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Abstract

Propagation of monochromatic electro-
magnetic waves in free space results
in a widening of the spectral line.
On the contrary, propagation preserves
monochromaticity in the case of acous-
tic waves. In this case, the propagation
can be modelled by a linear invariant
filter leading to attenuations and phase
changes. Due to the Beer-Lambert
law, the associated transfer function is
an exponential of power functions with
frequency-dependent parameters.

In recent papers, we have proved that
the acoustic propagation time can be
modelled as a random variable following
a stable probability distribution. In this
paper, we show that the same model
can be applied to the propagation in
coaxial cables.

keywords: random propagation time,
stationary process, stable probability
distributions, coaxial cables.

1 Introduction

1) Coaxial cables are characterized by
four parameters R,C, L,G and a length

l with respective units metre (m), ohm
(Ω), farad (F ), henry by metre (H/m).
The Beer-Lambert law and elementary
properties of circuits lead to the follow-
ing tranfer function

Hl (ω) = e−l
√

(R+iωL)(G+iωC). (1)

In practice, the dielectric loss is gen-
erally negligible compared to ωC and
R depends on the frequency ω/2π
[4]. Consequently, the transfer function
simplifies as follows:

Hl (ω) = e−l(imω+a
√
ω(1+i)), for ω > 0

where the parameters m and a charac-
terize the coaxial cable in the consid-
ered frequency band. This formula is
generalized to ω ∈ R:

Hl (ω) = e
−l

(

imω+a
√

|ω|(1+isgnω)
)

(2)

using the relation Hl (ω) = H∗
l (−ω)

since a real input must yield a real
output. The exponential expression
Hl (ω) = e−lγ(ω) is in accordance with
the Beer-Lambert law and thus to the
relation relating filters in series:

Hl+l′ (ω) = Hl (ω)Hl′ (ω) .
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The relation (2) means that the
monochromatic wave eiωt at the cable
input is transformed in the monochro-
matic wave Hl (ω) e

iωt at the distance l,
assuming that the cable is semi-infinite
or well-matched.
2) This result can be compared with

propagation in other media. Prop-
agation of electromagnetic waves in
free (i.e. not guided) medium often
leads to a widening of the spectral
line. Backscattering of monochromatic
waves on trees in the X-band (8 GHz)
results in a power spectrum with a
bandwidth around few tens Hz [5], [16].
The same behavior has been observed
for laser propagation in the atmosphere
[7], [17]. In sea water, radar backscat-
tering leads to a mixing of Gaussian
spectra depending on the polarization
and with Doppler shift [12], [20]. The
same phenomena are found in wind pro-
filers [7], [1]. We have known also for
a long time that emissions or absorp-
tions of sky light lead to line broaden-
ing and Doppler shift mainly explained
by star composers and movements [9].
In all these practical situations, the ob-
served spectral widening changes a line
spectrum into a continuous one. To
my knowledge and for small powers,
spectral widening has not been noticed
in coaxial cables. The cable behaves
like a linear invariant filter subject to
the Beer-Lambert law which results to
an exponential expression of its trans-
fer function. Consequently, for a coax-
ial cable, a pure monochromatic wave
remains a pure monochromatic wave.
The amplitude and the phase are two
functions of the frequency ω/2π defined
by formula (2).
3) The same behavior is observed

for acoustic propagation. The received
wave is monochromatic like the trans-
mitted wave. In the atmosphere or in
the sea water, the wave attenuation ex-
presses as exp[−alω2], where the pa-
rameter a is medium-dependent and l
is the distance [8]. The celerity c of the
wave is constant with respect to the fre-
quency. Actually, tables giving the in-
fluence of the temperature, the salinity
and other physical parameters are very
detailed. To our knowledge there ex-
ists no table giving the dependence be-
tween c and ω since they are usually
assumed independent. However, ultra-
sonic waves have a different behavior.
The crossing of media like biological tis-
sues, liquids like castor oil (mimicking
tissues), egg yolk or many other sub-
stances on small distances (of the order
of the centimetre for instance) are weak-
ened like exp

[

−alωb
]

with 0 < b < 2
[10], [11], [19]. Moreover, for b 6= 2, the
celerity is function of ω. For b 6= 1, the
complex gain Hl (ω) of the equivalent
filter verifies:

