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a b s t r a c t 

In signal processing, spectral analysis is widely used but, whereas computing the power spectral density 

(PSD) by Fourier approaches is relatively easy, its analysis and reading are much more demanding espe- 

cially for spectrally rich signals. This paper presents an original method which automatically picks out 

and estimates the relevant spectral structures of an unknown random stationary process, embedded in 

an unknown non-white Gaussian noise. First, a statistical hypothesis test is applied to each local max- 

imum value of the estimated PSD to detect the potential spectral peaks of interest. Second, an original 

feature space is proposed for classifying and characterizing the detected structures. Then, one key idea 

of the proposed strategy is to use not only one spectral estimator but to combine the results of different 

ones, taking benefits of their good properties. Therefore the detection and classification steps are ap- 

plied to different spectral estimations. A last fusion step outputs a complete attribute vector, including a 

confidence index, for each detected structure. Another key idea of this data-driven approach is that all 

parameters are automatically set up without a priori knowledge. This approach is fully adapted to the 

preventive maintenance of complex systems, as illustrated in the paper. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Literature on spectral analysis is abundant and lots of differ-

ent estimators have been proposed (e.g., see [1,2] and references

therein). Depending on the application and on several parameters

such as signal to noise ratio, sample size or a priori spectral shape,

a signal processing expert should be able to choose which esti-

mator gives the best results in terms of spectral resolution, fre-

quency estimation or modal detection. However, when no a pri-

ori information is available about the signal, or when a non-signal

processing expert is willing to analyze some specific data, it is in-

teresting to design an automatic spectral analysis tool, providing a

complete description of the analyzed signal. Up to now, few meth-

ods have been published in this context. A fully automated spectral

analysis was investigated in [3] . However, it was restricted to pe-

riodic signals focusing on the estimation of the signal period. In

a more recent paper, Barbé and Van Moer [4] proposed an au-

tomatic detection and estimation procedure for harmonic compo-

nents. A statistical analysis was considered to discriminate peaks

for which amplitudes are higher or lower than a given threshold
∗ Corresponding author. 
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or any fixed frequency. The threshold was determined according

o a minimum inter-group variance and a maximum group dis-

ance, taking the whole estimated spectrum into account. Thus,

his method can be applied when the noise is white but not for

 non-white one where the threshold should be determined indi-

idually for each tested peak. When the signal of interest is a sum

f sinusoids embedded in white noise, the authors of [5] studied

 local least square approach in the frequency domain. Tackling a

ider signal class, the authors in [6] set up an automatic selec-

ion of the significant spectral components by using two different

andwidth resolutions. However, this method requires two signal

easurements, which are not always available. 

The objective of this paper is different. We propose a way of

utomatically analyzing stationary processes without a priori infor-

ation. A new spectral analysis strategy is investigated, allowing

pecific spectral structures of a signal to be detected and charac-

erized. The proposed strategy is not linked to any artificial intel-

igence consideration but is only related to the use of signal pro-

essing properties. In this context, a spectral structure has to be

nderstood as the frequency signature of a sine wave, a narrow

and signal, or a noise peak. The signals of interest are assumed

o be composed of a sum of an unknown number of these struc-

ures, embedded in an unknown non-white noise. Several applica-

ions are demanding spectral analysis of such signals, including vi-

https://doi.org/10.1016/j.sigpro.2017.12.024
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2017.12.024&domain=pdf
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ration, electrical, acoustic, seismic or radar signals. Indeed, these

pplications lead to process signals with a high number of samples,

nd having a high number of spectral structures embedded in non-

hite noise. It is important to highlight that this last assumption

s essential in the context of this paper. Indeed, when signals are

cquired by rotating machines such as machines in the nacelle of

ind turbines or manufacturing machines, methods restricted to

he presence of white noise cannot be applied. 

The main idea of the present paper is to combine and take ad-

antage of the different properties of a set of spectral estimators

ased on the discrete Fourier transform. Combining estimation, de-

ection and classification, the output of the proposed method is a

et of spectral structures characterized by a set of appropriate at-

ributes. These attributes include the standard ones as frequency,

mplitude, local signal to noise ratio and spectral bandwidth. They

re complemented by new ones providing a complete characteri-

ation of the spectral structures contained in a given signal. The

esulting attribute vectors are referred to as identity cards and al-

ow an easy classification of all the peaks of a power spectral den-

ity estimate. These identity cards can be of great interest in many

omains and especially for the analysis of acoustic and vibration

ignals that are generally composed of a high number of spectral

tructures. Using an automated method combining the results of

ifferent spectral analyses of these signals is fruitful and laborsav-

ng, e.g., for the condition monitoring of rotating machines. 

A first method has been published in [7,8] . In this paper we

ropose a more efficient one in which each step, the detection, the

eature space mapping, the classification and the final fusion, has

een improved. Furthermore, the method has been implemented

n real-time and on-board devices within the frame of two Eu-

opean projects, one devoted to renewable energy in wind tur-

ine farms ( http://www.gipsa-lab.fr/projet/KASTRION/ ) and a sec-

nd one devoted to manufacturing equipment in a coated paper

ill ( http://www.supreme-fof.eu ). The paper is organized as fol-

ows. Section 2 formulates the problem addressed in this work

nd provides details about the spectral structures that are consid-

red in this study. Section 3 studies a new spectral peak detection

ethod that is applied on each estimated power spectral density

PSD), through a local hypothesis testing. This hypothesis test is

efined in the frequency domain, taking the probability distribu-

ion of the estimated noise PSD into account. Section 4 defines

he feature space that is used for the classification of the differ-

nt spectral structures. Section 5 presents a way to choose spec-

ral estimators with a specific example for a sine wave search. The

usion rule adopted to combine the different spectral analysis re-

ults is presented in Section 6 . This rule leads to the identifica-

ion and classification of different spectral structures, namely sine

aves, narrow band signals and noise peaks. The proposed method

s evaluated using simulated and real-world signals in Section 7 . In

articular, we show how a real-world signal corresponding to the

coustic noise of a heat pump can be analyzed. Conclusions and

erspectives are finally reported in Section 8 . 

