11,12] that circumvents the non-
priors. Since efficient priors generally have a CompliCate'tﬂf‘ferentiabiIity of the target energy function. The moddi
f‘?”_“' analytica_l express_ions of the MAP estimgtors arer_mc“f’eapfrog transform relies on the sub-differential and jproty
difficult to obtain. For this reason, many Bayesian techeju ;o aor concepts [19]. The proposed scheme is validated on
resort to Markov chain Monte Carlo (MCMC) sampling, qompling example where samples are drawn from a GG dis-

techniques [5]. To handle large-dimensional sampling; S tion with different shape parameters. It is also ttated
eral techniques have been proposed during the last deca Sa signal recovery problem where a sparse regularization

In addition to the random walk Metropolis Hastings (MHX ame is applied to recover a high-dimensional signal.

a_lgonthhmh [(;5_]' one carll [mention the Worll<_ in [ﬁ] 6:\?0”?[ eﬁl" The rest of the paper is organized as follows. Section Il
cient high-dimensional importance sampling, the Metrapol oy jates the problem of non-smooth sampling for largadat
L. Chaari, J.-Y. Tourneret and Hadj Batatia are with the @rsity of using Ham'lton!an dynamics. S_ect|on ”_l pre;ents the psepb )
Toulouse, IRIT - INP-ENSEEIHT (UMR 5505), 2 rue Charles Celnei, BP  ns-HMC sampling scheme. This technique is then validated in
7122, Toulouse Cedex 7 France. E-mail: firstname.lastnaens@iht.fr. Section 1V to illustrate its efficiency for sampling from non
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1. PROBLEM FORMULATION where 0 denotes the partial derivative operator. These equa-
Let us consider a signal of intereste RN and letf(x;9) tions define a transformatiof; that maps the state of the
be its probability distribution function which is paranieed System at time to the state at time +- s. The distribution of

exponential family of distributions such that given by

f(x;0) o exp[—Ep(z)] 1)
fo(x,q) x exp|—Hp(x,q)]

where Eg () is the energy function. As stated above, in this .
paper we concentrate on sampling from the class of log- x f(x;0) exp <_q q>. (5)
concave probability densities, which means that the energy 2

fu_nctlon.Eg IS assum_ed to be_ convex but not necessgrlly HMC methods iteratively proceed by alternate updates of
differentiable. In addition, we will also make the assuropti samplesz and g drawn according to the distribution (5). At
that .E" belongs tOFO(R).’ the class of proper Iowe_r Seml'iteration#r, the HMC algorithm starts with the current values
continuous convex functions frof t0 | — oo, +oc]. Finally, - ot ectorge(r) andq(™). Two steps have then to be performed.

we W",I cqnsider prqbability distri_butions from which dge The first one proceeds by an update of the momentum vector
sampling is not possible and requires the use of an acceptaqgading to g™ by sampling according to the multivariate

rejection step. Example Il.1 presents the case of the ussian distribution\'(0, Iy), where I is the N x N

distribution which satisfies the above mentioned assumslioidemity matrix. The second step updates both momengum
and positione by proposing two candidates* andg*. These
two candidates are generated by simulating the Hamiltonian
dynamics, which are discretized using some discretization
techniques such as the Euler or leapfrog methods. For icestan

Example 1.1 Lety > 0 andp > 1 two real-positive scalars.
The generalized Gaussian distributi@iG(x; v, p) is defined
by the following probability density function

GG(z;7,p) = p exp (_@) @) the discretization can be performed usiig steps of the
o 2+y1/PT(1/p) v leapfrog method with a stepsize > 0. The ith leapfrog
for © € R. discretization will be denoted by and can be summarized
as follows
Except for particular vaIuequf» such asp = 2,4,..., the : ¢ OE
energy functionEy(z) = % is not differentiable (where q(m(F2)9) —g(nle) _ 5 amf (:c("vle)) (6)

6 = (v, p)). In what follows, we are interested in efficiently
drawing samples according to the probability distributipn
defined in (1). The following section describes the proposed

