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Abstract: This paper studies a data-driven approach to detect faults in flight control systems
of civil aircraft. A particular class of failures, referred to as Oscillatory Failure Cases (OFC),
impacting the actuator servo loop has motivated the authors to consider a data-driven approach
based on distance and correlation measures (see reference [Goupil et al.(2016). A data-driven
approach to detect faults in the Airbus flight control system. IFAC-PapersOnLine, 49(17), 52-
57] of this paper) leading to promising results compared to the state-of-the-art methods based
on analytical redundancy. The present paper extends the formulation and the results of the
considered OFC detection approach investigating Support Vector Machine (SVM) techniques
to define a more accurate detector based on distance and correlation measures.
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1. INTRODUCTION

Economic and environmental efficiency has nowadays an
increasing role in the design of a modern civil aircraft. Re-
ducing the structural airframe weight for a given passenger
capacity without compromising the structural strength of
the aircraft is a main research axis. The unwanted oscilla-
tion of a control surface represents a significant design case
in the development of a fault-tolerant system. Indeed, it
may not only induce local structural load augmentation,
but can also match the frequency of a flight mechanical
mode (deteriorating the flight handling qualities) or a
weakly damped structural mode (leading to a divergent
behaviour in the worst case). For this reason, the impact
of a spurious control surface oscillation to the airframe
structural design is not negligible. The ability to detect an
oscillation beyond a given amplitude in a given time inter-
val, whatever its frequency, means directly to reduce the
associated loads and thus lighter structural reinforcement.
The Oscillatory Failure Case (OFC) is the name given to
a class of failures in the actuator servo loop that cause un-
desired oscillations of the control surface. OFC can result
from the faulty behaviour of an electronic component or a
mechanical failure inside the actuator control loop. Model-
based techniques are in-service on Airbus aircraft and have
proved their efficiency and maturity (Goupil, 2010). How-
ever, different models have to be designed and tested for
different actuators (Hydraulic, Electro-Hydrostatic (EHA)
and Electro-Backup-Hydrostatic (EBHA)), different con-
trol surfaces and different aircraft. For this reason a dif-
ferent approach with a higher level of genericity has been
investigated in (Goupil et al., 2016). In particular, a data-
driven technique comparing the input and output of the
aircraft control surface servo loop has been considered.
The current Airbus servo loop principle is shown in Fig.
1. Tt consists of a dual channel scheme where the so-called

COM (command) channel is dedicated mainly to the flight
control law computation and to the control surface servo-
loop. The so-called MON channel (monitoring) is primarily
dedicated to the monitoring of all Electronic Flight Con-
trol System (EFCS) components. The OFC effects can
be simulated through the injection of a periodic signal
at two specific points of the control loop: the ANalogical
Output(ANO) and the ANalogical Input(ANI) (see Fig.
1). The OFC can appear at the output of the actuator
servo loop (the control surface position) as an additive
or substitutive signal, also called liquid and solid OFC
(Goupil, 2010). The actuator acts as a low-pass filter.
Thus, the OFC phenomenon is limited to signals whose
frequencies are usually contained in the interval 0-10 Hz.
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Fig. 1. Airbus control surface servo loop.

The main aim of the present study is to improve the
detector proposed in (Goupil et al., 2016) using Support
Vector Machines (SVMs). A simple OFC detector has been
proposed based on distance and correlation measures. This
detector has the structure of a similarity index that com-
bines the information of different parameters. The struc-
ture of this similarity index corresponds to a particular
parameter combination. Indeed, the detector accuracy can
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be improved by identifying the optimal detector structure
(characterized by an optimal parameter combination) and
the SVMs are well adapted to this purpose.

The paper is organized as follows: Section 2 presents the
latest state-of-the-art OFC detection methods based on
analytical redundancy and the recent data-driven method
based on distance and correlation measures. Section 3 de-
tails the proposed data-driven OFC detection method and
introduces the way in which it can be improved. Section
4 focuses on SVMs and its application to OFC detection.
Finally, sections 5 and 6, are devoted to simulation results
and conclusions.