. Problem statement 

.1. Assumptions 

Let us consider a discrete stationary random signal x [ k ] , k =
 , . . . , K − 1 defined as the sum of a signal of interest s [ k ] and a

oise n [ k ], 

 [ k ] = s [ k ] + n [ k ] , k = 0 , . . . , K − 1 , (1)

here K is the sample size. The signal of interest s [ k ] is a sta-

ionary random process, whose PSD is denoted by γ s ( ν), ν being

he frequency variable. We assume that the PSD of the signal s [ k ]

an be decomposed as the sum of elementary PSDs referred to as
pectral structures. When the observed signal is composed of sine

aves or very narrow band signals embedded in noise, a spectral

tructure typically corresponds to a more or less wide peak in the

SD of this signal. The number of spectral structures in s [ k ] can

e very large. For instance, a vibration signal is frequently com-

osed of more than hundreds of peaks. The additive noise n [ k ] is

ssumed to be a zero mean stationary Gaussian noise, independent

f the signal of interest, with a PSD denoted by γ n ( ν). The additive

oise may be white or not and the number of spectral structures

ontained in the signal of interest x [ k ] is unknown. 

.2. Context 

The problem addressed in this work consists of analyzing the

ignal x [ k ] in order to detect, characterize and classify any spectral

tructure present in s [ k ]. Motivated by the assumption of a large

ample size K , e.g. K ≥ 1,0 0 0, Fourier-based estimators will be con-

idered as an appropriate tool for spectral analysis. Fourier estima-

ors are well-known to be robust approaches that are daily used

n many domains such as vibration analysis. However, understand-

ng the rich spectral content of vibration signals is not so obvious

nd needs the help of human interaction, which is precisely the

roblem addressed in this paper. 

In the particular case of a single sine wave embedded in white

aussian noise, the maximum likelihood estimator of the sine

ave frequency is known to be the frequency where the peri-

dogram reaches its maximum [9] . For multiple sine waves in

hite Gaussian noise, the maxima of the periodogram provide the

aximum likelihood estimators of its sine frequencies as long as

he sine waves are well resolved in frequency. However, in the gen-

ral case of a non-white noise n [ k ], there is no simple solution for

stimating the frequencies contained in s [ k ] using the maximum

ikelihood principle. 

Therefore, in order to detect and characterize an unknown

umber of spectral structures embedded in a non-white additive

oise, we propose a specific peak detection in the frequency do-

ain. Moreover, to be robust against spectral estimation problems,

he continuous PSD is estimated through a set of estimators coping

ith several compromises. Considering a non-white additive noise

s challenging in such an automatic spectral analysis if we want to

nsure that the proposed strategy has the same performance for

ny noise spectral shape. 

. Spectral structure detection 

Given 

̂ γx ( ν) an estimation of the continuous PSD γ x ( ν) of the

bserved signal x [ k ], the set of the frequencies at which 

̂ γx ( ν) is

ocally maximum is denoted as M = { max ν ̂ γx ( ν) } . The detection

roblem addressed in this Section consists of designing a binary

est for detecting the relevant spectral structures in 

̂ γx ( ν) . More

recisely, for a given frequency ν belonging to M , we consider the

wo following hypotheses: 

 0 : γx ( ν) = γn ( ν) , H 1 : γx ( ν) = γs ( ν) + γn ( ν) , (2)

nd a test statistic T ( ν) as a function of ̂ γx ( ν) , such as 

T ( ν) 
H 0 
≶ 

H 1 

μPFA , (3) 

here the threshold μPFA can be adjusted from the probability of

alse alarm (PFA) of the test 

FA = Pr [ T ( ν) ≥ μPFA | H 0 ] , (4) 

nd where Pr ( A | H 0 ) denotes the probability of the event A under

ypothesis H 0 . This test will not be applied to all frequencies ν but

nly to frequencies ν at the local maxima of ̂ γx ( ν) . The application

http://www.gipsa-lab.fr/projet/KASTRION/
http://www.supreme-fof.eu
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Fig. 1. Estimated probability density function (PDF) of a Blackman–Tukey spectral 

estimator (blue solid line) compared to its corresponding χ 2 
r approximation (red 

dashed line) with r = 2 . 55 . 
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of test (3) will allow us to keep only maxima in M under hypoth-

esis H 1 which then correspond to the so-called spectral structures

of the analyzed signal. 

3.1. Distribution of Fourier-based estimators under H 0 

In order to derive the distribution of the test statistic T ( ν)

which should be a function of ̂ γx ( ν) , we propose to study the

distribution of the spectral estimators under hypothesis H 0 . In our

context, the PSD estimators are Fourier-based with different tem-

poral windows and overlapping. The additive noise is white or not.

Johnson and Long [10] derived the probability density function

of the Welch periodogram for overlapping temporal windows of a

Gaussian time series. However, this result is difficult to be general-

ized to other PSD estimators and the distribution of a test statistic

resulting from this distribution is computationally expensive. In or-

der to obtain a more general solution, one possibility is to approx-

imate the distribution of the estimated PSD. Different approxima-

tions based on the chi-square distribution have been investigated

in [1,10–12] and more recently in [13] . In this paper, we consider

a more general approximation that has to be valid for any Fourier-

based PSD estimator. Let us introduce 

 = a ̂
 γx ( ν) 

γn ( ν) 
, (5)

where a is a real scalar which will be fixed in what follows. Ac-

cording to the previous results in the literature, the distribution of

U is approximated by a chi-square one with a number of degrees

of freedom denoted by r . Therefore, 

E [ U ] = r and var [ U ] = 2 r. (6)

Being under hypothesis H 0 and assuming that the noise estimation

is unbiased, E [ U ] = r in (6) gives a = r. Using this in the variance

expression of (6) leads to 

r = 

2 

varn [ ̂  γx ( ν) ] 
with varn [ ̂  γx ( ν) ] = 

var [ ̂  γx ( ν) ] (
E 
[̂ γx ( ν) 

2 
]) , (7)

where varn [ ̂  γx ( ν) ] is the normalized variance of the spectral es-

timator. This normalized variance depends only on the chosen

PSD estimator and not on the signal x [ k ] itself [1] . This property

is interesting and allows the a priori computation of the degree

of freedom r only from the variance of the spectrum estimator.

