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Abstract—Efficient sampling from high-dimensional distribu-
tions is a challenging issue which is encountered in many large
data recovery problems involving Markov chain Monte Carlo
schemes. In this context, sampling using Hamiltonian dynamics
is one of the recent techniques that have been proposed to exploit
the target distribution geometry. Such schemes have clearly been
shown to be efficient for multi-dimensional sampling, but are
rather adapted to the exponential families of distributions with
smooth energy function. In this paper, we address the problem
of using Hamiltonian dynamics to sample from probability
distributions having non-differentiable energy functions such as
ℓ1. Such distributions are being more and more used in sparse
signal and image recovery applications. The proposed technique
uses a modified leapfrog transform involving a proximal step.
The resulting non-smooth Hamiltonian Monte Carlo (ns-HMC)
method is tested and validated on a number of experiments.
Results show its ability to accurately sample according to various
multivariate target distributions. The proposed technique is
illustrated on synthetic examples and is applied to an image
denoising problem.

Index Terms—Sparse sampling, Bayesian methods, MCMC,
Hamiltonian, proximity operator, leapfrog.

I. I NTRODUCTION

Sparse signal and image recovery is a hot topic which has
gained a lot of interest during the last decades, especially
after the emergence of the compressed sensing theory [1].
In addition, most of the recent applications such as remote
sensing [2] and medical image reconstruction [3, 4] generate
large and intractable data volumes that have to be processed
either independently or jointly. To handle such inverse prob-
lems, Bayesian techniques have demonstrated their usefulness
especially when the model hyperparameters are difficult to fix.
Such techniques generally rely on a maximum a posteriori
(MAP) estimation built upon the signal/image likelihood and
priors. Since efficient priors generally have a complicated
form, analytical expressions of the MAP estimators are often
difficult to obtain. For this reason, many Bayesian techniques
resort to Markov chain Monte Carlo (MCMC) sampling
techniques [5]. To handle large-dimensional sampling, sev-
eral techniques have been proposed during the last decades.
In addition to the random walk Metropolis Hastings (MH)
algorithm [5], one can mention the work in [6] about effi-
cient high-dimensional importance sampling, the Metropolis-
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adjusted Langevin algorithm (MALA) of [7, 8], or the high-
dimensional Gaussian sampling methods of [9, 10]. To handle
log-concave smooth probability distributions, a Hamiltonian
Monte Carlo (HMC) sampling technique has recently been
proposed in [11, 12]. This technique uses the analogy with
the kinetic energy conservation in physics to design efficient
proposals that better follow the target distribution’s geometry.
HMC has recently been investigated in a number of works
dealing with multi-dimensional sampling problems for various
applications [13, 14], which demonstrates the efficiency of
such sampling schemes. Efficient sampling is obtained using
these strategies where the convergence and mixing properties
of the simulated chains are improved compared to classical
sampling schemes such as the Gibbs and MH algorithms.
However, these techniques are only adapted to log-concave
probability distributions with smooth energy functions since
the gradient of these functions has to be calculated. This
constraint represents a real limitation in some applications
where sparsity is one of the main processing ingredients
especially for large data. Indeed, sparsity promoting proba-
bility distributions generally have a non-differentiableenergy
function such as the Laplace or the generalized Gaussian
(GG) [15] distributions which involveℓ1 andℓp energy func-
tions, respectively. Such distributions have been used as priors
for the target signals or images in a number of works where
inverse problems are handled in a Bayesian framework [16–
18]. Using the HMC technique in this context is therefore not
possible.
This paper presents a modified HMC scheme that makes it
possible to sample from log-concave probability distributions
with non-differentiable energy functions. The so called non-
smooth HMC (ns-HMC) sampling scheme relies on a mod-
ified leapfrog transform [11, 12] that circumvents the non-
differentiability of the target energy function. The modified
leapfrog transform relies on the sub-differential and proximity
operator concepts [19]. The proposed scheme is validated on
a sampling example where samples are drawn from a GG dis-
tribution with different shape parameters. It is also illustrated
on a signal recovery problem where a sparse regularization
scheme is applied to recover a high-dimensional signal.

