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ARTICLE INFO ABSTRACT

Keywords: This paper proposes a novel framework for multipath prediction in Global Navigation Satellite System (GNSS)
Deep learning signals. The method extends from dataset generation to deep learning inference through Convolutional Neural
GNS? Network (CNN). The process starts at the output of the correlation stage of the GNSS receiver. Correlations of
Mumpaﬂ? the received signal with a local replica over a (Doppler shift, propagation delay)-grid are mapped into gray scale
Convolutional neural networks . . . . . . . . . N
Correlation 2D images. They depict the received information possibly contaminated by multipath propagation. The images

feed a CNN for automatic feature construction and multipath pattern detection. The issue of unavailability
of a large amount of supervised data required for CNN training has been overcome by the development of a
synthetic data generator. It implements a well-established and documented theoretical model. A comparison of
synthetic data with real samples is proposed. The complete framework is tested for various signal characteristics
and algorithm parameters. The prediction accuracy does not fall below 93% for C/NO ratio as low as 36 dBHz,
corresponding to poor receiving conditions. In addition, the model turns out to be robust to the reduction of
image resolution. Its performance is also measured and compared with an alternative Support Vector Machines
(SVM) technique. The results show the undeniable superiority of the proposed CNN algorithm over the SVM
benchmark.

1. Introduction the tightest synchronization of the local replica signal. Any alteration
to the signal of interest will skew the estimators and biased the position

The dissemination of GNSS receivers in smartphones and cars has delivered to the user.

made it natural to each of us to have access to our localization at
any time. However, the quality of the position calculated by a GNSS
equipment may be reduced when the received signal is degraded. This
degradation can find its origin in a defect of the signal generation
system, carried by the satellite, it is the evil waveform case. The
receiving conditions can also be a source of disturbance, this is typically
the case when interferences or multipaths are in addition to the useful
signal.

More specifically, inside the GNSS chip, the calculation process of
the Position Time Velocity (PVT) solution relies on the accurate syn-
chronization of the receiver on the signal transmitted by each satellite
in view. This is achieved by correlating the received signal with a local
replica signal which parameters are under control. The correlation is
done against the three unknown parameters of the incoming signal
which are required to achieve synchronization: the propagation delay
7, the Doppler shift § f (due to the relative motion between the satellite
and the receiver) and the carrier phase 6. The aim of the receiver is to
find the set of estimators which maximizes the correlation, resulting in

A large amount of research and analysis has been conducted so
far to detect, classify, identify and finally mitigate these impairments.
As the GNSS receiver has to track the direct signal by mean of a
Delay-Locked Loop (DLL) to estimate the propagation delay, multiple
methods have been proposed which use the already existing correlator
outputs required by this DLL. The narrow correlator technique [1], the
early-late-slope technique [2], the strobe correlator [3], the double-
delta correlator [4] and the multipath intensive delay lock loop [5]
are among the most representative methods of this class. They all take
advantage of the geometric shape of the auto-correlation function of the
PRN code, as defined later on in (2) and (3) and illustrated in Fig. 3, to
detect and mitigate the multipath distortion. Their relative simplicity is
their principal benefit at the expense of their effectiveness. On the other
hand, more sophisticated techniques, yet demanding in hardware re-
sources, have been developed. In the statistical approach, the Multipath
Estimating Delay Lock Loop (MEDLL) is a reference implementation of
the maximum likelihood principle [6]. It matches the correlator outputs
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with candidates of multipath auto-correlation functions parameterized
by magnitudes, delays, and phases. The shortest estimated delay is
then retained as the one of the direct path. The frequency domain has
also been explored, through the Fourier transform [7] or the wavelet
decomposition [8]. Indeed, due to their specific spectral characteristics
in comparison to the direct path, the multipath can be identified and
excised. However, these methods may damage the signal of interest,
especially when the multipath frequencies are close to the spectrum of
the direct path.

To overcome the limitations of these classical signal processing
methods, Machine Learning (ML) techniques have also been considered.
Starting from the early 2000s, some research work has been dedicated
to the use of ML techniques to facilitate the error mitigation in GNSS
signals. For instance, an hybrid neural network architecture based on
multilayer perceptron to mitigate multipath error for Low Earth Orbit
(LEO) satellites has been proposed [9]. Later, with the advances of ker-
nel methods, the authors of [10] were able to develop a support vector
regressor to mitigate multipath on ground fixed Global Positioning Sys-
tem (GPS) stations and using signal geometrical features. Other similar
studies were conducted with various choices of features construction.
For example, in [11,12], non-line of sight (NLOS) multipath detection is
carried out using features directly extracted from the correlator output.