Appendix A recalls the equations for the well-known Welch and

Blackman–Tuckey estimators, whatever the type and size of the

windows and whatever the overlapping. Note that, in the case of

a Welch estimator, r = 2 N seg for N seg segments of signal without

any overlapping and whatever the window, which gives a lowest

value r = 2 obtained with one segment. The proposed approxima-

tion of the distribution of U = r ̂
 γx ( ν) 

γn ( ν) 
is illustrated Fig. 1 by com-

paring the probability density function (PDF) of a chi-square vari-

able to the estimated PDF of U for a Blackman–Tukey estimator,

a Blackman window and a non-white ARMA Gaussian noise whose

parameters are { 1 , −1 . 3552 , 1 . 228 , −0 . 662 , 0 . 25 } for the AR param-

eters and { 1 , −0 . 9 , 0 . 81 } for the MA ones. This example is a kind of

worst-case example since the Blackman–Tukey estimator may lead

to an estimated PSD with negative values, which is very penalizing

when fitting with a chi-square distribution 

3.2. Noise PSD estimation 

In order to determine the distribution of ̂ γx ( ν) using (5) , we

need to know the noise PSD γ n ( ν). We propose to estimate it

thanks to a median filtering F of ̂ γx ( ν) denoted 

˜ γn ( ν) , 

˜ γn ( ν) = F [ ̂  γx ( ν) ] . (8)

The median filter is applied to the estimated PSD, i.e., in the fre-

quency domain. The median filter length has to be linked to the
quivalent spectral window W ( ν), induced by any Fourier-based

pectral estimator and such that 

 [ ̂  γx ( ν) ] = γx ( ν) ∗ W ( ν) , (9)

here ∗ denotes convolution. We propose to adjust the median fil-

er length proportionally to the length of the spectral bandwidth of

 ( ν), denoted as B W 

and defined as the main lobe width between

ts first two zeros. On the one hand, the median filter length has

o be high enough around frequencies close to sine waves, in order

o mitigate the effect of the signal peaks. On the other hand, a too

arge value of the median filter length fails to track the spectrum

ariations of the non-white noise. A compromise has to be found

etween 2 B W 

and 8 B W 

; a value of 4 B W 

has been chosen in the

xamples of Section 7 . In practice, the median filter length corre-

ponds to a number of frequency samples which is denoted by M n 

n what follows. Note finally that more details about how estimat-

ng the noise PSD from the noisy signal PSD can be found in [14] ,

ncluding methods based on median filters or other non-linear fil-

ers such as morphological or percentile filters. 

.3. A p-value approach for H 0 rejection 

Considering the previous results, we propose to define the test

tatistic T ( ν) in (3) as 

 ( ν) = 

̂ γx ( ν) ˜ γn ( ν) 
= r ̂

 γx ( ν) 

γn ( ν) 

[
r ̃

 γn ( ν) 

γn ( ν) 

]−1 

. (10)

nder hypothesis H 0 , U = r ̂
 γx ( ν) 

γn ( ν) 
is considered to be distributed

s chi-square with r degrees of freedom as shown in Section 3.1 .

iven that ˜ γn ( ν) is the median filter of ̂ γx ( ν) , the distribution of

 ̃

 γn ( ν) 
γn ( ν) 

can be derived as an order statistics [15, p. 372] , however

he expression does not lend itself to simple analytic processing.

ince noise PSD is estimated thanks to a median filter, we will

ather consider rM n ̃
 γn ( ν) 

γn ( ν) 
as the output of a filter with a finite im-

ulse response of length M n , excited by a chi-square distributed

nput, U . As a consequence, T ( ν) is viewed as the ratio of two nor-

alized correlated chi-squared distributed variables 

 ( ν) = 

U/r 

r M n ̃
 γn ( ν) 

γn ( ν) 
/r M n 

. (11)
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Fig. 2. Estimated probability density function (PDF) of the test statistics in the case 

of a Blackman–Tukey spectral estimator (blue solid line) compared to its corre- 

sponding F r,rM n distribution (red dashed line), with r = 2 . 55 and M n = 29 . 
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Fig. 3. Definition of a spectral structure γ i with a maximum γmax i at frequency 

νmax i as a portion of the estimated PSD between frequencies ν−
i 

and ν+ 
i 

, such that 

PSD values at these frequencies equal the local noise variance σ 2 
i 

corresponding to 

the mean noise PSD between two successive local minima at frequencies νmin i and 

νmin i +1 
around this spectral structure. 
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he numerator and denominator of this ratio are necessarily cor-

elated. But if we consider that the noise PSD is estimated by a

onlinear filter as described in Section 3.2 and that the test statis-

ic T ( ν) is applied at the peak maxima only, we do the assumption

hat this correlation can be neglected. Then the distribution of T ( ν)

an be approximated by a Fisher–Snedecor one with parameters r

nd rM n , denoted by F r,rM n 
[15] . This approximation has been vali-

ated via several Monte Carlo simulations in the case of white and

on-white noise, with different PSD estimators and different win-

ows, with or without time segment overlapping. As an example,

ig. 2 compares the estimated probability density function of the

est statistic T ( ν) with its approximated F distribution in the case

f a non-white ARMA Gaussian noise, a Blackman–Tukey estima-

or with a Blackman window and a median filter for the noise PSD

stimation. 

Under hypothesis H 1 , the distribution of T ( ν) cannot be consid-

red since there is no information about the signal of interest. We

ropose then to use the p -value of the test (3) [16] . The p -value is

efined as the probability of having a value of T ( ν) equal or more

xtreme than the one observed considering that H 0 is true. It gives

 measure of the strength of evidence against H 0 . The lower the

 -value, the more unlikely H 0 is, and at some point of low proba-

ility, H 0 should be preferably rejected. 