209 _g(rle) | a(n(+5)0) %
‘ ‘ E
g EDe) _gtra+he _ € 9Fe (m<n<z+1>e>) @

non-smooth sampling scheme. 2 0x7
After the L, steps, the proposed candidates are given by
Il. N ON-SMOOTH SAMPLING q* = q"F1) andx* = x(™<L1). These candidates are then
A. Hamiltonian Monte Carlo methods accepted using the standard MH rule, i.e., with the follawin

HMC methods [11, 12, 14] are powerful tools that use throbability
principle of Hamiltonian dynamics. These methods have been
originally proposed by analogy to kinetic energy evolution min{lveXP [He(w(r),q(r)) - He(fc*7q*)} } 9)
They usually provide better mixing and convergence pragert
than standard schemes. Let us assume Hgdtr) represents where Hy is the energy function defined in (3).
a potentialenergy function. If we associate #a momentum
vectorg € RY, the energy functionf for the Hamiltonian

dynamics is the combination of the potential enetfgy(x) B. Non-smooth Hamiltonian Monte Carlo schemes

and akineticenergyK (q), i.e., The key step in standard HMC sampling schemes is
the approximation of the Hamiltonian dynamics. This
Ho(x,q) = Eg(x) + K(q). (3) approximation allows the random simulation of uncorrelate

samples according to a target distribution while explgitin

The energy functionHgy is called the Hamiltonian and . . . .
: . .~ . the geometry of its corresponding energy. In this sectiom, w
completely describes the considered system. For simplic| o

S : ropose two non-smooth Hamiltonian Monte Carlo (ns-HMC)
reasons, a quadratic kinetic energy corresponding to a ufi-

: . T schemes to perform this approximation for non-smooth gnerg
tary diagonal covariance matrix is usually assumed so that _. . . ) .

11 o . : . tunctions. The first scheme is based on the subdifferential
K (q) = 349"q. The Hamiltonian’s motion equations determine

: . . operator while the second one is based on proximity opesator
the evolution of the state as a function of tim¢L2] Fgr both schemes, the whole algorithm tg samplén?j q

dgq :8H9 is detailed in Algorithms 1 and 2. These algorithms describe
dt  Ox all the necessary steps to sample from a log-concave target
dr. __ OHp (4) distribution.

dt dq



1) Scheme 1 - subdifferential based approach: Algorithm 1: Gibbs sampler using Hamiltonian dynam-
Let us first give the following definition of the sub-diffetéal  ics for non-smooth log-concave probability distributions
and a useful example. Scheme 1.

- Initialize with somez(?).
Definition 111.1  [19, p. 223] Lety be inT(R), the class of . get the iteration number= 0, L; ande;
lower semi-continuous convex functions fr&no | — oo, +00]. forr=1...S do
The sub-differential of is the setdp(z) = {p € R| p(n) > - Sampleq™® ~ N(0, In);
o(x) + (pln — x) Vn € R}, where (|-} defines the standard
scalar product. Every elemepte dy(x) is a sub-gradient of
© at pointz. If ¢ is differentiable, the sub-differential reduces
to its gradient:9p(z) = {Ve(x)}.

- Computeq(rv%@ = q(T-,O) _ %p(m(r,o));
- Computez (™€) = z("0) 4 ¢q(r39);
for iy =1to Ly —1 do
* Computeq(172)9) = q(nlse) — £p((71r9));

r(ls+1)e) rlre r(le+L)e).
Example Ill.1 Let ¢ be defined as * Computez ("D = p(nlre) 4 eq(n(tr+2)9;

end
©: R— R - Computeq(rv(LfJF%)f) = q(T-,LfE) — %p(m(Twaf));
x — |zl (10) - Apply standard MH acceptation/rejection rule by
. . _ _ taking ¢* = ¢("Ls) andx* = x(m<Ls);
The sub-differential ofp at « is defined by end
{sign(z)} ifx#0
0 = 11
#@) {[—1,1] if & = 0. (1)

If in addition we consider a scalaA € R, and we call Preservation issue is addressed in Appendix A.
or(-) = Ap(+), then we havedp,(z) = Ndp(x) for every
z € R [19, Prop. 16.5]. 2) Scheme 2 - proximal based approach:

For distributions with smooth energy, we propose to u
the leapfrog method whose basic form requires to comp
the gradient of the potential enerdyy(x). Since we cannot
determine this gradient for non-smooth energy functiors,
resort to the following reformulation of the leapfrog scheem
by using the concept of sub-differential introduced heowab

ince the calculation of the sub differential is not stréigh

fard for some classes of convex functions, a second scheme
modifying the leapfrog steps (12), (13) and (14) can be

onsidered by using the conceptmbximity operatorsThese
operators have been found to be fundamental in a number
of recent works in convex optimization [22-24], and more
q(r,(l+%)e) =gt — Ep (w(r,le)) (12) recently in [25] where stochastic proximal algorithms have

2 been investigated. Let us first recall the following deforiti

g (D) —g(rle) | cq(r(ttz)e) (13)

(r(+1)e) _g(r(+1)e) _ € (r,(1+1)€)
1 = 2"’(“" ) D Definiton 1.2 [19, Definition 12.23][26] Lety € To(R).
where € 0Fq is sampled uniformly in the sub-differentialor every = € R, the functiony + ||. — x[|*/2 reaches its
of Eg. This discretization scheme will be denoted by. If infimum at a unique point referred to as proximity operator
Ee(z) is differentiable, the mapping” in (12), (13) and &nd denoted byrox, (z).

(14) exactly matches the conventional HMC mappifigin

6). (1) and (8). Example I1l.2 For the functiony defined in Example 11I.1,

As for the standard HMC scheme, the proposed candida&gg proximity operator is given by

are defined byy* = q("</7) andz* = z("<Ls) that can be .

computed afterl ; leapfrog steps. These candidates are then prox, (z) = sign(z) max{[z| — 1,0} Vo € R. (15)

accepted based on the standard MH rule defined in (9). The

resulting sampling algorithm is summarized in Algorithm 1.Many other examples and interesting properties that mé&ke th
Note that we do not need to account for any addition&bol very powerful and commonly used in the recent optimiza-

term in the acceptance ratio in (9) since volume presematition literature are given in [27]. One of these properties in

is ensured by the Metropolis update. Volume preservationvidiich we are interested here is given in the following proper

equivalent to having an absolute value of the Jacobian xatri

determinant for the mappirif; equal to one, and is due to the

fact that candidates are proposed according to HamiltoniBroPerty 1 [28, Prop. 3] Lety € I'o(R) andz € R. There

dynamics. More precisely, volume preservation can beyeas@Xists a unique point € R such thatr — z € 0p(z). Using

demonstrated by using the concept of Jacobian mattlke proximity operator definition hereabove, it turns ouatth

approximation [20] such as th€larke generalization [21], T = prox,(z).

and by conducting calculations similar to [12, Chapter 5,

p. 118]. To facilitate the reading of the paper, the volume By modifying the discretization schen1g, we propose the



following I-th leapfrog discretization scheme denotedTy

” 1y, rle € r,le r,le
g+ —g(rie) _ 3 [w( le) _ proxp, (! ))} (16)

g De) g (rle) | g (r(+3)e) (17)
gD — g+ _ %X
{m(r,(H»l)e) — proxg, (m(7~7(l+1)€))} ' (18)

If Eo(x) is differentiable, the mappin@’’ in (16), (17) and
(18) exactly matches the mappifig in (6), (7) and (8). The
only difference is that the sub-differential of the mappifg
is evaluated irproxg, (x) instead ofz. As for scheme 1, the
proposed candidates are given §y = ¢("Ls) and z*
x(m<ls) after L; leapfrog steps. These candidates are t
accepted based on the standard MH rule (9).

The Gibbs sampler resulting from the transformatighis
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summarized in Algorithm 2. As well as for Algorithm 1, and

due to the presence of the MH acceptance rule, the elemd]
x(") generated by this algorithm are asymptotically distriduter

according to the target distributiof{x; 8) defined in (1).