Hl (ω) =

exp
[

−ilmω − al |ω|b
(

1 + i ω
|ω| tan

πb
2

)]

(3)
and for b = 1 :

Hl (ω) =

exp
[

−ilmω − al |ω|
(

1− i ω
|ω|

2 ln|ω|
π

)]

For instance, the value b = 1 often
characterizes biological tissues or evap-
orated milk. b = 1.66 is used for castor
oil up to 300MHz with a very good ac-
curacy, b is around 1.5 for egg yolk and
b = 0.5 is for brass tubes in low fre-
quency (400-2400Hz) [14]... Equations
(3) are in accordance with the ”near lo-
cal Kramers-Kronig theory” of Szabo
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[19]. We note that, in the particular
case where b = 2, the celerity of the
wave is the constant m (tan πb

2
= 0) ac-

cording to Eq.(3) .
Propagation in coaxial cables verifies

(2) , i.e. (3) with b = 1/2. This re-
sult appears as a paradox: this behavior
is similar to the case of acoustic waves
(preserved monochromaticity) and not
to electromagnetic wave propagation in
free space (widened power spectrum).
4) After these considerations about

physical modelling, some probabilistic
models can be discussed. The probabil-
ity distribution of the random variable
(r.v.) X belongs to the set of stable dis-
tributions when its characteristic func-
tion (c.f.) is defined by:

E
[

e−iωX
]

=

exp
[

−iαω − al |ω|b
(

1− ic ω
|ω| tan

πb
2

)]

(4)
when b 6= 1 and, when b = 1

E
[

e−iωX
]

=

exp
[

−iαω − al |ω|
(

1 + ic ω
|ω|

2 ln|ω|
π

)]

.

The set of real parameters (α, a, b, c)
must verify the conditions a > 0, 0 <
b ≤ 2, |c| ≤ 1 [15], [18]. Stable dis-
tributions generalize the Central-Limit
theorem to r.v. with infinite variance.
The complex gains Hl (ω) defined by
(3) can be identified with the subset
of functions in (4) under the condition
c = −1. Moreover a random process
A = {A (t) , t ∈ R} , such that the r.v
A (t) and A (t) − A (t− τ ) follow sta-
ble distributions with b = 1

2
, c = −1

and b = 1
2
, c = 0 respectively, can be

derived.
As shown in the next section, the at-

tenuations and phase changes in coax-
ial cables can be explained by random

propagation times. Numerical values
come from the data sheet of Belden
8281. This class of cables has been
studied in several theses on equalization
(for instance see [2], [3]).

2 Random propaga-

tion times

1) Let Al= {Al (t) , t ∈ R} be a ran-
dom process with the following one-
dimensional characteristic function

E
[

e−iωAl(t)
]

= e
−l

(

imω+a
√

|ω|(1+isgnω)
)

.
(5)

This formula corresponds to a sta-
ble probability distribution (4) with
parameters

(

lm, la, 1
2
,−1

)

along with
the transfer function (2) which de-
fines a coaxial cable. Now, let
Zl= {Zl (t) , t ∈ R} denote the random
process defined by:

Zl (t) = eiω0(t−Al(t)). (6)

Zl (t) is the output of a device with in-
put eiω0t (ω0 > 0) and subjected to a
random propagation time Al (t) . Let as-
sume that Al is stationary in the sense
where

φl (ω, τ ) = E
[

e−iω(Al(t)−Al(t−τ))
]

is independent of t and sufficiently reg-
ular. The process Zl can be split in two
additive terms [6]:

Zl = Gl +Vl (7)

where Gl = {Gl (t) , t ∈ R} is defined
by

Gl (t) = eiω0(t−lm)−al
√
ω0(1+i). (8)
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The process Vl defined by (7) and (8)
is zero-mean and stationary with auto-
correlation function

E [Vl (t) V
∗
l (t− τ )] =

eiω0τ
[

φl (ω0, τ)− e−2al
√
ω0

]

.
(9)