2. STATE-OF-THE-ART

The latest OFC detection strategy used on board Airbus
aircraft (for example the modern A380 and A350) is based
on analytical redundancy. The principle of this detection
consists of comparing the actual functioning of the control
surface with an ideal one expected in the absence of failure.
The comparison can be summarized in two steps: residual
generation and residual evaluation. The residual is built by
comparing the real position of the control surface delivered
by a sensor with an estimated position produced by the
actuator model (where the input is the command produced
by the flight control law). The estimated position p is the

result of a discrete integration of the estimated velocity ;ﬁ
expressed by the following equation

; AP — Faerot Faomp
Py = ot \/ AP, fs (1)

where AP is the hydraulic pressure delivered in input
of the actuator, Fheo represents the aerodynamic forces,
Faamp = kqp? is the servo control load of the adjacent
actuator in damping mode!, S is the surface area of the
piston, AP, is the differential pressure corresponding to
the maximum rod speed and Vj(t) is the maximal speed
of one actuator without any load. The parameter vector
0 = (AP, Faero, k)T is assumed to be constant (fixed
to its most probable value) to reduce the computational
complexity of the OFC detection algorithm or can be
estimated by means of an extended Kalman filter to reduce
modelling errors (Simon, 2011) (Zolghadri et al., 2014).
The OFC detection is classically achieved by counting
successive and alternate crossings of the residual around a
given threshold (for a liquid OFC) or around the opposite
of the estimated position (for a solid OFC). Analytical re-
dundancy approaches have shown to provide a good trade-
off between robustness, performance and computational
cost in many test campaigns (Goupil, 2011)(Goupil, 2010)
and are currently used on in-service aircraft. However, the
model-based approaches demand a long test and calibra-
tion period and have to be adapted each time the system
changes. In this context, it is also important to consider
methods that provide acceptable results without making
any hypothesis on the system. Data-driven approaches are
interesting since they generally offer more genericity. The
idea of a data-driven approach is to exploit the correlation
between the order sent to the actuator and the position
of the aerodynamic surface, which is generally large in the
fault-free case. In fact, in the fault-free case, the position

I In case of a dual active/passive scheme.
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of the aerodynamic surface should show only small atten-
uation (or amplification) and delay compared to the order
because of actuator dynamics. In other words, the techni-
cal problem to be addressed is the detection of an additive
or substitutive periodic signal affecting the aerodynamic
surface position using a specific comparison with the order.
From a general point of view, the techniques that we will
present in this study can be applied to detect a fault in a
generic system whose input is fault-free and whose output
is similar (in both time and frequency domains) to the
input in the absence of a fault. A very simple way to define
a fault detection technique is then to directly compare the
system input and output.

The OFC detection constraints? have motivated the au-
thors to consider a simple approach based on distance and
correlation measures (Goupil et al., 2016) (Urbano, 2017).
In particular, a novel similarity index was proposed as test
statistic for OFC detection. This index is evaluating the
similarity between the command and the position of the
actuator servo loop by means of a fault probability. The
greater its value, the higher the probability of fault. More
precisely, this index is simply a statistic that quantifies the
dissimilarity between command and position combining
the effect of three main parameters of two signals acquired
in a given observation window:

i) the correlation coefficient p
ii) the Euclidean distance dg
iii) an amplification factor a based on the ratio of the
estimated curvilinear distances of the two signals

The choice of these parameters and the choice of a specific
combination of them is analysed in the next section.

3. SIMILARITY MEASURE

The main purpose of defining a similarity measure between
two signals is to compare these two signals by means of a
single number which quantifies their resemblance. In the
signal processing community, one of the most common sim-
ilarity measures is the correlation coefficient. The correla-
tion coefficient embodies the classical geometrical concept
of similarity, in the sense that it provides a score between
-1 and 1 to the statistical relationships between two signals
(in particular 1 means full agreement, 0 full disagreement,
-1 phase opposition). On the other hand, more classical
distances can be used to quantify the proximity between
the values of two time series. An interesting collection of
the historically proposed metrics can be found in (Deza
and Deza, 2009).