The recent and significant advances in Artificial Intelligence (AI),
and notably in ML, have opened up new perspectives. In [13], using
a CNN, a carrier-phase multipath detection model is developed. The
authors propose to extract feature map from multi-variable time se-
ries at the output of the signal processing stage using 1-dimensional
convolutional layers. Deep learning spoofing attack detection in GNSS
systems was addressed in the research literature [14] as well. Hand-
crafted features based on early-late phase, delay and signal level from
the correlation output of the tracking loop were used to train a deep
fully-connected neural model. A review of the recent applications of ML
in GNSS is also proposed in [15], focusing on use cases relevant to the
GNSS community.

The method proposed in this article aims at making use of an
efficient CNN architecture for multipath detection. The intent is to
exploit the full power of CNN by letting the convolutional mechanism
construct its own feature space from the whole correlator information.
Indeed, features are not extracted from the signal but the signal is
rather transformed into 2D images in the time—frequency domain. No
correlator output signal information is lost during the process and the
CNN is able to build its own representation of corrupted/non corrupted
correlated signals.

The search ranges for the values of the propagation delay and
the Doppler shift spans a 2D grid which forms in turn 2D-images at
the output of the correlation process, the correlator output in short.
Regarding the phase value, the phase estimation error is captured over
[0,2x] by mean of two orthogonal projections. These projections are
carried out by the correlation with the In-phase (I) signal replica on
one side and the in-Quadrature (Q) signal on the other. A diagram
representing this process is given in Fig. 1. As depicted, the correlation
operation is implemented through a product followed by an integrate
and dump stage and generates 2D image representations of the I and Q
channels. These images coded into 3D tensors will feed a downstream
CNN, as it will be seen below.

This study proposes a complete framework to train and assess a CNN
model on correlator output 2D-images in order to detect whether the
GNSS signal is subject to multipath or not. A graphical representation of
this framework is given in Fig. 2. Our technique exploits the full power
of deep learning architectures by sampling the complete correlated
signal information in the time-frequency domain and the I and Q chan-
nels. Features are not handcrafted but rather constructed automatically
by the convolution mechanism that elaborates its own representation
of the relevant feature space to detect multipath corrupted signals.

The main contributions of this study can be listed as follows:

Array 14 (2022) 100167

Raw and complete information from the GNSS correlator out-
puts are synthesized in 2D-images. The correlation delay and
Doppler shift ranges are selected in order to capture complete
multipath information. This is a novel approach in comparison
to standard multipath mitigation techniques that are using only
one dimensional delay correlation information.

A CNN model is used to automatically extract relevant features for
multipath detection from the images of correlator outputs. This
contributes to the very recent and emergent use of modern ML
techniques in the GNSS signal processing field.

The proposed framework covers the generation of image data,
the choice of the CNN architecture, its training as well as its
validation. Experiments are fully reproducible. To the best of our
knowledge such complete workbench is unique in the research
community.

The achieved average detection accuracy for realistic multipath
parameters ranges in standard receiving conditions is above 93%.
This performance has been shown to be robust to the reduction
of correlator output image resolution.

The organization of this article follows the framework depicted
in Fig. 2. In Section 2, the GNSS signal model used in this work is
presented, then the correlation process is introduced and a model of its
output is detailed, for both the direct path and the multipath signal.
Section 3 exposes the dataset elaboration using a specific software
generator. Next, in Section 4, the CNN model proposed in this paper
to detect the multipath contamination is explained in detail. In Sec-
tion 5, the experiments conducted to assess the proposed technique are
exposed and the results discussed. Finally, Section 6 draws conclusions
and perspectives from this work.

2. Problem statement
2.1. GNSS signal model

The fundamental principle behind the calculation of the user po-
sition by a GNSS receiver is trilateration. It implies the measurement
of the geometric distances between the antenna of the receiver and
satellites of known positions. Indeed, a distance d in particular is
estimated through the propagation delay affecting the signal during its
propagation from the satellite to the receiver antenna, r = d/c with ¢
the speed of light. This is made possible by a specific signal structure,
recalled in Eq. (1) which models the signal at the antenna port [16]:

r(t) = V2CD(t — 7)e(t — 1) cosQa(f, + 61t + 0) + b(t) 1
where

+ C is the power of the received signal,

» D(v) is the navigation message, binary encoded (+1),

+ ¢(1) is the PRN code sequence, specific to each satellite,

* f. is the carrier frequency,

« b(?) is an Additive White Gaussian Noise (AWGN) which accounts
for the thermal noise of the receiver, referred to the antenna port.