Algorithm 2: Gibbs sampler using Hamiltonian dynamics
for non-smooth log-concave probability distributions.

- Initialize with somez(©).
- Set the iteration number= 0, L; ande;
forr=1,...,5 do
- Sampleq(™®) ~ N (0, Iy);
- Compute
q(7‘7%5) _ q(r,O) _ % m(r,()) — proxpg, (:B(T’O))};
- Computez (™) = g(m0) 4 ¢q(r29);
for [y =1to Ly —1 do
* Computeq(7‘v(lf+%)€) =
q\"se) — £ [w(r,le) — proxp, (w(Talﬁ))};
* Computem(Tw(lerl)ﬁ) = m(r,lfe) + Eq(r,(ler%)e);
end
- Computeq(rv(Lf“‘%)E) =
q\"lse) — < [w(TaLff) — proxg, (m(ﬂLﬁ))};
- Apply standard MH acceptation/rejection rule by
taking ¢* = ¢("<Ls) andz* = a("<Lr);
end

3) Discussion:

Fig. 1 illustrates the use of the adopted discretizat
schemes associated with algorithms 1 and 2 in approxime or

a Hamiltonian made up of a quadratic kinetic energy an
potential energy having the following form

E.u(z) = alz| + ba?
differential can be analytically calculated and is given by

OF, 1, = adp + (2b)Id

where dp is defined in Example 1ll.1 andd is the iden-

tity operator. The two proposed algorithms can therefore glferenceld — proxg,_

(19) =10+ /"V" 1

where (a,b) € (R?%)?. For this potential energy, the sut

(20) -

1. The potential energi, ; (solid black line) in (19) ¢ = 10,b = 5)
its discretizations using the modified leapfrog schefieésquares) and
(circles), as well as the difference between the two digagonsT?' —T',
(dashed blue line).

compared for this example. Fig. 1 shows that the discretized
energy is close to the continuous one for the two mappings
T! andT!. Moreover, the slight differenc&!’ — 7' between

the two mappings shows that the two discretization schemes
perform very similarly close to the critical region of non-
differentiability (the interval—e, £] with smalle € R, see the
zoom around the origin in Fig. 1). Fig. 2 illustrates the ghap
of the proximity operator for the considered energy functio
E.», as well as the identity functioid and the difference
Id—proxp, ,. This figure clearly shows that, due to the thresh-
olding property of the proximity operatar, ~ x — proxp, @

for © € [—e,¢]. In particular, for the considered example,
we haver = z — proxy  x for everyz € 2%, ;15]. This
comparison confirms that the two schemes perform similarly
especially close to the non-differentiability point.
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Fig. 2. The proximity operatoproxp_,, the identity function Id) and the

fora=b=2.



Since Algorithm 2 is more general than Algorithm 1 and
allows us to handle energies for which the sub-differengal
not straightforward (while performing well especially séo e T T
to the critical regions), we will focus on this discretizati
scheme for our experiments.

Il
IV. EXPERIMENTAL VALIDATION ~

This section validates the proposed ns-HMC scheme for Tf
non-smooth log-concave distributions through three éxper .
ments. The two first experiments consider the GG distriloutio
whose energy function is non-differentiable for the valoés

0.035
)

the shape parameter considered here=(1 andp = 1.5). v T e
For the third experiment, a Laplace distribution (GG distri S
bution with p = 1) is used for an image denoising problem
where the clean image is recovered from noisy measurements _,  °* ]
using a Bayesian regularization scheme involving a samgplin I ooe
technique based on the proposed ns-HMC algorithm. ~

2 0.085
A. Experiment 1: 1D sampling [ oo

In the first experiment, a 1D sampling is performed for = oorstfl
different values of the shape and scale parameters of a GG
distribution ¢ and )\). Chains generated using the proposed . S _
ns-HMC sampling scheme are compared to the ones obtained S I
with a random walk Metropolls-Hastlngs (rW'M_H) Schemel?ig. 3. MSEs between the target 1D GG pdf and the histograrhef t
The rw-MH strategy is used here for comparison since génerated samples using the rw-MH and ns-HMC algorithmsafordifferent
generally improves the mixing properties of the generaa@aks combinations ofp and A.
ples when compared to a fixed proposal distribution. @&t
be the current sample and the proposed one. A Gaussian
proposal centered on the current sample with unitary veeian
is used for the rw-MH algorithm, i.ez* ~ N (z("), 1). Fig. 3
displays the mean square error (MSE) between the target GG
pdf and the histogram of the generated samples with respect
to the number of sampled coefficients. This figure shows e