The rest of the paper is organized as follows. Section II
formulates the problem of non-smooth sampling for large data
using Hamiltonian dynamics. Section III presents the proposed
ns-HMC sampling scheme. This technique is then validated in
Section IV to illustrate its efficiency for sampling from non-
smooth log-concave distributions. Finally, some conclusions
and perspectives are drawn in Section V.
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II. PROBLEM FORMULATION

Let us consider a signal of interestx ∈ R
N and letf(x; θ)

be its probability distribution function which is parametrized
by the parameter vectorθ. In this work, we focus on an
exponential family of distributions such that

f(x; θ) ∝ exp[−Eθ(x)] (1)

whereEθ(x) is the energy function. As stated above, in this
paper we concentrate on sampling from the class of log-
concave probability densities, which means that the energy
function Eθ is assumed to be convex but not necessarily
differentiable. In addition, we will also make the assumption
that Eθ belongs toΓ0(R), the class of proper lower semi-
continuous convex functions fromR to ]−∞,+∞]. Finally,
we will consider probability distributions from which direct
sampling is not possible and requires the use of an acceptance-
rejection step. Example II.1 presents the case of the GG
distribution which satisfies the above mentioned assumptions.

Example II.1 Let γ > 0 andp ≥ 1 two real-positive scalars.
The generalized Gaussian distributionGG(x; γ, p) is defined
by the following probability density function

GG(x; γ, p) =
p

2γ1/pΓ(1/p)
exp

(
−
|x|p

γ

)
(2)

for x ∈ R.

Except for particular values ofp such asp = 2, 4, . . ., the
energy functionEθ(x) = |x|p

γ is not differentiable (where
θ = (γ, p)). In what follows, we are interested in efficiently
drawing samples according to the probability distributionf
defined in (1). The following section describes the proposed
non-smooth sampling scheme.

III. N ON-SMOOTH SAMPLING

A. Hamiltonian Monte Carlo methods

HMC methods [11, 12, 14] are powerful tools that use the
principle of Hamiltonian dynamics. These methods have been
originally proposed by analogy to kinetic energy evolution.
They usually provide better mixing and convergence properties
than standard schemes. Let us assume thatEθ(x) represents
a potentialenergy function. If we associate tox a momentum
vectorq ∈ R

N , the energy functionHθ for the Hamiltonian
dynamics is the combination of the potential energyEθ(x)
and akinetic energyK(q), i.e.,

Hθ(x, q) = Eθ(x) +K(q). (3)

The energy functionHθ is called the Hamiltonian and
completely describes the considered system. For simplicity
reasons, a quadratic kinetic energy corresponding to a uni-
tary diagonal covariance matrix is usually assumed so that
K(q) = 1

2q
Tq. The Hamiltonian’s motion equations determine

the evolution of the state as a function of timet [12]

dq

dt
=
∂Hθ

∂x
dx

dt
=−

∂Hθ

∂q
(4)

where∂ denotes the partial derivative operator. These equa-
tions define a transformationFs that maps the state of the
system at timet to the state at timet+ s. The distribution of
the Hamiltonian dynamics energy defined in (3) is therefore
given by

fθ(x, q) ∝ exp [−Hθ(x, q)]

∝ f(x; θ) exp

(
−
qTq

2

)
. (5)

HMC methods iteratively proceed by alternate updates of
samplesx andq drawn according to the distribution (5). At
iteration#r, the HMC algorithm starts with the current values
of vectorsx(r) andq(r). Two steps have then to be performed.
The first one proceeds by an update of the momentum vector
leading to q̄(r) by sampling according to the multivariate
Gaussian distributionN (0, IN ), where IN is the N × N
identity matrix. The second step updates both momentumq

and positionx by proposing two candidatesx∗ andq∗. These
two candidates are generated by simulating the Hamiltonian
dynamics, which are discretized using some discretization
techniques such as the Euler or leapfrog methods. For instance,
the discretization can be performed usingLf steps of the
leapfrog method with a stepsizeǫ > 0. The lth leapfrog
discretization will be denoted byTs and can be summarized
as follows

q(r,(l+ 1
2
)ǫ) =q(r,lǫ) −

ǫ

2

∂Eθ

∂xT

(
x(r,lǫ)

)
(6)

x(r,(l+1)ǫ) =x(r,lǫ) + ǫq(r,(l+ 1
2
)ǫ) (7)

q(r,(l+1)ǫ) =q(r,(l+ 1
2
)ǫ) −

ǫ

2

∂Eθ

∂xT

(
x(r,(l+1)ǫ)

)
. (8)

After the Lf steps, the proposed candidates are given by
q∗ = q(r,ǫLf) andx∗ = x(r,ǫLf). These candidates are then
accepted using the standard MH rule, i.e., with the following
probability

min

{
1, exp

[
Hθ(x

(r), q̄(r))−Hθ(x
∗, q∗)

]}
(9)

whereHθ is the energy function defined in (3).