The results presented in this paper where established using the PRN
code sequences of the GPS L1 C/A legacy signal. However, the authors
are confident that they could be generalized to other navigation signals,
with the same structure, as no specific assumption has been made on
c(1).

In this model, the receiving condition of a signal in particular is
assessed by its C/NO figure, in other words the ratio of the signal
power to the Power Spectral Density (PSD) level NO of the (white)
noise b(¢). Clearly, the accuracy of the estimation of the related distance
d will depend upon this C/NO ratio. Without any other perturbation
than the noise, the quality of the final position calculated by the
receiver, from a set of distances d at its disposal, is then completely
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Fig. 1. Synoptic view of the correlation process. The received signal is correlated with two local replica signals in quadrature whose parameters span a grid. The two correlator
outputs form then 2D-images which fed a downstream CNN. The tilde notation indicates the local parameter by opposition to the received signal unknown parameter.
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Fig. 2. Proposed framework to train and assess a CNN model on correlator output 2D-images (with references to article sections).

determined by the corresponding set of C/NO ratios, along with the
relative satellites—receiver geometry though.
A model of the I and Q correlator outputs [16] is as follows:

I = AK(At)cos(rAf T, + 40) sinc(zAfT) +n, @
Q = —AK (A7) sin(xAf T, + 46) sinc(zAfT;) + ng 3)
with

* T; the integration time,

+ A a coefficient depending on C, D and T,

+ Ar the propagation delay estimation error,

« Af the Doppler shift estimation error,

» A0 the phase estimation error,

* K(4r) the auto-correlation function of the PRN code in 4z,
* n; and ny the noise components.

It is worth noting the sinc function behavior of the correlator outputs
as a function of the Doppler shift estimation error.

Fig. 3 gives a graphical representation of the noise-free I and Q
correlator outputs as functions of Ar and Af, for 46 = 0. The shape of
the auto-correlation function of the PRN code can be observed in the
Af =0 plane, for delays in units of ps. The previously mentioned sinc
function is visible in the Ar = 0 plane, for Doppler shifts in units of Hz.

2.2. Multipath contamination

As some perturbations can distort the desired signal, the received
signal cannot always be modeled simply using Eq. (1). Among these
perturbations, multipath is considered to be an important source of
degradation [17]. This is especially the case in urban environment,
inducing reduced positioning accuracy. Multipath is due to the reflec-
tion of the direct signal path on a surface in view of the receiver. As a
consequence, a specific multipath can be modeled in the same way as
the direct signal in (1):

m(t) = 1/2Cyp D(t — Typp)c(t — typ) cosLa(f, + 6 fyp)t + Ovp) @

where Cyp, typ, 6/mp and Oyp have the same definition as in Sec-
tion 2.1, but for the multipath.

Correlator output model for | channel Correlator output model for Q channel

0.8

0.6

04

Normalized intensity
Normalized intensity

Fig. 3. An illustration of the noise-free I and Q correlator output model, 46 set to 0,
PRN number to 1.

Due to the larger propagation distance of the multipath in particu-
lar, it is to be noted that Cy;p < C and 7y;p > 7. What is more, depending
on the time-varying relative geometry of the satellite-receiver—reflector
system, there is no reason for 6 fy;p being equal to 6 f nor yp having
the same value as 6.

In general, a receiver is impacted by multiple multipaths, especially
in urban environments where reflectors are numerous. Sometimes, the
direct path may even be absent due to an obstruction, for example
when high buildings are surrounding the receiver [18]. However, in
this study the assumption is made that the direct path is always present
and a single multipath will be considered.

3. Synthetic dataset generation
3.1. Avadilability of GNSS multipath data

In order to test our prediction models, an artificial signal generator
was developed. The data are generated in the form of two matrices,
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Fig. 4. Empirical auto-correlation and cross-correlation functions of the noise at the
correlator output for the I and Q channels, PRN number set to 10.

one for each of the I and Q channels, according to Egs. (2) and (3). The
axes of these matrices are in Doppler shift estimation error A/ and code
delay estimation error Ar. The output data corresponding to this main
signal can be parameterized as a function of the coherent integration
time 7; in ms and the carrier-to-noise ratio C/N0 in dBHz.

3.2. Noise sample production

At the correlator output the noise is not only spatially correlated
inside each I and Q image, but also cross-correlated between them.
The exact derivation of the auto-correlation and cross-correlation func-
tions of the noise are still to establish. To overcome this impossibility
to generate the noise contribution at the correlator output from an
analytical model, a workaround has been developed. A signal r(r)(1)
made of a simple noise term b(¢) is correlated according to the process
described in Fig. 1, as would be a true received signal. This correlation
process is implemented in a software GNSS receiver developed by
the SIGnal processing and NAVigation (SIGNAV) research team of the
ENAC laboratory. The noise samples available at the correlator output
are then collected and stored in a dataset, to be added on demand as n;
and ny in Egs. (2) and (3). Fig. 4 gives an example of empirical auto-
correlation and cross-correlation functions of noise samples for PRN
number 10.