1.2

slightly faster convergence for the proposed ns-HMC scheme T os)
compared to the rw-MH algorithm. ~< ,
To further investigate the sampling efficiency, Fig. 4 dissl -
the autocorrelation functions (ACFs) of the sampled chains g oaf

for the same values qfp, \). This figure clearly shows that
samples generated using the ns-HMC scheme are less corre-
lated than those generated using rw-MH, which corroborates e
the fast convergence of the ns-HMC scheme. In fact, the
proposed technique does not need any adjustment of the pro-
posal variance contrary to the rw-HM algorithm while giving
acceptable level of intra-chain correlation. For the sake o il
comparison, Fig. 4 also displays the ACFs of chains sampled
using a standard MH algorithm with a centered Gaussian
proposal ¢* ~ A/(0,1)). Indeed, it has been reported that rw-
MH increases the correlation level within sampled chairjs [5
while an MH algorithm provides uncorrelated samples. The
comparison between the ACFs corresponding to ns-HMC

0.2

1.2

0.8F

0.6 i

1.5, A

0.4r

0.2

and MH shows that chains sampled using ns-HMC are as or TR T ST —e
less correlated as the standard MH algorithm wiHo0, 1) 0z \ ‘ ‘ ‘
proposal.

Fig. 4. ACFs of sampled chains using Metropolis-Hastings{jidnd random
. . . . walk Metropolis-Hastings (rw-MH) algorithms, in additicio the proposed
B. Experiment 2: multivariate sampling method (ns-HMC) for two values dfp, \).
In this experiment, sampling is performed according to a
multivariate GG distribution. First, sampling using rw-MH
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Fig. 5. MSEs between the target GG pdf and the histogram of¢éimerated samples for the rw-MH and ns-HMC algorithms.

is performed with a large number of iterations (long burrmore rapidly approached using ns-HMC compared to rw-MH.
in period) so that the target distribution is guaranteed @o ISpecifically, for the 2D case, the ns-HMC scheme converges
reached. The histogram of the obtained samples is caldulaédter about 500 iterations fop = 1 (resp. 1000 iterations
and corresponds to our ground truth. Then, samplings usifeg p = 1.5), while the rw-MH sampling needs about 3500
the proposed ns-HMC method and the rw-MH scheme aiterations forp = 1 andp = 2. When looking at the same
performed on the same dataset. The MSE between the obtaioed/es in Fig. 5 for the 3D and 4D cases, it is worth noticing
histograms and the ground truth are computed versus that the gap between the two methods in terms of conver-
number of iterations of the sampler. Fig. 5 displays this MSg§ence speed increases with the problem dimensionalitg Thi
for the multivariate GG sampling and for different valuesgffect is confirmed for the shape and scale parameters. This
of the scale and shape parameteis gnd p). Note that corroborates the usefulness of the proposed ns-HMC scheme
simulations have been performed for the 2D, 3D and 4D casespecially for large data sampling where the convergence
The reported MSE values show that the target distribution speed of the standard MH or rw-MH algorithms is altered



. 1 .
by the size of the data. wherea = — and prox;||, ,1+a) Can easily be calculated
g,

_ N using standard properties of the proximity operators [B9, 2
C. Experiment 3: denoising 33]. See Appendix B for more details.