B. Non-smooth Hamiltonian Monte Carlo schemes

The key step in standard HMC sampling schemes is
the approximation of the Hamiltonian dynamics. This
approximation allows the random simulation of uncorrelated
samples according to a target distribution while exploiting
the geometry of its corresponding energy. In this section, we
propose two non-smooth Hamiltonian Monte Carlo (ns-HMC)
schemes to perform this approximation for non-smooth energy
functions. The first scheme is based on the subdifferential
operator while the second one is based on proximity operators.
For both schemes, the whole algorithm to samplex and q

is detailed in Algorithms 1 and 2. These algorithms describe
all the necessary steps to sample from a log-concave target
distribution.
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1) Scheme 1 - subdifferential based approach:
Let us first give the following definition of the sub-differential
and a useful example.

Definition III.1 [19, p. 223] Letϕ be inΓ0(R), the class of
lower semi-continuous convex functions fromR to ]−∞,+∞].
The sub-differential ofϕ is the set∂ϕ(x) = {ρ ∈ R| ϕ(η) ≥
ϕ(x) + 〈ρ|η − x〉 ∀η ∈ R}, where 〈·|·〉 defines the standard
scalar product. Every elementρ ∈ ∂ϕ(x) is a sub-gradient of
ϕ at pointx. If ϕ is differentiable, the sub-differential reduces
to its gradient:∂ϕ(x) = {∇ϕ(x)}.

Example III.1 Let ϕ be defined as

ϕ : R 7−→ R

x −→ |x|. (10)

The sub-differential ofϕ at x is defined by

∂ϕ(x) =

{
{sign(x)} if x 6= 0

[−1, 1] if x = 0.
(11)

If in addition we consider a scalarλ ∈ R+ and we call
ϕλ(·) = λϕ(·), then we have∂ϕλ(x) = λ∂ϕ(x) for every
x ∈ R [19, Prop. 16.5].

For distributions with smooth energy, we propose to use
the leapfrog method whose basic form requires to compute
the gradient of the potential energyEθ(x). Since we cannot
determine this gradient for non-smooth energy functions, we
resort to the following reformulation of the leapfrog scheme
by using the concept of sub-differential introduced hereabove

q(r,(l+ 1
2
)ǫ) =q(r,lǫ) −

ǫ

2
ρ
(
x(r,lǫ)

)
(12)

x(r,(l+1)ǫ) =x(r,lǫ) + ǫq(r,(l+ 1
2
)ǫ) (13)

q(r,(l+1)ǫ) =q(r,(l+ 1
2
)ǫ) −

ǫ

2
ρ
(
x(r,(l+1)ǫ)

)
(14)

whereρ ∈ ∂Eθ is sampled uniformly in the sub-differential
of Eθ. This discretization scheme will be denoted byT ′

s. If
Eθ(x) is differentiable, the mappingT ′

s in (12), (13) and
(14) exactly matches the conventional HMC mappingTs in
(6), (7) and (8).

As for the standard HMC scheme, the proposed candidates
are defined byq∗ = q(r,ǫLf ) andx∗ = x(r,ǫLf) that can be
computed afterLf leapfrog steps. These candidates are then
accepted based on the standard MH rule defined in (9). The
resulting sampling algorithm is summarized in Algorithm 1.