An illustration of the noisy output of the synthetic data generator
for T, = 20 ms and C/NO = 45 dBHz is given in Fig. 5, with the corre-
sponding flattened images in Fig. 6 (note the value of the navigation
bit D = —1 this time, in comparison to Fig. 3 where D = +1).

3.3. Assessment of the synthetic data

In order to validate the synthetic data generator its outputs have
been compared to the data from an IFEN SX3 GNSS receiver. Two
different data collection sessions have been conducted.

1. The receiver has been fed with a signal produced by a Spirent
GSS6560 generator. The scenario implemented in the generator
simulates the take-off and initial climb of a commercial aircraft
from runway 14L of the Toulouse-Blagnac Airport. The flight
happens on Tuesday the 28th of May 2019 from 12:55 UTC. The
multipaths are disabled in this scenario.

2. A high end GNSS antenna has been connected to the receiver.
The antenna was set up in a clear view site to avoid multipath
contamination. Moreover, only signals from high elevation satel-
lites were considered afterwards so that the collected samples
could be considered as multipath free. The recording was carried
out on Friday the 14th of February 2000 from 08:05 UTC.
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Correlator output for | channel

Correlator output for Q channel
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Fig. 5. An illustration of the I and Q correlator outputs of the synthetic data generator,
PRN number set to 1.

Fig. 6. The I and Q correlator outputs of the synthetic data generator as images, PRN
number set to 1.

Channel | of the software generator Channel | of the SX3 receiver

Normalized intensity

100y

Fig. 7. Comparison between an output of the synthetic data generator and a real
sample from a SX3 receiver, I channel, PRN number set to 1.

In both cases the SX3 receiver sampling frequency was set to 20
MHz. The samples were stored for post-processing by the software
GNSS receiver already mentioned in Section 3.2. The resulting refer-
ence images are available on [19] for the two sessions.

Figs. 7 and 8 provide an example of visual comparison of images.
It is worth noting that these real data were used only to validate
the generator. Indeed, for training purposes it would be unrealistic to
produce a sufficient amount of labeled physical signals.

3.4. Model for GNSS multipath data generation

The considered model integrates I and Q signals, I and Q multipath
and correlated receiver noise. If a multipath signal is received in
addition to the main signal, as the signal processing chain is linear, the
correlator output can then be considered as the sum of the correlator
output of the main signal and the one due to the multipath. In this
work, a single multipath contamination is considered. Its contribution
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Fig. 8. Comparison between an output of the synthetic data generator and a real
sample from a SX3 receiver, Q channel, PRN number set to 1.

(Iyip> Omp) to the correlator output is considered as an additional term
to the main signal (/, Q), detailed in (2) and (3):

I' = I + Iyp(ayp, Atyp, A fyps 400p) )
Q' = 0 + Opp (@, Atyp, A fyps A0yp) (6)
where

s ayp = Cyp/C < 1 is the multipath attenuation coefficient in
comparison to the main path,

* Aryp = typ — 7 > 0 is the code delay in excess to the main signal
delay,

* Afyp = 6fmp — 6/ is the difference between the Doppler shift of
the main signal and the multipath,

* AByp = Oyp — 0 is the difference between the phase of the main
signal and the multipath.

3.5. The I/Q image dataset generation

The data generator has been implemented with the Python lan-
guage [19] to produce datasets of I and Q images according to the
signal and noise models detailed in Sections 3.2 and 3.4. This soft-
ware is referred as the generator in this paper. The generator is fully
configurable with respect to the following parameters:

* ayp, Aryp, Afyp and Ayp which entirely define the multipath.
The definition intervals of these parameters are detailed in Ap-
pendix A. Their probability distributions are clarified in Section 5
dedicated to the experiments conducted with the help of the
generator,

C/NO ratio which sets the strength of the direct path signal with
respect to the receiver noise,

N the number of pixels along each of the delay and Doppler shift
axes. The definition domains of the delay and Doppler shift axes
are set in Appendix B. The size of the images is then N x N
pixels. It is important to mention that 2N? is then the number
of correlators required to implement the technique proposed in
this paper. Hence, it is a direct measure of its complexity as
the correlation operation is from far the most power and time
consuming process in a GNSS receiver,

T; the coherent integration time. In this study 7; = 20 ms, a value
corresponding to the duration of one navigation bit D as defined
in Eq. (1). It ensures the longest correlation time, so the best
accuracy for 7, 6 f and 0 estimation, without bit transition during
the correlation which would otherwise lower the final result.