Therefore, the p -value denoted as p 0 is computed at each fre-

uency νmax belonging to M 

p 0 = Pr [ T ( ν) ≥ T ( νmax ) | H 0 ] = 

∫ + ∞ 

T ( νmax ) 

F r,rM n 
(t ) dt , (12)

here F r,rM n 
(t) denotes the PDF of the Fisher-Snedecor distribution

ith parameters r and rM n . If this p -value is higher than a given

hreshold corresponding to a PFA (4) , we consider that there is no

resumption against hypothesis H 0 and that the spectral structure

round the frequency νmax is a noise peak. All other spectral struc-

ures corresponding to p -values lower than the chosen threshold

re detected as potential spectral structures of interest in the ob-

erved signal ̂ γx ( ν) . 

This way, the test output is a set of P peaks of amplitude γmax i 

or which the corresponding p -values denoted as p 0 i give an idea

f how the peaks contradict the hypothesis H suspecting the pres-
0 
nce of a signal of interest at frequency νmax i . This set of peaks is

ritten as 

 

(
γmax i , νmax i , p 0 i 

)
, i = 1 , . . . , P } . (13)

.4. Spectral structure identification 

Each triplet 
(
γmax i , νmax i , p 0 i 

)
corresponds to a part of the es-

imated PSD 

̂ γx ( ν) that we will refer to as a “spectral structure”,

enoted by γ i and defined accurately in this Section. This quantity

orresponds to one part of interest of the spectrum of the signal. 

For each triplet, a local noise variance σ 2 
i 

is computed as 

2 
i = 

1 

νmin i +1 
− νmin i 

∫ νmin i +1 

νmin i 

˜ γn ( ν) dν, (14) 

ith 

˜ γn ( ν) given by (8) and νmin i 
(resp. νmin i +1 

) the argument

f the preceding (resp. succeeding) minimum of γmax i (See Fig. 3 ).

herefore, a spectral structure γ i associated to 
(
γmax i , νmax i , p 0 i 

)
is

efined by 

i = 

{̂ γx ( ν) ;ν ∈ 

[
ν−

i 
, ν+ 

i 

]}
, (15) 

ith 

̂ x 

(
ν−

i 

)
= ̂

 γx 

(
ν+ 

i 

)
= σ 2 

i with 

[
ν−

i 
, ν+ 

i 

]
⊂

[
νmin i , νmin i +1 

]
. (16) 

In order to accurately identify each spectral structure, γ i is

ompared with the equivalent spectral window W ( ν) defined in

9). The main lobe of W ( ν) defined between the two first zeros

nd of amplitude one, denoted as Q ( ν), is sampled at a higher rate

han the rate of the spectrum 

̂ γx ( ν) . A maximum likelihood ap-

roach could have been considered in order to estimate the best

osition in frequency of Q ( ν) for each γ i . However, it has been

hown to induce a higher computation time without any perfor-

ance improvement compared to a simple least square minimiza-

ion between γ i and shifted versions Q S ( ν) of Q ( ν). Therefore, this

ast solution has been preferred. The algorithm is initialized by a

rst version Q 0 ( ν) centered at the maximum frequency νmax i of γ i 

nd adjusted to its amplitude γmax i such that 

 0 ( ν) = γmax i Q ( ν − νmax i ) . (17) 

hen this adjusted spectral window will be shifted along the fre-

uency axis, on the increasing or decreasing side, depending on

he value of 

 = sign ( ̂  γx ( νmax i + �ν) − ̂ γx ( νmax i − �ν) ) , (18)

ith �ν the sampling period of the spectrum 

̂ γx ( ν) . If ε = 0 , it

s a particular and nice case where the peak fits well with the

pectral window Q 0 ( ν) and will be assigned later on to a sine

ave. Otherwise, new versions Q ( ν) are computed with a shift
S 
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step equal to ε�ν/ c, �ν/ c being the sampling period of Q ( ν). Due

to the over-sampling rate of Q S ( ν), c being at least equal to 10, the

shift is small compared to the samples of γ i and the total ampli-

tude of the shift will be limited to one frequency interval �ν . In

addition, at each step, the amplitude of Q S ( ν) is adjusted such that

the constraint Q S 

(
νmax i 

)
= γmax i is always satisfied. 

At each step is computed a normalized quadratic error between

γ i and Q S ( ν) and only for their common sampling points, 

e ( i ) = 

1 

γ 2 
max i 

j 2 ∑ 

j= j 1 

(̂ γx 

(
ν j 

)
− Q S 

(
ν j 

))2 
, (19)

with [ ν j 1 
, ν j 2 

] ⊂ [ ν−
i 

, ν+ 
i 

] . The choice of j 1 and j 2 values determines

a specific part of the peak and then a specific error. The total er-

ror denoted by e tot ( i ) takes the whole peak γ i into account and is

used in the least square minimization between γ i and shifted ver-

sions Q S ( ν) of Q ( ν). This spectral adjustment defined as a matching

of the whole peak with the spectral window allows the determi-

nation of an adjusted central frequency ˜ νmax i and of an adjusted

maximum 

˜ γmax i that will be used in Section 6 . 

In addition to considering the whole peak which may be dis-

torted by secondary lobes of neighboring peaks, j 1 and j 2 can also

chosen such that (19) computes the −3 dB error denoted e -3dB ( i ).

This last error will be used in Section 4.2 for defining a structure

feature. 

4. Spectral structure classification 

4.1. Spectral structure class definition 

The detection step provides a set of P spectral structures

(15) related to the signal of interest. Each of these structures is

characterized by a p -value providing a quantitative strength of ev-

idence against hypothesis H 0 . These detected spectral structures

can correspond to sine waves but also to other signal structure

with a spectral width broader than the equivalent spectral window.

Therefore, in a first approach, three different classes are defined: 

- Sine Wave class (SW). This SW class is composed of all spectral

structures corresponding to sine waves which are character-

ized by their frequency νs and amplitude A , such that the

signal of interest (1) is of the form 

s [ k ] = A cos ( 2 πνs k ) . (20)

- Narrow Band signal class (NB). This NB class corresponds to

signals having a spectral structure whose bandwidth is be-

tween the equivalent spectral window bandwidth B W 

of the

estimated PSD and the median filter length of the noise PSD

estimation. Any wider band signal will be involved in the

noise PSD estimation and is out of concern of this paper.