Note that we do not need to account for any additional
term in the acceptance ratio in (9) since volume preservation
is ensured by the Metropolis update. Volume preservation is
equivalent to having an absolute value of the Jacobian matrix
determinant for the mappingTs equal to one, and is due to the
fact that candidates are proposed according to Hamiltonian
dynamics. More precisely, volume preservation can be easily
demonstrated by using the concept of Jacobian matrix
approximation [20] such as theClarke generalization [21],
and by conducting calculations similar to [12, Chapter 5,
p. 118]. To facilitate the reading of the paper, the volume

Algorithm 1: Gibbs sampler using Hamiltonian dynam-
ics for non-smooth log-concave probability distributions:
Scheme 1.
- Initialize with somex(0).
- Set the iteration numberr = 0, Lf andǫ;
for r = 1 . . . S do

- Sampleq(r,0) ∼ N (0, IN );
- Computeq(r, 1

2
ǫ) = q(r,0) − ǫ

2ρ(x
(r,0));

- Computex(r,ǫ) = x(r,0) + ǫq(r, 1
2
ǫ);

for lf = 1 to Lf − 1 do
* Computeq(r,(lf+

1
2
)ǫ) = q(r,lf ǫ) − ǫ

2ρ(x
(r,lf ǫ));

* Computex(r,(lf+1)ǫ) = x(r,lf ǫ) + ǫq(r,(lf+
1
2
)ǫ);

end
- Computeq(r,(Lf+

1
2
)ǫ) = q(r,Lf ǫ) − ǫ

2ρ(x
(r,Lf ǫ));

- Apply standard MH acceptation/rejection rule by
taking q∗ = q(r,ǫLf ) andx∗ = x(r,ǫLf);

end

preservation issue is addressed in Appendix A.

2) Scheme 2 - proximal based approach:

Since the calculation of the sub differential is not straightfor-
ward for some classes of convex functions, a second scheme
modifying the leapfrog steps (12), (13) and (14) can be
considered by using the concept ofproximity operators. These
operators have been found to be fundamental in a number
of recent works in convex optimization [22–24], and more
recently in [25] where stochastic proximal algorithms have
been investigated. Let us first recall the following definition.

Definition III.2 [19, Definition 12.23][26] Letϕ ∈ Γ0(R).
For every x ∈ R, the functionϕ + ‖. − x‖2/2 reaches its
infimum at a unique point referred to as proximity operator
and denoted byproxϕ(x).

Example III.2 For the functionϕ defined in Example III.1,
the proximity operator is given by

proxϕ(x) = sign(x)max{|x| − 1, 0} ∀x ∈ R. (15)

Many other examples and interesting properties that make this
tool very powerful and commonly used in the recent optimiza-
tion literature are given in [27]. One of these properties in
which we are interested here is given in the following property.

Property 1 [28, Prop. 3] Letϕ ∈ Γ0(R) and x ∈ R. There
exists a unique point̂x ∈ R such thatx− x̂ ∈ ∂ϕ(x̂). Using
the proximity operator definition hereabove, it turns out that
x̂ = proxϕ(x).

By modifying the discretization schemeTs, we propose the
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following l-th leapfrog discretization scheme denoted byT ′′
s

q(r,(l+ 1
2
)ǫ) =q(r,lǫ) −

ǫ

2

[
x(r,lǫ) − proxEθ

(x(r,lǫ))
]

(16)

x(r,(l+1)ǫ) =x(r,lǫ) + ǫq(r,(l+ 1
2
)ǫ) (17)

q(r,(l+1)ǫ) =q(r,(l+ 1
2
)ǫ) −

ǫ

2
×

[
x(r,(l+1)ǫ) − proxEθ

(x(r,(l+1)ǫ))
]
. (18)

If Eθ(x) is differentiable, the mappingT ′′
s in (16), (17) and

(18) exactly matches the mappingTs in (6), (7) and (8). The
only difference is that the sub-differential of the mappingT ′′

s

is evaluated inproxEθ
(x) instead ofx. As for scheme 1, the

proposed candidates are given byq∗ = q(r,ǫLf ) and x∗ =
x(r,ǫLf) after Lf leapfrog steps. These candidates are then
accepted based on the standard MH rule (9).

The Gibbs sampler resulting from the transformationT ′′
s is

summarized in Algorithm 2. As well as for Algorithm 1, and
due to the presence of the MH acceptance rule, the elements
x(r) generated by this algorithm are asymptotically distributed
according to the target distributionf(x; θ) defined in (1).

Algorithm 2: Gibbs sampler using Hamiltonian dynamics
for non-smooth log-concave probability distributions.