The experiments led in this work were all done with datasets of 600
pairs of I and Q images, equally split in 300 with multipath and 300
without. However, the generator can provide datasets of arbitrary size
and distribution on demand.
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4. Convolutional neural network model
4.1. Image classification using CNN

Convolutional neural networks [20] are nowadays considered as
among the most powerful tools to learn information from images. This
is explained by their computational efficiency and their impressive
performance on image information processing. Their learning capabil-
ity comes from their ability to automatically construct and combine
abstract features from an image. The first layers of the network are
composed of convolutional layers. Such layers apply several filters over
the various regions of the input image and create feature maps that
are various versions of the filtered input image. Several convolutional
layers are usually stacked in order to progressively extract meaningful
information from the feature maps as the depth of the network is
increased. The last layers of the CNN perform the task of classification
usually through several layers of neurons with dense connectivity. The
weights of each convolution layer filters (also called kernels) and those
of the dense layers are learned through supervised learning based on
gradient back-propagation. The underlying structure of convolutional
layers has the advantage of having sparse connectivity and high weight
sharing among neurons, which leads to much greater computational
efficiency over fully connected neural networks when image sizes are
large or the image resolutions are high.

The above principles are at the heart of CNN architectures. Several
additional components are usually integrated in the network. Some
Pooling layers are used in order to reduce the dimension of feature
maps. A Flatten layer is added in front of the stack of dense layers
so as to transform feature map information in vector-like input. To
increase the generalization power of the network, a dropout mechanism
can also be used to artificially and randomly remove a small portion
of the neuron connection within the network. The number and the
organization of these various components generate several possible
CNN architectures [21].

4.2. Choice of a CNN architecture

Among CNN architectures that have proven to be effective in prac-
tice [22], the VGG-like architecture has been shown to be one of the
best choice for image feature extraction [23]. Despite its number of
parameters to be trained compared to other popular and more complex
architectures such as Inception V3 [24], ResNet [25] and other variants,
it has been widely adopted in practice by the ML community. The
architecture is composed of several blocks of convolutional layers that
are each separated by a pooling layer that decreases the feature map
dimension between blocks. As the depth increases, the dimension of
layer input decreases but the number of filters increases. When data are
organized on a multi-scale basis, mixing macro and micro patterns, the
number of convolutional blocks should be chosen sufficiently large. For
the GNSS multipath application, such multi-scale representation is not
expected in the signal. This is the reason why the chosen architecture
only includes one convolutional block composed of two convolutional
layers. It is therefore a very simple instance of a VGG-like network.

VGG architectures are usually implemented for RGB images (mean-
ing three input channels: the ‘R’, ‘G’ and ‘B’ channels). For the specific
case of I/Q images, each input image is actually composed of two
channels (I channel + Q channel) that are sharing the GNSS correlation
signal information. Input images are therefore tensors of size N x N
and depth 2. Fig. 9 provides the precise network architecture and layer
dimension used in this study.

4.3. Feature maps and heatmaps as a combined mean to visualize the
feature space

Although artificial neural networks are usually thought of as black-
box models that construct complex decision surfaces that are difficult to
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Fig. 9. The CNN architecture used in this study: the input has 2 channels corresponding to I and Q channels, the first and second convolutional layers have 16 and 32 filters
respectively with ReLu activations and the pooling layer is a 2 x 2 max pooling operation layer (this figure has been generated by the NN-SVG tool [26]).
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Fig. 10. Examples of feature maps extracted from the last convolutional layer for the generated synthetic data using 3 x 3 filters.

interpret for a specific application, their CNN instances provide some
ways to get knowledge on the features that are designed during the
training process. The convolutional layers extract meaningful informa-
tion in the image for the learning task at hand. Therefore, visualizing
the constructed filters after each convolutional layers gives information
on the structure of the image that was extracted by the layer, the so-
called feature maps. Visualizing the stack of the various feature maps at
the output of the various layers will provide insightful knowledge for
the user, see Fig. 10 for an example of such stack of filters constructed
by the proposed CNN. The figure shows filtered GNSS correlation
images from the last convolutional layers. It provides understanding
on the regions of the signal image that are extracted for multipath
detection. Clearly the various peaks of the signal are considered for the
detection task.