The properties of the correlation coefficient and of more
sophisticated distances can be interesting in many prac-
tical applications. For the special case of OFC detection,
observing command and position signals in the faulty and
fault-free cases, we can see that these signals are very
similar in shape and have close amplitudes in the fault-
free case. Conversely, in the presence of a fault, there
is a reduced correlation, an augmented distance and an
increased signal complexity 3. Based on this observation,

2 For example, the required detection time, on board sampling time
and computational capacity limitations make difficult to achieve a
good frequency resolution.

3 In the sense of having more peaks, valleys and features or in other
terms having a bigger curvilinear distance (Batista et al., 2014).
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it make sense to consider the parameters p, dg and a as
test statistics for OFC detection.

The parameter p is the maximal Pearson correlation co-
efficient between the command x and the control surface
position y

pr = p(z,y;7)
where the delay 7 between command and position is
estimated as*

7 = argmax {p (z,y;7)}

The information about 7 can be used to realign the
measured position signal to the command signal and
compute a more robust version of the Euclidean distance

and of the amplification factor a,, where a, is build as
the ratio between the maximum and the minimum of the
estimated curvilinear distance of x and y as

_ max(eg, ey, ) > 1

min(eg, ey, )
where e, is an estimation of the curvilinear distance of x in
the observation window. For example, we have considered

N-1
e =Y V(wi—wip1)?+ T2
i=1

where T, is the sampling time. We can observe that a,
is always greater than 1 and it increases if the curvilinear
distance of one of the two signals differs substantially from
the other.

A very simple OFC detector might be based on one of
these parameters or on a particular combination of them.
Building a detector monitoring one or multiple attributes
in an instance in order to characterize the fault free
neighbour is quite common in the literature (Chandola
et al., 2009) (Pimentel et al., 2014).

It is important to observe that the parameters p, dg and
a have some specific limitations

i) if the command is constant, the position is also con-
stant. In this case the correlation coefficient can have
a small value since we are considering two uncorre-
lated measurement noises. Moreover, the correlation
coeflicient is not always a reliable discriminating fac-
tor, in the sense that there is a wide range of signal
pairs with the same correlation coefficient.

ii) the difference between the values of the measured
position and the command can reach a few degrees
for fast manoeuvres or large deflections of the control
surface. As a consequence, the Euclidean distance can
locally increase in the fault free case, which is not
desired.

consider a discrete variation of T
%) to simplify the computation.

- =

Fs'Fs'Fs*'" "1
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iii) the ratio of the curvilinear distance in the faulty
case depends (as the Euclidean distance) on the OFC
amplitude and frequency. More precisely, the lower
the OFC amplitude and frequency, the lower the
increase in the curvilinear distance of the measured
position. Thus, this ratio could not differ substantially
from 1 even in the faulty case. It is possible to argue
the same conclusion applies to the Euclidean distance,
even if this distance is generally more sensitive to the
failure (due to the fact that it is proportional to the
energy of the faulty signal).

As a conclusion, considering the parameters p, dgy and
a separately can lead to poor performances in terms of
minimal detectable OFC amplitude. The intuitive idea be-
hind the proposed statistic is that the information supplied
by these indexes is somehow complementary and thus a
combination of them can enable the definition of a more
reliable statistic. In a previous study, we investigated a
particular combination of p, dg and a for OFC detec-
tion. The chosen dissimilarity measure results from an
incremental approach inspired by ideas in the literature
(Batista et al., 2011)(Batista et al., 2014)(Chouakria and
Nagabhushan, 2007)(Frambourg, 2013).