This NB class includes slowly non-stationary signals of the

form 

s [ k ] = A [ k ] cos ( φ[ k ] ) , (21)

where φ[ k ] is a slow-varying phase function around a steer-

ing frequency and A [ k ] is a band-limited signal whose max-

imal frequency is much smaller than this steering frequency

[17] . Other stationary signals can be found in this class, such

as a random frequency fluctuation over a small frequency

band (e.g. a laser noise). 

- Noise peak class (NP). This NP class acts as a reject class for

peaks departing too much from the equivalent spectral win-

dow of the corresponding PSD estimator. 

4.2. Spectral structure features 

After having defined the three classes to which a spectral struc-

ture can belong, we need to define discriminant features to handle
he classification of all the detected structures. We propose a list of

wo features: one dealing with the height of the peak featured by

 signal to noise ratio value, the other one with its shape got after

 spectral adjustment. The height can be a relevant criterion for

oise peak classification while the shape can help to distinguish

W peaks from the others. 

Thus the first feature, the height of each spectral structure, is

haracterized by a local signal to noise ratio denoted as SNR 
 and

ssociated to a SW peak, 

NR 
 = 10 log 

(
A 

2 
i 

4 σ 2 
i 

)
. (22)

he parameter σ 2 
i 

is defined in (16) and A i is the sinusoidal am-

litude corresponding to the maximum value of the spectral peak

max i . We have chosen this feature SNR 
 since it is closely linked

o the test statistic (10) , as shown in Appendix B , by the following

elation, 

NR 
 = 10 log [ B e T s T ( ν) ] , (23)

ith T s = 1 /F s the sampling period and B e the noise equivalent

andwidth of the spectral window 

 e = 

∫ + F s / 2 

−F s / 2 

W ( ν) dν

W ( 0 ) 
. (24)

hrough (23) , the first feature SNR 
 is related to the p -value of

ach detected peak: the higher the SNR 
 value, the lower the p -

alue, the more likely the peak is a signal of interest, either in the

W or NB class. Therefore, by definition SNR 
 will be able to sepa-

ate SW or NB peaks from the other NP peaks. 

The second feature, the shape of a spectral structure is deduced

rom the quadratic spectral error (19) computed at −3 dB . If it is

ow, the spectral structure will belong to SW class, otherwise, it

ill be assigned to NB or NP class. 

Monte Carlo simulations have been performed in order to eval-

ate the interest of these two features (SNR 
 , e -3dB ) for classifying

he spectral structures into the three classes SW, NB and NP. Two

imulated stationary signals of K = 10 , 0 0 0 samples have been gen-

rated over 50 runs. 

• The first signal is a deterministic SW with a unitary amplitude

and frequency νs . 
• The second one is a random NB signal simulated as a sine func-

tion with a unitary amplitude and a varying frequency equal to

νs plus some Gaussian noise with a low variance σ 2 
n . 

For simulations, we choose σ 2 
n = 25 . 10 −6 and νs = 0 . 11 in nor-

alized frequencies. Both signals are embedded in an additive

hite Gaussian noise as in (1) . Different signal to noise ratios have

een considered from 30 dB to −20 dB . PSD estimation is done us-

ng a Welch estimator [2] on the whole signal (one segment) with

 Blackman window. According to Section 3 , the noise spectrum is

stimated and peaks are detected following the p -value approach

etailed in Section 3.3 with PFA = 10 −3 . 

Fig. 4 presents the results of these Monte Carlo simulations for

ignal to noise ratios equal to 20 dB, 0 dB, −5 dB and −15 dB . It is

lear that the three clusters of SW peaks (in red), NB peaks (in

reen) and NP peaks (in black) are well-separated in the proposed

eature space (SNR 
 , e -3 dB ), as long as the signal to noise ratio is

qual or above −5 dB . This property is exploited for estimating the

lass boundaries in the feature space (SNR 
 , e -3dB ). 

.3. Feature space mapping 

To perform peak classification in the proposed feature space

SNR 
 , e -3dB ), and thanks to the properties of these features high-

ighted in the previous Section, the class boundaries will be de-

ned from histograms computed from the previous Monte Carlo
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Fig. 4. Monte Carlo simulations (50 runs) for a SW signal and a NB signal embedded in an additive Gaussian noise (signal to noise ratio at the upper right of each plot): each 

symbol corresponds to a detected peak, using a Welch estimator on the whole signal (one segment of K = 10 , 0 0 0 samples) with a Blackman window, r = 2 and M n = 81 , 

the red squares are the SW ones, the green triangles, the NB ones, the rest the NP ones. 

Fig. 5. SNR 
 histograms on NP (left) and signal peaks (SW and NB, right) of simu- 

lated signals embedded in an additive Gaussian noise using Welch PSD estimation 

with Hanning window, SNR from 30 dB to -10 dB for SW and from 30 dB to 5 dB for 

NB, 50 signal realizations of 10,0 0 0 samples per SNR value. 
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Fig. 6. SNR 
 histograms on NP (left) and signal peaks (SW and NB, right) of simu- 

lated signals embedded in an additive Gaussian noise using Welch PSD estimation 

with Hanning window, at very low SNR, -20 dB for SW and -10 dB for NB, 50 signal 

realizations of 10,0 0 0 samples per SNR value. 
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imulations. Following figures show the results using a Welch PSD

stimation with Hanning window. The same reasoning is avail-

ble for other estimators. Fig. 5 is the histogram of SNR 
 cumu-

ating Monte Carlo simulations of SW peaks from 30 dB to -10 dB

nd Monte Carlo simulations of NB peaks from 30 dB to 5 dB.

he threshold T + delimits the NP peaks from the others SW or

B without doubt. For lower signal to noise ratio, the bound-

ries could not be so obvious so we decided to define doubt

lasses illustrated by the histograms of Fig. 6 . The interval between

he threshold T − and the previous one T + delimits doubt classes

W/NP or NB/NP between the different classes SW, NB or NP. The

hreshold T − is computed such that Pr [ SNR 
 ≤ T − | H 1 ] = P min . In

ur simulations, we have chosen P = 0 . 01 . 
min 
Fig. 7 presents the histograms of the second feature e -3dB show-

ng without doubt that the −3 dB error feature is meaningful to

eparate the SW peaks from the NB ones when the signal to noise

atio is greater than 0 dB. Both histograms are well-separated by

 threshold denoted by T e . The resulting feature space mapping is

hown on Fig. 8 . 