In addition, there is also the possibility to build a class-discriminative
localization map that will highlight the regions of the input image that
are most important for the trained CNN to assign a specific class to the
image. Several methods have been proposed along this line [27,28].
The GradCAM method [28], that will be used later in this study, is
often used for such purpose as it is applicable to most standard CNN
architectures. The main idea is to compute the gradients of the score
y, of a specific class ¢ with respect to the feature maps A¥ € R* of a
convolutional layer. A class importance weight a; is then constructed
by averaging these gradients over the height and width of the feature
map as follows:

1 9y,
% uvaZaAl{ij'

J
These weights are then used to build a weighted combination of acti-
vation maps during a forward propagation of a specific input image:

_ k
Féraacam = ReLU <Z A ) :
3

Using the ReLU function will account only for positive influence
of class c. To visualize the corresponding influence in the input space,

resizing will be necessary as the activation map F¢ usually does not
have the same dimension as the input. In the experiments, an example
of such GradCam activation map is provided, see Fig. 12. In Section 5.7,
such heatmaps are constructed for the multipath detection task in the
I/Q images. These visualization tools provide further understanding on
the patterns of the correlation signals that are important for multipath
discrimination. This information may be used later to further refine the
signal frame that carries relevant information.

5. Experiments
5.1. Experimental setup

This section describes the experiments which were conducted to
evaluate the performance of the proposed model on the dataset de-
scribed in Section 3.5. For each test case the mean, median and stan-
dard deviation values of accuracy and F1 score averaged over 20 runs
are provided. The range and probability distribution of the multipath
parameters as defined in Egs. (5) and (6) are set, unless otherwise
specified, as follows:

* ayp the multipath attenuation coefficient is uniformly distributed
in [0.1,0.9],

+ Aryp the additional propagation delay of the multipath is also
uniformly distributed, in [0,37, /2] as explained in Appendix A,

+ Afyp the difference in Doppler shift between the direct signal
and the multipath is distributed in [-125,+125] Hz according
to a truncated zero-mean normal distribution with a standard
deviation set to 125/3,

+ AByp the difference between the phase of the main signal and the
multipath is uniformly distributed in [0, 2x].

The value of the navigation bit D, as defined in Eq. (1), is chosen
randomly with equal probability between —1 and +1 for each pair of I
and Q images.
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Table 1
Mean (x) and standard deviation (¢) of prediction accuracy and Fl-score with respect
to Doppler shift.

Af 4, (Hz) 0 10 20 30 40 50

Hpce 0.97 0.96 0.96 0.98 0.97 0.99

0 pce 0.01 0.01 0.02 0.02 0.01 0.01

HE 0.96 0.99 0.97 0.97 0.97 0.99

opy 0.01 0.02 0.02 0.03 0.02 0.01
Table 2

Mean (x) and standard deviation (¢) of prediction accuracy and Fl-score with respect
to propagation delay.

At (T,) 0.2 0.4 0.6 0.8 1.0

Hace 0.94 0.94 0.98 0.96 1.0

0 pce 0.01 0.023 0.022 0.012 0.0

Hpy 0.94 0.95 0.98 0.95 1.0

oy 0.008 0.02 0.023 0.011 0.0
Table 3

Mean (u) and standard deviation (c) of prediction accuracy and F1l-score with respect
to carrier to noise ratio.

C/NO (dBHz) 24 26 28 30 32 34

Hee 0.60 0.74 0.64 0.80 0.83 0.85
O tee 0.08 0.05 0.03 0.02 0.04 0.03
Ky 0.59 0.63 0.74 0.81 0.84 0.84
or 0.08 0.08 0.04 0.02 0.03 0.02
C/NO (dBHz) 36 38 40 42 44 46

Hace 0.93 0.97 0.98 0.96 0.97 0.97
O tee 0.02 0.02 0.01 0.03 0.01 0.02
e 0.89 0.97 0.97 0.96 0.98 0.97
or 0.03 0.02 0.02 0.01 0.01 0.02

5.2. Influence of multipath characteristics

In this section, the influence of the multipath characteristics on the
detection performance is assessed. The experimental conditions are set
in this way: C/N0O = 47 dBHz and the image resolution is 80 x 80. This
corresponds to good observation conditions for the direct path, so that
the CNN response can be clearly observed. The tests were conducted on
5 equally spaced values for both the difference in Doppler shift Afyp
from 0 to 50 Hz and the additional propagation delay of the multipath
Aryp from O to 7. The results are represented in Tables 1 and 2. They
show that there is no significant influence of the Doppler shift on the
detector performance. On the other hand, when the propagation delay
approaches 0.27, (meaning that the multipath gets close to the main
signal), a slight degradation of the accuracy and Fl-score by 6% can
be observed.