In (Goupil et al., 2016) and (Urbano, 2017) two particular
combinations of p,, a; and dg, were proposed, i.e.,

Di (z,y) = (1 - pr) ardg,
and®
D (a,y) = [ (2= p,) + In(a,)]d,

In a first test campaign conducted on simulator ¢ , we have
verified that the similarity measures D} and D3 are com-
pliant with the OFC detection constraints” and we have
shown that they represent a promising alternative to the
model-based approaches. For further details see (Goupil
et al., 2016) or (Urbano, 2017). However, the proposed
statistic only correspond to a particular combination of
the chosen attributes p, dg, a. This paper goes a step
further by conducting a more general analysis of the OFC
phenomenon in the feature space represented by the chosen
parameters, in order to evaluate the best statistic that we
can consider for OFC detection.

3.1 A different decision surface

As already mentioned, the measure D* defines a spe-
cific decision surface in the feature space (dg.,pr,a,) €
([0,00], [—1,1],[1,00]). For the considered attributes, we
expect the fault free case to be in the neighbour of the
point (dg_,pr,a;) = (0,1,1), or equivalently near the
origin of the transformed space
S = (dp,. 1~ pryar — 1)

The statistics Dj and D3 consider specific decision sur-
faces (detectors) in the space spanned by the vectors X,
that are described respectively by the Cartesian equations
ryz = 7> and [log(z) + log(y)]z = p (where v and p
are detection thresholds). A priori, the number of possible
decision surfaces that we can consider is infinite. However,

5 Considering a logarithmic scale for the first two parameters

6 ADDSAFE simulator delivered by Airbus in the corresponding
European project (Goupil and Marcos, 2014).

7 In terms of detection time, performance and computational time



S. Urbano et al. / IFAC PapersOnLine 50-1 (2017) 13544—13549

knowing that the ideal fault free case is in the origin of the
space X and that in the faulty case all the three factors
have to be at the same time higher than a certain thresh-
old, the detectors D and D3 are two possible choices.
The next section proposes a strategy for optimizing the
decision surface for OFC detection using the theory of
SVMs (applied to simulated data). The purpose is to
better characterize the OFC phenomenon in the 3 space
and to identify the most suitable decision function for OFC
detection.

4. SUPPORT VECTOR MACHINES

Providing a sufficiently representative database on the
OFC phenomenon, a classification technique such as the
two-class SVMs is a suitable way to identify the max-
imum margin hyperplane that divides faulty and fault-
free classes. The main principle of SVMs is separating
datasets into two classes according to a decision boundary
(binary classifier). This boundary is the hyperplane that
has the maximum distance between the so-called support
vectors in each class. If we call w the normal vector to the
separating hyperplane and b the offset of the hyperplane
from the origin along the normal vector, any hyperplane
can be written as the set of points x satisfying:

wix+b=0

If the training data are linearly separable, we can select
the optimal hyperplane that separate the data by max-
imizing the minimum distance between this hyperplane
and the training samples (the samples associated with this
minimum distance are the support vectors). The decision
function associated with the hyperplane is:

F(x) = sgn(w"x + b)

where sgn(z) is the sign function of z. The method
was originally thought only for linearly separable data.
However, it was then extended to non-linearly separable
data using the feature space technique, also called “kernel
trick”. The idea of this technique is to map the initial data
in a higher dimensional space in which the transformed
data are linearly separable. This higher dimensional space
is generally identified using kernel methods. The kernels
enable one to operate in high-dimensional feature spaces
without ever computing the coordinates of the data in
these spaces, but rather by simply computing the inner
products between two transformed vectors x; and x; using
the following function

K(xi,%;) = &(x;)T®(x;) ®:R" - R™

where m > n. Computing K(x;,x;) directly generally
requires much smaller computational cost than computing
the inner product between ®(x;) and ®(x;). Determining
the appropriate kernel function to use is important since
it defines the feature space where the training data is
classified. Three of the most commonly used kernels are
recalled below
i) Linear: K(x1,X3) = X] X2

g —xo][2

ii) Gaussian: K(x1,%x3) =€ 2.2

iii) Polynomial: K (x;,X3) = (X7 x5)?
Fig. 2 explains the principle of kernel methods. It can be
shown that the decision function using the feature space
technique can be computed as
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f(x) = sgn(w’ @(x) + b)