. Multi-estimator method 

.1. Combining different spectral estimators 

Once spectral peak detection and classification have been set

p, the question is: among all existing spectral estimators, which

ne are we going to choose? The key idea of the proposed method
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Fig. 7. −3 dB error histograms on SW (left) and NB (right) simulated signals em- 

bedded in an additive Gaussian noise using Welch PSD estimation with Hanning 

window, SNR from 30 dB to 0 dB, 50 signal realizations of 10,0 0 0 samples per SNR 

value. 

Fig. 8. Feature space mapping of the ( SNR 
 , e −3 dB ) plane into 5 classes. 
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is not to apply one estimator but to combine the results of sev-

eral different estimators, taking advantage of their specific proper-

ties. Within the frame of spectral analysis, it exists several kinds

of Fourier-based estimators [1,2,14] . In order to select M different

and complementary ones, this Section outlines first a possible list

of quality properties to help with the choice tand then an exam-

ple choice among many for a specific view to sine wave search.

The number M of selected estimators is not that important, the

method works whatever this number. The main claim of this paper

is the multi-estimator strategy leading to select and merge differ-

ent spectral estimations. 

5.2. Possible estimator quality properties 

In order to select Fourier-based spectral estimators, six estima-

tor quality criteria are pushed forward: 

1. The degree of freedom r of a spectral estimator. Defined in (7) ,

r is also referred to as a quality ratio of a spectral estimator

[11] since it is inversely proportional to the normalized vari-

ance (see (7) ) and directly linked to the statistical stability of

the spectral estimation. The minimum value of r is 2 and the

higher the value, the smoother the spectral estimation. 

2. The spectral leakage percentage p . It measures the power which

is transferred from the main lobe of the spectral window W ( ν)

to its side lobes. An accurate definition is only given in [18] ,
although this notion is widely discussed in the spectral analysis

literature [1,19] , 

p = 1 −

∫ + B W / 2 

−B W / 2 

| W ( ν) | dν

∫ + F s / 2 

−F s / 2 

| W ( ν) | dν

, (25)

with F s the signal sampling frequency. 

3. The peak emergence �SNR in the spectral estimation. Related to

the emergence of a given peak throughout the noise, �SNR is

defined from an estimated point of view as the difference be-

tween two ratios, 

�SNR = SNR 
 − SNR + . (26)

SNR 
 is the local signal to noise ratio defined in (22) and SNR + 
is the emerging signal to noise ratio, taking the local level of

noise and spectral window effects into account, B e being de-

fined in (24) , 

SNR + = 10 log 

(
A 

2 
i 

4 σ 2 
i 

B e 

)
. (27)

Thus the peak emergence is defined by 

�SNR = 10 log ( B e ) , (28)

and can also be interpreted as the equivalent noise bandwidth

of the spectral window [2] given in dB. 

4. The effective statistical bandwidth B s of the spectral window

[1,20,21] , 

B s = 

∣∣∣∣∫ + F s / 2 

−F s / 2 

W ( ν) dν

∣∣∣∣
2 

∫ + F s / 2 

−F s / 2 
| W ( ν) | 2 dν

. (29)

Related to the equivalent spectral window W ( ν), the statistical

bandwidth B s represents the bandwidth of an equivalent rect-

angular window with the same normalized variance for a white

noise as the chosen window. B s characterizes the quality of the

spectral estimation as well as the degree of freedom does but in

an opposite way: it is not possible to have a fine spectral reso-

lution (small values of B s ) together with a highly stable spectral

estimation (large values of r ). 

5. The frequency resolution directly related to the resolution band-

width B -3dB of the spectral estimator [2] . It is defined by 

B −3dB = ν2 − ν1 , (30)

with 

W ( ν1 ) = W ( ν2 ) = 

W ( 0 ) 

2 

. 

Details (e.g., two SW peaks) in a spectrum which are separated

by less than this value cannot be resolved. This property has

to be associated to the leakage since a compromise has to be

found: high frequency resolution (small values of B -3dB ) is un-

fortunately associated to high leakage (high values of p ). 

6. The side-lobe fall-off SL of the equivalent spectral window defined

as the slope of the envelope [19] , [22] . In case of a high signal

to noise ratio, it is preferable to consider estimators with high

side-lobe fall-off in order that side-lobes do not intervene in

the peak detection results. 

.3. One estimator choice example for a sine wave search 

Within the case of a sine wave search and based on the pre-

ious properties ( p, B -3dB , B s , r , SL, �SNR), it would be optimal to

ave an estimator which simultaneously satisfies a high degree of
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Fig. 9. Estimator quality properties ( p, B -3dB , B s , r , SL, �SNR) of different estimators: a Blackman–Tuckey estimator using a biased estimate of the autocorrelation and a Black- 

man temporal window ( BT b + Blackman ), a Welch estimator using a Blackman temporal window ( Welch + Blackman ), a Welch estimator with a Hanning temporal window 

( Welch + Hanning ), a Blackman–Tuckey estimator using an unbiased estimate of the autocorrelation with a Blackman temporal window ( BT u + Blackman ), a Blackman–Tuckey 

estimator using an unbiased estimate of the autocorrelation with a Hanning temporal window ( BT u + Hanning ). The first grey diagram defines the different axis scales. 

f  

p  

a  

S  

p  

e

 

 

 

 

 

 

 

 

 

f  

s  

e  

t  

t

 

b  

s

 

 

 

 

 

 

h  

fi  

m  

t  

u  

l  

i  

s  

n  

t  

s  

a  

d  

i  

w  

r  

t

 

t  

b  

T  

g

6

 

o  

s  

a

 

e  

t  

a  

t

 

reedom r , a minimum spectral leakage percentage p , a maximum

eak emergence �SNR, a small effective statistical bandwidth B s ,

 small resolution bandwidth B -3dB and a high sidelobe fall-off SL.

ince there exists no estimator satisfying the six above criteria, we

ropose a compromise, a right balance among all them by consid-

ring five methods ( M = 5 ) as following with m = 1 , . . . , M, [2] 

• m = 1 , a Blackman–Tuckey estimator using a biased estimate of

the autocorrelation and a Blackman temporal window ( BT b +
Blackman ), 

• m = 2 , a Welch estimator using a Blackman temporal window

( Welch + Blackman ), 
• m = 3 , a Welch estimator with a Hanning temporal window

( Welch + Hanning ), 
• m = 4 , a Blackman–Tuckey estimator using an unbiased esti-

mate of the autocorrelation with a Blackman temporal window

( BT u + Blackman ), 
• m = 5 , a Blackman–Tuckey estimator using an unbiased esti-

mate of the autocorrelation with a Hanning temporal window

( BT u + Hanning ). 