- Initialize with somex(0).
- Set the iteration numberr = 0, Lf andǫ;
for r = 1, . . . , S do

- Sampleq(r,0) ∼ N (0, IN );
- Compute
q(r, 1

2
ǫ) = q(r,0) − ǫ

2

[
x(r,0) − proxEθ

(x(r,0))
]
;

- Computex(r,ǫ) = x(r,0) + ǫq(r, 1
2
ǫ);

for lf = 1 to Lf − 1 do
* Computeq(r,(lf+

1
2
)ǫ) =

q(r,lf ǫ) − ǫ
2

[
x(r,lfǫ) − proxEθ

(x(r,lf ǫ))
]
;

* Computex(r,(lf+1)ǫ) = x(r,lf ǫ) + ǫq(r,(lf+
1
2
)ǫ);

end
- Computeq(r,(Lf+

1
2
)ǫ) =

q(r,Lf ǫ) − ǫ
2

[
x(r,Lf ǫ) − proxEθ

(x(r,Lf ǫ))
]
;

- Apply standard MH acceptation/rejection rule by
taking q∗ = q(r,ǫLf ) andx∗ = x(r,ǫLf);

end

3) Discussion:

Fig. 1 illustrates the use of the adopted discretization
schemes associated with algorithms 1 and 2 in approximating
a Hamiltonian made up of a quadratic kinetic energy and a
potential energy having the following form

Ea,b(x) = a|x|+ bx2 (19)

where (a, b) ∈ (R∗
+)

2. For this potential energy, the sub-
differential can be analytically calculated and is given by

∂Ea,b = a∂ϕ+ (2b)Id (20)

where ∂ϕ is defined in Example III.1 andId is the iden-
tity operator. The two proposed algorithms can therefore be
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Fig. 1. The potential energyEa,b (solid black line) in (19) (a = 10, b = 5)
and its discretizations using the modified leapfrog schemesT ′

s (squares) and
T ′′

s (circles), as well as the difference between the two discretizationsT ′′

s −T ′

s

(dashed blue line).

compared for this example. Fig. 1 shows that the discretized
energy is close to the continuous one for the two mappings
T ′
s andT ′′

s . Moreover, the slight differenceT ′′
s − T ′

s between
the two mappings shows that the two discretization schemes
perform very similarly close to the critical region of non-
differentiability (the interval[−ε, ε] with smallε ∈ R+, see the
zoom around the origin in Fig. 1). Fig. 2 illustrates the shape
of the proximity operator for the considered energy function
Ea,b, as well as the identity functionId and the difference
Id−proxEa,b

. This figure clearly shows that, due to the thresh-
olding property of the proximity operator,x ≃ x− proxEa,b

x
for x ∈ [−ε, ε]. In particular, for the considered example,
we havex = x − proxEa,b

x for everyx ∈ [ −a
b+1 ,

a
b+1 ]. This

comparison confirms that the two schemes perform similarly
especially close to the non-differentiability point.
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Ea,b

for a = b = 2.
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Since Algorithm 2 is more general than Algorithm 1 and
allows us to handle energies for which the sub-differentialis
not straightforward (while performing well especially close
to the critical regions), we will focus on this discretization
scheme for our experiments.

IV. EXPERIMENTAL VALIDATION

This section validates the proposed ns-HMC scheme for
non-smooth log-concave distributions through three experi-
ments. The two first experiments consider the GG distribution
whose energy function is non-differentiable for the valuesof
the shape parameter considered here (p = 1 and p = 1.5).
For the third experiment, a Laplace distribution (GG distri-
bution with p = 1) is used for an image denoising problem
where the clean image is recovered from noisy measurements
using a Bayesian regularization scheme involving a sampling
technique based on the proposed ns-HMC algorithm.