In this experiment, the performance of the proposed n8egarding the noise variance and the prior hyperparameter,
HMC sampling algorithm is analyzed for an image denoisirgfraightforward calculations lead to the following corafial
problem. The 2D image of siz& = 128 x 128 displayed distributions which are easy to sample
in Fig. 6[top-left] has been used as a ground truth for this 9 9 1.2
example. An independent identically distributed additBaaus- onle,y ~ 19 (0”|N/2’ ly = ] /2) (26)
sian noise of variance?; = 40 has been added to this image N, a,b ~ IG ()\|a £ N, b+ ||:1:||1) 27)
to obtain the noisy image depicted in Fig. 6[top-right]. The
objective of this third experiment is to promote the spgrsit whereZg is the inverse gamma distribution. The estimation
the wavelet coefficients associated with the target image. @f the denoised image is performed based on the sampled
this end, we express the image formation model as functisavelet coefficients after an appropriate burn-in peria,, i
of the wavelet coefficientse € RY which are related to after convergence of the Gibbs sampler in Algorithm 3.
the ground truth image: through the relationz: = F~la
where F~! € RV*¥ denotes the dual frame operator. TheAlgorithm 3: Gibbs sampler for image denoising.
analysis frame operator thus corresponds'te RV*" and as
orthonormal bases are considered here, the dual frametopera
reduces to the inverse operator yieldiRg'F = FF~! = Id.
The observation model can thus be expressed as

- Initialize with somez(©).

for r=1,2...do
- Samplecrfl(r) according to (26);

- SampleA™) according to (27);

y=F'z+n (21) - Samplex(") according to its conditional
distribution using the proposed ns-HMC scheme;

end

- After convergence, compute the MMSE estimaior

and return the estimated image= F~'z.

wherey € RY is the observed imager € R" contains
the unknown wavelet coefficients and € RY is the ad-
ditive noise. Note that the denoised imagecan be easily
recovered from the estimated wavelet coefficientsy taking
z=F"'z.
Based on this model and the Gaussian likelihood assumptionAn example of denoised image using Algorithm 3 is dis-
a hierarchical Bayesian model has been built using an ind#ayed in Fig. 6[bottom-left]. For the sake of comparison,
pendent Laplace prior for the wavelet coefficients [29,30] a denoised image using the Wiener filter is displayed in
N Fig. 6[bottom-right]. From a visual point of view, we can
Flas ) = (i) exp <_@) (22) easily notice that Algorithm 3 provides a better denoised
2 A image compared to the Wiener filter. Quantitatively spegkin
where \ is an unknown parameter that is estimated withithe evaluation of the noisy and denoised images is based on
the proposed Bayesian algorithm. More precisely, an imverigoth SNR (signal to noise ratio) and SSIM [34] (structural

gamma prior distribution is assigned 0[31, 32] similarity). These values are directly reported in the fegand
b b show the efficiency of the denoising algorithm based on the
f(Ma,b) =ZG(Na,b) = T ))\‘“‘1 exp (_X) (23) proposed ns-HMC technique to sample from the conditional
a

distribution of the wavelet coefficiente. As regards the
whereT'(.) is the gamma function, and and b are fixed computational time, only 1000 iterations are necessary for
hyperparameters (in our experiments these hyperparasnetbe proposed algorithm involving a burn-in period of 500
have been set ta = b = 1073). iterations, taking around 9 seconds on a 64-bit 2.00GHz i7-
Using a Jeffrey’s prior for the noise variancer?( ~ 3667U architecture with a Matlab implementation. For the ns
a%lnv (02)), the full posterior of this denoising model carHMC step, the second scheme has been used itk 10.

be derived. The associated Gibbs sampler generates samples

according to the conditional distributions of the posterite V. CONCLUSION
conditional distribution of the wavelet Coeﬂ:icientswrites Th|s paper proposed a So|ution to make feasib|e the use Of
F(aly, 02, \) o exp [ U ()] (24) Hamilto_r_1ian quam_ics for _sampling according to Iog—cor_ecav
" probability distributions with non-smooth energy funciso
where the energy functioty is defined byU(x) = @ + The proposed sampling technique relies on some interesting
||y*50_’;w||§_ Sampling according to this distribution is perfesults from convex optimization and Hamiltonian Monte

formed using the proposed ns-HMC scheme, which requirfe§rlo methods. More precisely, proximity operators were

given by energy function related to the target distribution. Valida
results showed that the proposed technique provides faster

prox;; (@) =prox||.||, /(1 +a) (LFy) (25) convergence _and interesting decorrelation propertiestfer
1+« sampled chains when compared to more standard methods