2) If we identify the wave with the
model (6) ,thenGl is the wave measured
at distance l. Because the power of Zl is
constant, Vl represents the losses in the
cable and in the medium up to the dis-
tance l. This quantity is not measured
by practical devices and is probably
outside the observed frequency band.
From (9) the Vl−power spectrum de-
pends on the probability distribution of
Al (t)−Al (t− τ ) . In the appendix, we
prove that it is possible to construct
processes Al which fulfill the following
conditions:

a) the r.v. Al (t) possesses the sta-
ble distribution defined by (5) with ar-
bitrary parameters m, a

b) the r.v. Al (t) − Al (t− τ ) pos-
sesses the stable distribution defined by
(4) with α = c = 0, b = 1

2

c) the construction can be made
so that the Vl−power in any fre-
quency band (ω0 − b, ω0 + b) is arbi-
trarily small.

The last property explains why the
model of propagation Zl defined by
(6) fulfills the theorem of the energy
balance though the measured wave is
an attenuated (and delayed) replica of
the transmitted wave. The process Vl

is the quantity lost and dissipated by
the medium at frequencies far from the
transmitted wave frequency.

3) In the coaxial cable framework Gl

is the received wave at the distance l.
For the Belden 8281 cable in the band

(1,1000MHz) we have [2]

m =
√
LC = 52.10−10s.m−1

which leads to a wave celerity equal to
2.108m.s−1 i.e. 66% of the light celerity
in vacuum. Moreover, from the same
source and in the usual system

a = 39.10−8.

From (8) , the term al/
√
ω0 is an extra

delay for the wave. We have to compare
the nominal delay ml with the variable
delay al/

√
ω0. At 100MHz, the extra-

delay is smaller than 1% of the nominal
delay.

3 Remarks

1) The theory of stable probability dis-
tributions reveals the following inter-
esting property [15], [18]. Among the
c.f. (4) , the only one-sided probability
densities are defined by the parameters
values c = ±1, b < 1. c = 1 is for a
one-sided to the left and c = −1 for
an one-sided to the right (the probabil-
ity density is 0 at the left of the ori-
gin point when α = 0). This is equiv-
alent to the causality of the filter de-
fined by the transfer function (2). For
b ≥ 1 or b < 1, c 6= ±1, this prop-
erty does not hold. However, among
the c−parameter values, the value −1
is the best one, because it minimizes
the probability at the left of the origin
point. It is indeed the value c = −1
which has been taken in (4) to verify
(3) . Moreover, the imaginary part in
the exponential of (2) is dominated by
the term −ilmω0 in real cases. Though
the term −ila

√

|ω0| seems negligible
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with respect to −imlω0, its influence on
the corresponding impulse response is
strong.
Finally, the conditions of the

Kramers-Kronig relations are verified
by K (z) defined by

K (z) = exp
[

−alzb
(

1− i tan πb
2

)]

al > 0, 0 < b < 1

when zb = ρbeibθ with ρ > 0, 0 < θ < π
in the upper plane. On the real axis,
K (ω) = Hl (−ω) when m = 0.
2) For frequencies larger than

1000MHz, the model (6) is no longer
sufficient for the Belden 8281 cable
(and from some other frequencies for
other cables). It has to be changed in

Hl (ω) = e
−l

(

imω+a
√

|ω|(1+isgnω)+γ|ω|
)

(10)
with γ > 0. The new term in γ |ω| takes
into account dielectric losses [4]. We
know that e−λ|ω|, λ > 0, is the c.f. of
the Cauchy distribution. Consequently
(10) corresponds to the convolution of
the stable distribution

(

lm, la, 1
2
,−1

)

with a Cauchy distribution with param-
eter γl. Though the Cauchy distribution
is stable (with parameters (0,lγ, 1, 0))
the result no longer defines a stable dis-
tribution.
3) The transfer function H (ω) is the

Fourier transform of the impulse re-
sponse h (t) :

H (ω) =

∫ ∞

−∞
h (t) e−iωtdt.

This definition is coherent with the
input-output relation

yout (t) =

∫ ∞

−∞
h (u) yin (t− u) du

Equivalently H (ω) eiωt is the output
when eiωt is the input and/or h (t) is
the output when δ (t) (the ”Dirac func-
tion”) is the input.
In probability calculus a c.f. ψ (ω) is

the Fourier transform of a probability
density f (t) (if it exists) in the sense

ψ (ω) =

∫ ∞

−∞
f (t) eiωtdt.