A. Experiment 1: 1D sampling

In the first experiment, a 1D sampling is performed for
different values of the shape and scale parameters of a GG
distribution (p and λ). Chains generated using the proposed
ns-HMC sampling scheme are compared to the ones obtained
with a random walk Metropolis-Hastings (rw-MH) scheme.
The rw-MH strategy is used here for comparison since it
generally improves the mixing properties of the generated sam-
ples when compared to a fixed proposal distribution. Letx(r)

be the current sample andx∗ the proposed one. A Gaussian
proposal centered on the current sample with unitary variance
is used for the rw-MH algorithm, i.e.,x∗ ∼ N (x(r), 1). Fig. 3
displays the mean square error (MSE) between the target GG
pdf and the histogram of the generated samples with respect
to the number of sampled coefficients. This figure shows
slightly faster convergence for the proposed ns-HMC scheme
compared to the rw-MH algorithm.
To further investigate the sampling efficiency, Fig. 4 displays
the autocorrelation functions (ACFs) of the sampled chains
for the same values of(p, λ). This figure clearly shows that
samples generated using the ns-HMC scheme are less corre-
lated than those generated using rw-MH, which corroborates
the fast convergence of the ns-HMC scheme. In fact, the
proposed technique does not need any adjustment of the pro-
posal variance contrary to the rw-HM algorithm while giving
acceptable level of intra-chain correlation. For the sake of
comparison, Fig. 4 also displays the ACFs of chains sampled
using a standard MH algorithm with a centered Gaussian
proposal (x∗ ∼ N (0, 1)). Indeed, it has been reported that rw-
MH increases the correlation level within sampled chains [5],
while an MH algorithm provides uncorrelated samples. The
comparison between the ACFs corresponding to ns-HMC
and MH shows that chains sampled using ns-HMC are as
less correlated as the standard MH algorithm withN (0, 1)
proposal.

B. Experiment 2: multivariate sampling

In this experiment, sampling is performed according to a
multivariate GG distribution. First, sampling using rw-MH
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Fig. 3. MSEs between the target 1D GG pdf and the histogram of the
generated samples using the rw-MH and ns-HMC algorithms fortwo different
combinations ofp andλ.
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Fig. 4. ACFs of sampled chains using Metropolis-Hastings (MH) and random
walk Metropolis-Hastings (rw-MH) algorithms, in additionto the proposed
method (ns-HMC) for two values of(p, λ).
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Fig. 5. MSEs between the target GG pdf and the histogram of thegenerated samples for the rw-MH and ns-HMC algorithms.

is performed with a large number of iterations (long burn-
in period) so that the target distribution is guaranteed to be
reached. The histogram of the obtained samples is calculated
and corresponds to our ground truth. Then, samplings using
the proposed ns-HMC method and the rw-MH scheme are
performed on the same dataset. The MSE between the obtained
histograms and the ground truth are computed versus the
number of iterations of the sampler. Fig. 5 displays this MSE
for the multivariate GG sampling and for different values
of the scale and shape parameters (λ and p). Note that
simulations have been performed for the 2D, 3D and 4D cases.
The reported MSE values show that the target distribution is

more rapidly approached using ns-HMC compared to rw-MH.
Specifically, for the 2D case, the ns-HMC scheme converges
after about 500 iterations forp = 1 (resp. 1000 iterations
for p = 1.5), while the rw-MH sampling needs about 3500
iterations forp = 1 and p = 2. When looking at the same
curves in Fig. 5 for the 3D and 4D cases, it is worth noticing
that the gap between the two methods in terms of conver-
gence speed increases with the problem dimensionality. This
effect is confirmed for the shape and scale parameters. This
corroborates the usefulness of the proposed ns-HMC scheme
especially for large data sampling where the convergence
speed of the standard MH or rw-MH algorithms is altered
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by the size of the data.

C. Experiment 3: denoising

In this experiment, the performance of the proposed ns-
HMC sampling algorithm is analyzed for an image denoising
problem. The 2D image of sizeN = 128 × 128 displayed
in Fig. 6[top-left] has been used as a ground truth for this
example. An independent identically distributed additiveGaus-
sian noise of varianceσ2

n = 40 has been added to this image
to obtain the noisy image depicted in Fig. 6[top-right]. The
objective of this third experiment is to promote the sparsity of
the wavelet coefficients associated with the target image. To
this end, we express the image formation model as function
of the wavelet coefficientsx ∈ R