In order to illustrate the pros and cons of these five methods,

or each of them, Fig. 9 plots a star chart where each radius repre-

ents one of the six previous criteria. As defined in the first chart,

ach radius scale has been determined such that the radius ex-

remity corresponds to an optimal value of the corresponding cri-

erion. 

None of the chosen methods has the best scores for all criteria

ut each criterion has almost one estimator where the achieved

core is the best. One can highlight that 

• for the quality criterion related to the degree of freedom r , the

first method outperforms the others, 
• for criteria linked to effective statistical bandwidth B s and to

frequency resolution B -3dB , the Blackman–Tuckey estimators are

the best, 
• regarding leakage p , all methods are quite equivalent except the

Blackman–Tuckey estimator with a Hanning window, 
• for peak emergence �SNR, the three first estimators are of in-
terest.  
Lastly, considering the side-lobe fall-off, two different strategies

ave been developed. When the signal to noise ratio is low, the

ve chosen methods should be applied regarding their comple-

entary properties ( M = 5 ). However, in the case of a high signal

o noise ratio (over 10 dB for example), the side-lobe fall-off val-

es of the Blackman–Tuckey methods (methods 1, 4 and 5) could

ead to high false-alarm rate within the detection step. Therefore,

n this case, only Welch methods are considered ( M = 2 ). For this

pecific search, it is then useful to have the knowledge of the sig-

al to noise ratio. Other choices will not need this knowledge. In

his respect, we have implemented a data validation to estimate

ome prior parameters such as the signal to noise ratio and also

 stationary index to qualify the stationarity of the signal. This in-

ex is particularly worthwhile for selecting correct vibration data

n a wind turbine for example [23,24] . Moreover for such signals

hich can be measured under small speed fluctuations, an angular

esampling should be applied if a speed signal is available [25] . All

his upstream phase is not part of this paper. 

As mentioned at the beginning of this Section, the most impor-

ant point of this paper is the multi-estimator approach which can

e used whatever the number and the type of spectral estimators.

his Section has proposed one possible choice that has been ar-

ued using estimatorquality criteria. 

. Fusion 

Sections 3 and 4 have led to peak detection and classification

n M spectral estimates. The present Section is devoted to the fu-

ion of all these estimations in order to get one final spectral char-

cterization of each detected spectral structure. 

After detection and classification, the output of the m th spectral

stimator ( m = 1 , . . . , M) is a list of P m 

detected peaks or struc-

ures denoted as γi,m 

, i = 1 , . . . , P m 

. At each γ i, m 

is associat ed an

ttribute vector composed of the ten following elements, for which

he index m has been added relatively to previous Sections: 

1. the adjusted central frequency ˜ νmax i,m obtained after the spec-

tral adjustment of the detected peak with the equivalent
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Fig. 10. Global scheme of the proposed multi-estimator approach. 
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spectral window in the classification step, as explained in

Section 3.4 , 

2. the adjusted maximum of the peak ˜ γmax i,m , corresponding to

the adjusted central frequency, as also explained in Section 3.4 ,

3. the amplitude A i,m 

= 

√ 

4 ̃  γmax i,m B s T , corresponding to the tem-

poral amplitude, B s being defined in (29) and T being the signal

duration, 

4. the local noise variance σ 2 
i,m 

defined in (16) , 

5. the confidence interval I i,m 

corresponding to the frequency

resolution of the spectral estimator, centered around 

˜ νmax i,m 

with a bandwidth B -3dB , defined in (30) , I i,m 

= [ ̃  νmax i,m −
B −3dB / 2 , ̃  νmax i,m + B −3dB / 2] , 

6. the error couple (e −3 dB i,m 
, e tot i,m 

) related to the spectral estima-

tor and to its equivalent spectral window, defined in (19) , 

7. the local signal to noise ratio, SNR 
 i,m 
defined in (22) , 

8. the emerging signal to noise ratio, SNR + i,m defined in (27) , 

9. the p -value, p 0 i,m introduced in (12) , 

0. the class label C i, m 

selected among the set 

C = { SW , NB , SW / NP , NB / NP , NP } , (31)

resulting from the feature space mapping described in

Section 4.3 . 

Computed for each m th method, these attribute vectors are

called intermediate “identity cards”. Consequently, the first step of

the fusion is to group or associate the intermediate identity cards

corresponding to the same spectral structure among the M spectral

estimators. For this, we will use attributes of the cards. The first

one, the adjusted central frequency has not been estimated with

the same resolution and then has not the same value throughout

the different analyses. The association rule will be based on the

fifth attribute of the cards, the confidence intervals I i,m 

. A non-

empty interSection will lead to the association of the peaks num-

bered i and i ′ if and only if 

I i,m 

∩ I i ′ ,m 

′ 
 = ∅ for i 
 = i ′ . (32)

Applying this rule leads to the association of maximum M cards

which constitutes a sequence describing the same spectral struc-

ture viewed through the different spectral estimators. Scanning all

the cards through the entire frequency band of the signal provides

J sequences, j = 1 , . . . , J one for each spectral structure of the sig-

nal. 

At this step, at one sequence j is associated M intermediate

identity cards or less if the spectral structure has not been de-

tected by all spectral methods. So the second step of the fusion

is to merge these cards in a final one. This step will be driven by

the class label assigned in the feature space ( SNR 
 , e −3 dB ) of Fig. 8 .

The fusion computes the centroid position of all the ( SNR 
 , e −3 dB )

couples of the sequence to provide the final class label C j . 