To identify a transfer function with a
characteristic function it is necessary to
change eiωt into e−iωt in the last equa-
tion (compare formulas (4) in this paper
with formula 5.7.19 in Lukacs [15]).
4) The probability density of A1 (t)

(and of Al (t) whatever l) is given from
(5) , (11) , (12) . For the Belden 8281
coaxial cable with a = 39.10−8, we have
approximately

Pr
[

A1 (t)−m > 8.10−10
]

≃ 0.01

to be compared with m =
52.10−10s.m−1. The mode is close
to 5.10−14 and it is well-known that
this distribution is heavy-tailed.

4 Conclusion

In circuit theory, a coaxial cable is
defined by a set (R,C, L,G) where
(R,L) and (C,G) represent series and
parallel components. The equivalent
circuit highlights the linear functions
(R + iωL) and (G+ iωC) of the fre-
quency ω/2π. Actually, it is not suit-
able for large bandwidths where compo-
nents depend on the frequency (mainly
due to the ”skin effect”). In this case,
the transfer function (1) is changed in
(2) or (10) which have a very different
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appearance. These formulas are very
close to characteristic functions of sta-
ble probability distributions. In this pa-
per we have proved that the wave prop-
agation in a coaxial cable is equivalent
to a random propagation time. The
random process Al which represents it
at the distance l has particular proba-
bility laws. The one-dimensional law is
stable with parameters

(

lm, la, 1
2
,−1

)

.
lm and la are the parameters of po-
sition and amplitude, 1

2
is the expo-

nent of the law. The last parameter
−1 is particularly remarkable because
this value is matched to the causal-
ity property of linear filters. The ran-
domly delayed process Zl (the set of r.v.
exp[iω0 (t− Al (t))]) can be split into
two parts. The first one (the process
Gl) is the observed process at the end of
the cable (in the case no reflexion). We
have proved that the probability distri-
bution of Al (t)−Al (t− τ ) can be cho-
sen in the class of stable distributions
so that the second part Vl is outside
the studied frequency band. The model
obeys the energy balance theorem be-
cause the power of the sum Gl + Vl is
equal to the transmitted power. To con-
clude, this study could be applied to a
more general framework. I have proved
in other papers that the proposed model
applies in many situations of propaga-
tion: propagation of acoustics and ul-
trasonics waves and also propagation
of electromatic waves, in radio, radar,
laser and star light (see the bibliogra-
phy).

5 Appendix

1) Let X = {Xn, n ∈ Z} be a sequence
of i.i.d. (independent and identically
distributed) r.v. (random variables)
with c.f. (characteristic function)

lnE
[

e−iωXn
]

= −
√

|ω| (1 + isgnω) .
(11)

We know that it is one of three sta-
ble distributions with simple probabil-
ity density f (x) (with the Gauss and
Cauchy distributions) [15]

f (x) =

{

1√
2π
x−3/2e−1/2x, x > 0

0, x < 0.
(12)

The main problem with this distribu-
tion is the lack of moments, which pre-
vents the use of the mean-square con-
vergence. Now, we define the r.v. Y
by

Y =
∞
∑

k=−∞
akXk, ak > 0

where a = {an, n ∈ Z}, is a sequence of
real positive numbers. The equality

E [exp (−
∑n

k=m iωakXk)] =

exp
[

−
(
∑n

k=m

√
ak
)
√

|ω| (1 + isgnω)
]

(13)
comes from (11) , using the (mutual) in-
dependence of the Xn. By application
of the continuity theorem of P. Levy
[15], we deduce that Y is defined (in
the sense of the convergence in distri-
bution) if and only if

∞
∑

k=−∞

√
ak <∞. (14)

Moreover, this condition allows to ver-
ify the hypotheses of the “three series
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theorem” of A. N. Kolmogorov [13],
which assures the a.s. (almost sure) ex-
istence of Y. Using (13)

E
[

e−iωY
]

= e−λ
√

|ω|(1+isgnω)

with λ =
∑∞

k=−∞
√
ak.