5.3. Influence of the signal to noise ratio C/NO

In this section the influence of C/NO ratio on the detection perfor-
mance is assessed. The experimental conditions are the following: T; =
20 ms and the image resolution is 80 x 80. The multipath parameters
distributions are identical to those defined in Section 5.2. The tests
were conducted on equally spaced values of C/NO ratio from 24 to 46
dBHz. The results are presented on Table 3. From this results the current
model shows high robustness towards the noisy incoming images for
values down to 36—38 dBHz. Then, as expected, the model performance
decreases greatly with the value of the C/NO (when I and Q images are
noisier). On Fig. 11, it can be also observed that the standard deviation
of the metrics decreases when the image becomes less noisy. This means
that the detection model achieves greater robustness in performance
when the noise decreases. A value of around C/NO = 36 dBHz seems
to be also a threshold after which the performance is much higher.
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Table 4
Mean () and standard deviation (¢) of prediction accuracy and F1-score
with respect to image resolution.

Resolution (pixel) 20 40 60 80
Hace 0.93 0.95 0.97 0.99
6 pee 0.02 0.01 0.01 0.01
HE 0.92 0.95 0.98 1.0
o 0.02 0.01 0.01 0.0

5.4. Influence of the I/Q image resolution

In order to evaluate the performance of the multipath detector,
the proposed algorithm was applied on images of various resolutions
N € {20,40,60,80} with the intent to estimate the best compromise
performance vs image resolution. The multipath parameters distribu-
tions are the same as before. The results in Table 4 show that the model
performance decreases with the image resolution. However, for resolu-
tions above 40 pixels per axes, the model classification performance
stays above 95%.

5.5. Discussion on CNN performance results

The experiments exposed in this section put in light that the perfor-
mance of the proposed method is more than adequate in the three axis
of importance in our study:

» The multipath parameters have been varied over their respective
realistic range to assess the validation accuracy. It is not less than
94% in any case,

The C/NO ratio, that reports the receiving condition of the GNSS
signal of interest, was changed from 46 (good) to 24 (poor) dBHz.
A failover is observed in the performance around 36 (fairly poor)
dBHz, which establishes a quite acceptable operational limit to
our network,

The image resolution, parameterized by N the number of points
per axes, has been gradually decreased to measure the robustness
of the algorithm to hardware limitations. Indeed, a validation
accuracy of 93% is still achieved for N = 20.

With respect to the chosen architecture, the experiments confirm that
the detection task at hand does not require large depth as not much
multi-scale learning seems to be needed. Indeed, our choice of a quite
shallow architecture has proven to be appropriate for efficient multi-
path detection.

5.6. Comparison with an SVM based detection technique

In this experiment, the performance of the proposed method is
compared to the SVM multipath detection technique proposed in [29].
The SVM model constructs a maximum margin separating hyperplane
between the two classes of data points (multipath/no multipath). SVM
are often used as an alternative method to neural network as they are
able to handle non linearly separable data [30,31]. Since the method
proposed in [12,29] also collects signal information from the output of
the correlator block, from a data collection point of view, it is similar
to the technique proposed in this study. However, unlike CNN, they
require prior data feature engineering. For comparison purposes, the
feature extraction pipeline used in [29] was also implemented on 13
correlator outputs and identical SVM hyperparameters were used. More
specifically, the features proposed in [29] were extracted as follows:

» Number of local maxima of the correlation outputs per period
F2 - Nlocul—maxima
At

where A4t is the correlation interval taken equal to coherent inte-
gration period.
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Fig. 11. Average validation accuracy (left) and average F1 score (right) with respect to carrier to noise ratio C/NO (vertical bars represent standard deviation values).
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Fig. 12. Example of heatmaps (bottom) with respect to input image sample (top). (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

« Distribution of the delay of the maximum correlation output

M
1
F3 = H ;(ti—max - i)z

where t;_,.. is the code delay of the maximum correlation output,
f is the mean of the code delay, and M is the number of correlator
output samples.

However, in [29], the authors have also used a signal strength versus
elevation angle feature (referred as F; in their article). This feature
was not taken into account here as no physical context was introduced
in the experiments (receiver’s speed, satellite constellation) since the
generated dataset is synthetic. In the experiment, the C/NO is taken
high (47 dBHz) for both algorithms to assess performance in favorable
noise conditions.

Table 5 reports the results on the mean, median and standard
deviation values of accuracy and F1 score' averaged over 20 runs of
both models (SVM and CNN). The results show that the proposed CNN
algorithm considerably outperforms the SVM benchmark.