N which are related to
the ground truth imagez through the relationz = F−1x

whereF−1 ∈ R
N×N denotes the dual frame operator. The

analysis frame operator thus corresponds toF ∈ R
N×N and as

orthonormal bases are considered here, the dual frame operator
reduces to the inverse operator yieldingF−1F = FF−1 = Id.
The observation model can thus be expressed as

y = F−1x+ n (21)

where y ∈ R
N is the observed image,x ∈ R

N contains
the unknown wavelet coefficients andn ∈ R

N is the ad-
ditive noise. Note that the denoised imageẑ can be easily
recovered from the estimated wavelet coefficientsx̂ by taking
ẑ = F−1x̂.
Based on this model and the Gaussian likelihood assumption,
a hierarchical Bayesian model has been built using an inde-
pendent Laplace prior for the wavelet coefficients [29, 30]

f(x;λ) =

(
1

2λ

)N

exp

(
−
||x||1
λ

)
(22)

where λ is an unknown parameter that is estimated within
the proposed Bayesian algorithm. More precisely, an inverse
gamma prior distribution is assigned toλ [31, 32]

f(λ|a, b) = IG(λ|a, b) =
ba

Γ(a)
λ−a−1 exp

(
−
b

λ

)
(23)

where Γ(.) is the gamma function, anda and b are fixed
hyperparameters (in our experiments these hyperparameters
have been set toa = b = 10−3).
Using a Jeffrey’s prior for the noise variance (σ2

n ∼
1
σ2
n
1R+(σ2

n)), the full posterior of this denoising model can
be derived. The associated Gibbs sampler generates samples
according to the conditional distributions of the posterior. The
conditional distribution of the wavelet coefficientsx writes

f(x|y, σ2
n, λ) ∝ exp [−U(x)] (24)

where the energy functionU is defined byU(x) = ||x||1
λ +

||y−F−1x||22
2σ2

n
. Sampling according to this distribution is per-

formed using the proposed ns-HMC scheme, which requires
the calculation of the proximity operator of its energy function
given by

proxU (x) =prox||·||1/(1+α)

(
x+ Fy

1 + α

)
(25)

whereα =
1

σ2
n

and prox||·||1/(1+α) can easily be calculated

using standard properties of the proximity operators [19, 23,
33]. See Appendix B for more details.
Regarding the noise variance and the prior hyperparameter,
straightforward calculations lead to the following conditional
distributions which are easy to sample

σ2
n|x,y ∼ IG

(
σ2
n|N/2, ||y − F−1x||2/2

)
(26)

λ|x, a, b ∼ IG
(
λ|a+N, b+ ||x||1

)
(27)

whereIG is the inverse gamma distribution. The estimation
of the denoised image is performed based on the sampled
wavelet coefficients after an appropriate burn-in perior, i.e.,
after convergence of the Gibbs sampler in Algorithm 3.

Algorithm 3: Gibbs sampler for image denoising.

- Initialize with somex(0).
for r = 1, 2 . . . do

- Sampleσ2
n
(r)

according to (26);
- Sampleλ(r) according to (27);
- Samplex(r) according to its conditional
distribution using the proposed ns-HMC scheme;

end
- After convergence, compute the MMSE estimatorx̂

and return the estimated imagêz = F−1x̂.

An example of denoised image using Algorithm 3 is dis-
played in Fig. 6[bottom-left]. For the sake of comparison,
a denoised image using the Wiener filter is displayed in
Fig. 6[bottom-right]. From a visual point of view, we can
easily notice that Algorithm 3 provides a better denoised
image compared to the Wiener filter. Quantitatively speaking,
the evaluation of the noisy and denoised images is based on
both SNR (signal to noise ratio) and SSIM [34] (structural
similarity). These values are directly reported in the figure and
show the efficiency of the denoising algorithm based on the
proposed ns-HMC technique to sample from the conditional
distribution of the wavelet coefficientsx. As regards the
computational time, only 1000 iterations are necessary for
the proposed algorithm involving a burn-in period of 500
iterations, taking around 9 seconds on a 64-bit 2.00GHz i7-
3667U architecture with a Matlab implementation. For the ns-
HMC step, the second scheme has been used withLf = 10.