(15)

Consequently, the probability distribu-
tions of Y and λ2Xn are the same.
2) Now, we define the real random

process Uh = {Uh (t) , t ∈ R} by

Uh (t) = h2
∞
∑

k=−∞
θ (t− kh)Xk (16)

for some positive function θ (t) symmet-
ric and decreasing on R

+ . From the
preceeding results, Uh is well defined for
any h > 0 when

∞
∑

k=−∞

√

θ (t− kh) <∞

for any t ∈ R. Uh (t) follows the stable
distribution (15) with parameter

λ = h
∞
∑

k=−∞

√

θ (t− kh)

which can be taken arbitrarily close to

µ =

∫ ∞

−∞

√

θ (u)du (17)

when this quantity exists.
3) Moreover, if t = hph, τ = hqh > 0

where ph and qh are even integers and
h arbitrarily small we have

Uh (t)− Uh (t− τ) = h2 [Ah − Bh]

with














Ah =
∑∞

k=0

[

θ
(

− τ
2
+ kh

)

− θ
(

τ
2
+ kh

)]

Xk+p− q

2

≥ 0

Bh =
∑∞

k=0

[

θ
(

− τ
2
+ kh

)

− θ
(

τ
2
+ kh

)]

X−k+p− q

2

≥ 0.

Because theXk are (mutually) indepen-
dent, Uh (t)−Uh (t− τ ) follows a prob-
ability distribution with c. f. in the
form

E
[

e−iω(Uh(t)−Uh(t−τ ))
]

= exp
[

−h
√

|ω| (αh + βh + i (αh − βh) sgnω)
]

which does not depend on t. Obviously
αh = βh. When h→ 0 we have

limh→0E
[

e−iω(Uh(t)−Uh(t−τ))
]

= exp
[

−2
√

|ω|
∫∞
0

√

θ
(

x− τ
2

)

− θ
(

x+ τ
2

)

dx
] .

(18)
Consequently we have constructed a
stationary process Uh with c.f. ψ (ω)
and φ (ω, τ) arbitrarily close to

ψ (ω) =

exp
[

−2
√

|ω| (1 + isgnω)
∫∞
0

√

θ (x)dx
]

φ (ω, τ) =

exp
[

−2
√

|ω|
∫∞
0

√

θ
(

x− τ
2

)

− θ
(

x+ τ
2

)

dx
]

(19)
where θ (x) is a regular enough sym-
metric function decreasing on R

+. We
remark that (when limt→∞ θ (t) = 0
quickly enough)

lim
τ→∞

φ (ω, τ) = |ψ (ω)|2 (20)

which shows some ”independence” be-
tween Uh (t) and Uh (t− τ) when τ is
large.
4) Now, let assume that the process

Zl defined by (6) and (7) is character-
ized by






























ψl,n (ω) = exp
[

−2l
√

|ω| (1 + isgnω)
∫∞
0

√

θn (x)dx
]

φl,n (ω, τ) = exp
[

−2l
√

|ω|
∫∞
0

√

θn
(

x− τ
2

)

− θn
(

x+ τ
2

)

dx
]

θn (x) = n2θ1 (nx)
(21)
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where θ1 (x) is positive, even, and de-
creasing on R

+, with

∫ ∞

0

√

θ1 (x)dx <∞.

The spectral power density snV,l (ω) of
the ”noise” Vl is the Fourier transform
of its autocorrelation function (assum-
ing limt→∞ θ1 (t) = 0 quickly enough)

snV,l (ω + ω0) =
1
2π

∫∞
−∞ e−iωτ

[

φl,n (ω0, τ)−
∣

∣ψl,n (ω0)
∣

∣

2
]

dτ.

Using (9) and (21) we obtain the equal-
ities










s1V,l (ω + ω0) = nsnV,l (nω + ω0)
∫ b

−b
snV,l (ω + ω0) dω =

∫ b/n

−b/n
s1V,l (ω + ω0) dω →n→∞ 0.

An increase of n induces a widening
of the spectral density (remember that
the total power of Vl does not depend
on n). The power of Vl in any inter-
val (ω0 − b, ω0 + b) can be made smaller
than any quantity increasing n. Con-
sequently a device centered on ω0 will
only measure Gl the harmonic part of
Zl if we assume that the parameter n is
large enough.
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