1 The F1 score is not to be confused with the F, feature from [29].

Table 5
Comparison of Mean (u) and standard deviation (o)
of prediction accuracy and F1-score for SVM and CNN

models.
Model SVM CNN
Hace 0.73 0.98
ey 0.74 0.95

5.7. Analysis of CNN automatic feature construction: towards CNN multi-
path detection interpretability

The experiments have highlighted the multipath detection power of
the CNN when compared to SVM. The automatic feature extraction that
takes place in the convolutional layers is able to catch the geometrical
dependencies in the data. To further demonstrate this property, activa-
tion maps as described in Section 4.3 have been computed using the
GradCam technique (see Fig. 12). Clearly, the activation maps show
hot detection regions around both signal and multipath peaks (red
and yellow areas on the figure) while cold regions that do not carry
detection relevant information are marked in dark blue. Distortion
around the main signal is highlighted in the activation map in various
multipath situations (near or far from main signal peak). When there
is no multipath, no distortion appears in the heatmap and a much
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more symmetrical pattern can be observed. These observations in a
sense validates the detection mechanism and provides a sound and clear
interpretation of the CNN decision rule.

6. Conclusions

In this study, a complete GNSS multipath detection framework
based on deep learning has been presented. The proposed method
starts with the construction of training image data from synthetic
receiver correlation outputs. A precise image generation process based
on specific parameter definition intervals is described. This process
optimizes the relevance of built-in information within dataset samples.
A CNN architecture is then presented and tested with the constructed
dataset. For various multipath parameter choices, experiments have
demonstrated the detection performance of the proposed deep learn-
ing model. Further investigation using heatmaps provides additional
understanding of the detection model decision rule and validates its
relevance. The results provided in this study are very encouraging and
should motivate further research combining ML techniques and GNSS
signal processing modeling. More specifically future research will focus
on multiple multipath that characterizes urban environment. Investi-
gations will also be conducted with deep regression architectures for
multipath parameters estimation. The time dynamic of the multipath
should also be studied in order to improve current static learning
models.
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Appendix A. Definition intervals of the multipath parameters

In this section the ranges of variation of the multipath parameters
Aryp and Afyp are addressed.

Fig. A.13 represents the correlation between the local signal and the
sum of the direct path and the multipath signals as a function of the
delay offset between the local and received signals. The triangle pattern
corresponds to K(4r) (2),(3), the specific auto-correlation function of
the PRN code, with T, the bit period of the code. This corresponds to the
limit case when the multipath signal arrives with the same Doppler shift
and with the same amplitude and phase as the direct path signal. The
two circles at —7,/2 and +7,/2 represent the two extreme correlation
points used in a classical GNSS receiver to track the signal of interest.

Array 14 (2022) 100167

T.
0 Atwe
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Fig. A.14. Limit case of the difference in Doppler shift between the direct path and
the multipath.

The case without disturbance of these measurement points is realized
when Aryp > T, + T, /2, s0 Aryp is taken in [0, 3T, /2].

Fig. A.14 represents the correlation between the local signal and the
sum of the direct path and the multipath signals as a function of the fre-
quency offset between the local and received signals. This corresponds
to the hypothetical limit case when the multipath signal arrives with
the same code delay and with the same amplitude and phase as the
direct path signal. The disturbance induced in the correlation function
of the direct path by the multipath sinc function is considered to be
negligible for |Afyp| > 2.5/T; as it peaks under 10% of the value at
Af = 0. However, depending on the value of T;, |4fyp| is further
bounded by the physical value of 800 Hz. This is the maximum Doppler
shift which could be encountered for example by a commercial aircraft
in the approach or landing phase at a speed of 140 knots. Finally,
|4 fyp| < min(800,2.5/T;)

Appendix B. Definition domains of the delay and doppler shift
axes

In this part the observation intervals of the propagation delay 7 and
Doppler shift 6/ are defined

As it can be seen in Fig. A.13, the propagation delay is included
into the interval [T, 5T, /2] because outside of it the correlation does
not contain information neither about direct path nor multipath signals.
However, it has been observed in real receivers that a strong multipath
could move forward the value of 7 as far as +7./2 in comparison to the
real value of 7. So a safety margin has been included in the range of 7
which finally spans [-3T,/2,3T.].

For the Doppler shift observation interval, Fig. A.14 shows that
the upper bound can be taken |5f| < 5.5/T;, because for higher
frequencies the value of the multipath sinc function becomes negligible
in comparison to its maximum. Nevertheless, as in the previous section,
depending on the value of T}, |6f] is further bounded by the physical
value of 800 Hz: |6 f| < min(5.5/T;, 800 + 2.5/T)).
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