Nois . .
Reference SNR = 5.68 dB‘ySS||\/|=0_699 where O(6?) involves terms of orde? or higher. After

replacing the time derivatives of (4) in (28), and accoumfor

the fact that the Hamiltonian may be non-differentiablehwit
respect tor, the generalized Jacobian matrix can be written
as

2 2
1+ 52 1(;19 568[{9
_ qOx q> 2
jé = 82H9 - 582[—[9 + 0(5 ) (29)
6 0% 0xdq

whereo denotes the sub-gradient a%— is an element of

the second-order sub differential W|th respecytandx. The
determinant of this matrix can therefore be written as

0?Hg 0’Hg 5
det(Js) = 1+56q8x —5axaq +0(6%)

=1+0(6%) (30)

wheredet(A) is the determinant of the matrid. Following
: : the construction proposed in [12], it turns out that for some
Algorithm 3 Wiener . . . .
SNR = 20.48 dB, SSIM = 0.985 SNR = 8.44 dB, SSIM = 0.764  time intervals that is not close to zeralet(J,) = 1, which
Fig. 6. Reference (top-left), noisy (top-right) and deedismages using Means that the transformatigy ensures volume preservation.
Algorithm 3 (bottom-left) and the Wiener filter (bottom-hig.

2) Volume preservation for the proposed discretization
schemes:
such as the random walk Metropolis Hastings algorithm. Theis woth noticing here that the two modified leapfrog dis-
proposed technique was evaluated on synthetic data and @tization schemeg’ and 7 defined respectively in (12)-
plied to an image denoising problem. Our results showed thak) and (16)-(18), as the original leapfrog scheme defined i
the use of proximity operators in a Hamiltonian Monte Carlgs)-(8), preserve volume since they are shear transfoomsti

method allows faster convergence to the target distributiqhe interested reader can refer to [12] or [35, page 121] for
to be obtained. This conclusion is particularly importamt f more details.

large scale data sampling since the gain in convergence spee
increases with the problem dimensionality. In a future wor
we will focus on the investigation of this technique for sgr
signal recovery where a non-tight linear operator is inedlv
in the observation model.

lé. Proximity operator calculation for the experiment of Sec
tion IV-C

The energy function considered in this appendix is the one
involved in the conditional distribution of the wavelet ¢foe
cients in (24), i.e.,

U@) = 5lly = F~'all3 + (@) (31)

APPENDIX
A. Volume preservation

This appendix studies the volume preservation conditidh bo

_ 2 _ HZH
for the Hamiltonian dynamics and the proposed discretmatiWhere @ = 1/, and p(z) = =5=. In order to use the
\éoposed ns-HMC sampling algorlthm the proximity operato

schemes. Volume preservation is a key property of samplif
algorithms involving an acceptance-rejection step sucthas © he functionU has to be calculated. Following the standard

Metropolis within Gibbs algorithm since it allows simplerd€finition of the proximity operator [23, 26], we can write
acceptance probability to be obtained.

1) Volume preservation for the Hamiltonian dynamics:
Akin to [12], we consider here volume preservation for
Hamiltonian dynamics for the one dimensional case. The
multi-dimensional case can then be handled through simple ©w+aFy — (a+1)p € 0p(p)
generalizations. Let us denote 3 (see Section llI-A) the STralfy co 1
mapping between the state at timedenoted by(z(t), ¢(t)), a+1 p € dp/(a+1)(p)
and the stat€xz(t + 9),q(t + 0)) at time¢ + 6. For 6 small B x+ Fy
enough,F5 can be approximated by [12] TP =P \ Ty (32)

| aq dq/dt 9 which proves the expresssion of the proximity operator rive
Fola,o) = [ z } +5[ da/dt ] O (28 iy (25).

proxy () = p <x —p € OU(p)
<x —p € do(p) +ap —alFy
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