N
= sgn < lz anynK(Sna Xn)
n=1

where the s = (s1,...,8,) are the support vectors,
(y1,---,yn) the related classes with y; = +1 and a =
(a1,...,ay) the Lagrangian multipliers related to the dual
optimization problem (Boyd and Vandenberghe, 2004). In
fact, the computation of the decision function requires the
resolution of a particular optimization problem in order to
identify the support vectors s, the bias b and the weight
vector a. The shape of the computed hyperplane (that
we would like to use to classify new data) also depends
on the considered training set and the tuning parameters
of the optimization algorithm. In order to guarantee the
convergence and to have an additional degree of freedom
in the optimization process, a soft margin parameter C'
is usually considered. The soft-margin SVM classifier is a
generalization of the hard-margin SVM classifier defined
to guarantee that the SVM can converge to a decision
function even if the data are not linearly separable. The
parameter C' determines the trade-off between increasing
the margin size and ensuring that the support vector lies
on the correct side of the margin. It can be shown that
considering a soft margin parameter C' with the kernel
trick is equivalent to defining a linear constraint in the
optimization process of the Lagrangian multipliers (0 <
a; < (). Since the optimization problem is a quadratic
function of a subject to linear constraints, it is efficiently
solvable by well known quadratic programming algorithms
(Platt et al., 1998). For further details on the SVM mathe-
matical background and the related optimization problem
see (Cristianini and Shawe-Taylor, 2000) and Appx. B. For
the purpose of this study we have decided to train the
decision function on simulated data from a specific desktop
simulator that enables us to generate the command and
position signals in the fault and fault-free case. The next
section presents some simulation results associated with
this study.

)

Input Space Feature Space

Fig. 2. The kernel trick

5. RESULTS

The ADDSAFE simulator (Goupil and Marcos, 2014) can
simulate the command and position of the actuator servo
loop of an Airbus aircraft (under different side-stick in-
puts). Moreover, we can simulate the OFC consequences
adding a sinusoidal signal in the loop at different points.
For this paper, two scenarios (corresponding to the train-
ing and test sets) of a few minutes of flight have been
generated to tune and test the SVM classifier for differ-
ent OFC frequencies® and amplitudes. The two classes

8 [0.5,1,2,3,5,7,10] Hz
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have been represented with the same proportion in both
datasets?. The attributes (dg._,pr,a,) associated with
the two scenarios were computed using a sliding window
and the related training sets and test sets were stored to
be processed with SVMs (see also Fig. A.1). The SVM
method was then performed in two steps: training and
performance evaluation '° .

It is worth mentioning that this case study is limited to a
sliding window of 1sec (at 100Hz) based on the half period
of the smallest OFC frequency considered i.e., 0.5Hz. For
a higher sensitivity to the failure (that is frequency de-
pendent), different window sizes should be considered as
in (Goupil et al., 2016) and different SVM classifier should
be trained.

5.1 Training

The training of the SVM classifier was accomplished with

the following steps

i) A soft-margin SVM with a Gaussian kernel was
considered ! .

ii) A validation step to evaluate the best parameters C
and o was considered to avoid data over-fitting (Hsu
et al., 2003). A 10-fold cross-validation method was
finally used on the training set for the SVM tuning.
The score considered in the grid search for C' and o
was the accuracy '2. A first guess for the parameter o
was obtained using the Jaakkola heuristic (Jaakkola
et al., 1999). The optimization process was then
conducted for a wide range of values (C, o) leading
to optimal performance in terms of accuracy. In this
range, we chose C' = 1000 and 0 = 0jaakkola-

iii) Considering the optimal parameters C' and o, the
decision function (weight vector a) was computed
using all the training set.

In Fig. 3 we can see the shape of the decision function

computed using the training set (in blue).