V. CONCLUSION

This paper proposed a solution to make feasible the use of
Hamiltonian dynamics for sampling according to log-concave
probability distributions with non-smooth energy functions.
The proposed sampling technique relies on some interesting
results from convex optimization and Hamiltonian Monte
Carlo methods. More precisely, proximity operators were
investigated to address the non-differentiability problem of the
energy function related to the target distribution. Validation
results showed that the proposed technique provides faster
convergence and interesting decorrelation properties forthe
sampled chains when compared to more standard methods
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Reference
Noisy

SNR = 5.68 dB, SSIM = 0.699

Algorithm 3
SNR = 20.48 dB, SSIM = 0.985

Wiener
SNR = 8.44 dB, SSIM = 0.764

Fig. 6. Reference (top-left), noisy (top-right) and denoised images using
Algorithm 3 (bottom-left) and the Wiener filter (bottom-right).

such as the random walk Metropolis Hastings algorithm. The
proposed technique was evaluated on synthetic data and ap-
plied to an image denoising problem. Our results showed that
the use of proximity operators in a Hamiltonian Monte Carlo
method allows faster convergence to the target distribution
to be obtained. This conclusion is particularly important for
large scale data sampling since the gain in convergence speed
increases with the problem dimensionality. In a future work,
we will focus on the investigation of this technique for sparse
signal recovery where a non-tight linear operator is involved
in the observation model.

APPENDIX

A. Volume preservation

This appendix studies the volume preservation condition both
for the Hamiltonian dynamics and the proposed discretization
schemes. Volume preservation is a key property of sampling
algorithms involving an acceptance-rejection step such asthe
Metropolis within Gibbs algorithm since it allows simpler
acceptance probability to be obtained.

1) Volume preservation for the Hamiltonian dynamics:
Akin to [12], we consider here volume preservation for
Hamiltonian dynamics for the one dimensional case. The
multi-dimensional case can then be handled through simple
generalizations. Let us denote byFδ (see Section III-A) the
mapping between the state at timet, denoted by(x(t), q(t)),
and the state(x(t + δ), q(t + δ)) at time t + δ. For δ small
enough,Fδ can be approximated by [12]

Fδ(q, x) =

[
q
x

]
+ δ

[
dq/dt
dx/dt

]
+O(δ2) (28)

where O(δ2) involves terms of orderδ2 or higher. After
replacing the time derivatives of (4) in (28), and accounting for
the fact that the Hamiltonian may be non-differentiable with
respect tox, the generalized Jacobian matrix can be written
as

Jδ =




1 + δ
∂2Hθ

∂q∂x
δ
∂2Hθ

∂q2

−δ
∂2Hθ

∂q2
1− δ

∂2Hθ

∂x∂q


+O(δ2) (29)

where∂ denotes the sub-gradient and
∂2Hθ

∂q∂x
is an element of

the second-order sub differential with respect toq andx. The
determinant of this matrix can therefore be written as

det(Jδ) = 1 + δ
∂2Hθ

∂q∂x
− δ

∂2Hθ

∂x∂q
+O(δ2)

= 1 +O(δ2) (30)

wheredet(A) is the determinant of the matrixA. Following
the construction proposed in [12], it turns out that for some
time intervals that is not close to zero,det(Js) = 1, which
means that the transformationFs ensures volume preservation.

2) Volume preservation for the proposed discretization
schemes:
It is woth noticing here that the two modified leapfrog dis-
cretization schemesT ′

s and T ′′
s defined respectively in (12)-

(14) and (16)-(18), as the original leapfrog scheme defined in
(6)-(8), preserve volume since they are shear transformations.
The interested reader can refer to [12] or [35, page 121] for
more details.

B. Proximity operator calculation for the experiment of Sec-
tion IV-C

The energy function considered in this appendix is the one
involved in the conditional distribution of the wavelet coeffi-
cients in (24), i.e.,

U(x) =
α

2
||y − F−1x||22 + ϕ(x) (31)

where α = 1/σ2
n and ϕ(x) = ||x||1

λ . In order to use the
proposed ns-HMC sampling algorithm, the proximity operator
of the functionU has to be calculated. Following the standard
definition of the proximity operator [23, 26], we can write

proxU (x) = p ⇔x− p ∈ ∂U(p)

⇔x− p ∈ ∂ϕ(p) + αp− αFy

⇔x+ αFy − (α+ 1)p ∈ ∂ϕ(p)

⇔
x+ αFy

α+ 1
− p ∈ ∂ϕ/(α+ 1)(p)

⇔p = proxϕ/(α+1)

(
x+ Fy

α+ 1

)
(32)

which proves the expresssion of the proximity operator given
in (25).
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