B

% fault-free

30 fault

25 O  support vectors
2 [ decision function

o 0s 1-p

Fig. 3. SVM hyperplane in the space ¥ (computed using the training
set and the cross-validated values of C and o)

9 Half of the data is fault-free and the other half is faulty

10For the computation of the maximum margin hyperplane in the
space ¥ the MATLAB sTATISTIC TOOLBOX was used.

11 A Gaussian Kernel is often considered as a reasonable first choice
(Hsu et al., 2003).

Number of True Positives+Number of True Negatives
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Accuracy - Total Number of Samples
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It is interesting to observe that as expected the fault-free
behaviour of the system is localized close to the origin
and the axes of the space ¥. On the other hand, the
points describing the faulty behaviour, as a function of
the OFC frequency and amplitude are more or less far
from the origin. In particular, it can be shown that a,
is more sensitive to the OFC frequency and dg_ to the
OFC amplitude. In order to be able to compare the tuned
decision function to the one defined by D7, the training
set is used also to evaluate the best threshold (in terms of
accuracy) for Dj.

5.2 Performance evaluation

The performance of the computed decision function was
evaluated on the test set. In Fig. 4, we can see the com-
puted hyperplane obtained with the test set (compared
also to the D surface tuned on the training set). Table 1
displays the results in terms of accuracy, precision'? and
recall ™ for the two presented methods.

30

25
fault-free

fault

[ svm

20

05 1-p

Fig. 4. SVM hyperplane obtained with the test set (compared to
the surface defined by D7)

Table 1. Accuracy of the proposed method on the test
set (compared to the similarity index D7)

Decision function | Accuracy | Precision | Recall
SVMs 0.96 0.95 0.97
DI 0.92 0.87 0.99
D 0.88 0.85 0.94

We can observe that, for the considered test set, the SVM
classifier has better performance in terms of accuracy than
Dy . However, one can argue that the values corresponding
to the SVM classifier and D} do not differ too much. In this
case, it is important to mention that the D] maximal accu-
racy drops to 0.85 on the training set, while the SVM per-
formances is similar between the training and test phases.
It is interesting to notice here that an on-board algorithm
for OFC detection has higher requirements in terms of
false alarm rate (compared to the obtained results). How-
ever, considering filtering and consolidation steps in the
detection algorithm, it is possible to obtain results that

13 qi — Number of True Positives
Precision = Number of True Positives+Number of False Positives
14 Recall = umber of True Positives

Number of True Positives+Number of False Negatives
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are compliant with the specifications '® . As a consequence
of the impossibility to define a fully representative test set
for OFC detection, it is difficult to generalize the previous
results. However, they still represent a good reference for
further studies.

6. CONCLUSION

The aim of the present study was to show how we can
identify a test statistic (decision function) for OFC detec-
tion using the theory of Support Vector Machines (SVMs)
based on distance and correlation measures. The proposed
method achieved higher detection performance in terms
of accuracy than a previously proposed statistic D} (that
proved to be a promising alternative to the state-of-the-art
methods (Goupil et al., 2016)). The proposed approach has
a computational cost that is similar to D} (because the on-
board application only require the separating hyperplane
obtained after the training phase of the SVM classifier).
However, it relies on simulated data and thus on a system
model. Further studies can be carried out with the dual
objective of reducing the minimal OFC detectable ampli-
tude and avoiding the use of a system model. In this case, a
One-Class Support Vector Machine (OC-SVM) technique
might be used directly on flight data in order to define a
suitable test statistic.
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Appendix A. DATASET GENERATION

The training set (and test set) generation is accomplished in three
steps, as shown in Fig. A.1.
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Fig. A.l. Training set generation process.
Appendix B. DUAL PROBLEM

A soft-margin SVM classifier can be trained by solving a quadratic
programming problem that can be expressed in the dual form as
(Cristianini and Shawe-Taylor, 2000)

N 1 N N
max E Oén_§ E g ynymK(X7L7Xm)04na7n
o
n=1
N

n=1m=1
subjectto 0< a; < C, Zynan =0
n=1
The sequential minimal optimization (SMO) algorithm (Platt et al.,
1998) can be used to solve this problem.