This centroid position is used to select the nearest couple

( SNR 
 i,m 
, e −3 dB i,m 

) , m = 1 , . . . , M and then the corresponding inter-

mediate identity card which is denoted as the best one for keeping

the following attributes in the final card of the sequence j , namely

the frequency ˜ νmax j , the corresponding temporal amplitude A j , the

local noise variance σ 2 
j , the SNR 
 j , the SNR + j and the p -value p 0 j .

Rather than keeping the confidence interval, the fusion step com-

putes a relative bandwidth 

˜ B j = 

B j 

B −3dB 

, (33)

where B j is the −3 dB spectral bandwidth in the best intermediate

card and B -3dB is the −3 dB spectral bandwidth of the equivalent

spectral window for the corresponding spectral estimator of this

best card (30) . 

In the final card of the sequence is added a specific attribute

computed as the detection number percentage of each spectral
tructure throughout the M spectral analyses and acting as a confi-

ence index denoted CI j for the sequence j . In the end of the fusion

tep, the final identity card of each of the J detected structures is

f the form 

( ̃  νmax j , A j , σ
2 
j , SNR 
 j , SNR + j , ̃  B j , p 0 j , C j , CI j ) . (34)

. Applications 

Fig. 10 illustrates the main steps of the method proposed in this

aper. The method is fully automatic and no a priori knowledge

bout the signal is needed. Some hyper parameters have to be set

 priori : the spectral estimators, with their own parameters and

hresholds in the feature space as illustrated in Figs. 5–7 , and the

FA in the detection step. As an illustration, Section 5.2 has pro-

osed a selection of 5 estimators based on complementary quality

riteria for a sine wave search. Obviously the method is valuable

or any choice and any number of estimators. The PFA acts as a

aximum p -value and should be chosen relatively high to be able

o detect enough peaks. We use to choose a PFA value equal to

0 −3 . This Section illustrates some results of the proposed method

rst for a simulated signal and then for real-world signals. It con-

ludes about a strong interest of this method in the surveillance

nd maintenance of complex systems. 

.1. A simulated signal 

The proposed automatic data-driven multi-estimator approach

s applied to the sine-wave signal embedded in an additive non-

hite noise described in Table 1 . 

Fig. 11 presents the results of the spectral structure detection

etailed in Section 3 for one specific spectral estimator. All local

axima of the PSD associated to a p -value higher than the chosen

hreshold PFA = 10 −3 are considered as in favor of hypothesis H 0 

nd are plotted in black. The remaining maxima corresponds to the

 detected peaks and for sake of clarity, their color corresponds to

ne p -value interval, rather than giving their associated p -values. 

The 7-sine wave structures have been well detected with a very

ow p -value ( ≤ 10 −6 ) and 7 other structures have been also de-

ected but with a higher p -value, from 10 −6 to 10 −3 . To charac-

erize further these P structures, the classification step detailed in
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Fig. 11. Detection result on the simulated signal described in Table 1 for Welch PSD estimation with Hanning window ( r = 2 and M n = 37 ): detected peaks are colored in 

red, yellow, green or cyan depending on their associated p -value, while the continuous black line along the PSD represents the noise PSD estimation. (for a better view, see 

colored web version). 

Fig. 12. Classification result on the noisy signal described in Table 1 for Welch PSD estimation with Hanning window ( r = 2 and M n = 37 ): classified peaks have a colored 

bar with different markers corresponding to different classes, as indicated. (for a better view, see colored web version). 

Table 1 

Parameters of the sine signal with additive non-white ARMA noise. 

Normalized frequencies Amplitudes Local signal to noise ratios (dB) 

0.07 1.2 −20.9 

0.10 5 −7.2 

0.11 5 −6.1 

0.19 2 −6.6 

0.32 10 4. 

0.41 0.8 −14.5 

0.42 0.9 −13.2 

ARMA noise parameters 

AR parameters: { 1 , −1 . 3552 , 1 . 228 , −0 . 662 , 0 . 25 } 
MA parameters: { 1 , −0 . 9 , 0 . 81 } 
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ection 4 is illustrated in Fig. 12 . The 7 sine waves are classified

ither as SW, or as NB. Among the 7 supplementary spectral struc-

ures detected, 5 are classified as NB/NP, 1 as NB and 1 as SW/NP. 

The result of this analysis will be enhanced by the multi-

stimator approach. Fig. 13 presents the results of detection and

lassification of each of the M estimators that have detected be-

ween 8 and 15 spectral structures. High amplitude structures have

een logically detected with a low p -value whereas small ampli-

ude structures close to the noise level have been detected with a

igher p -value. 

In the end, the fusion step provides 19 sequences that are sum-

arized in Table 2 , where it is ordered by decreasing confidence

ndices and increasing p -values. One can be surprised that the pro-

osed method detects 19 structures whereas the signal has been

imulated with 7 ones only. However, this automatic method is

ble to analyze a signal with no a priori knowledge providing a

ist of detected spectral structures with several attributes, among

hich the three more discriminant ones are the confidence, the

 -value and the SNR 
 . 
The 19 structures of Table 2 are plotted in this 3D-space in

ig. 14 . In this space, the red “+ ” correspond to the sequences

ith a maximum confidence index of 100% and a very low p -value

ower than 10 −6 . Looking at Table 2 , these sequences are classi-

ed as SW or NB, and their frequencies correspond to the seven

eaks of the analysed simulated signal (see Table 1 ). Even the crit-

cal peak at 0.07 Hz is detected but as a NB due to its low signal to

oise ratio. Twelve additional sequences have been detected. The

reen “o” in Fig. 14 correspond to two sequences with high confi-

ence of 80% but with high p -value in the range of 10 −6 to 10 −4 

nd a low local signal to noise ratio SNR 
 . Their class labels high-

ight a doubt between NB and NP. The “x” black in Fig. 14 repre-

ent the last ten sequences with a confidence index lower than 50%

nd then of a lower interest. Note that the chosen simulated sig-

al gathers most of signal peculiarities as a non-white noise, close

eaks, and low amplitude ones in different frequency bands. The

roposed method succeeds in detecting the 7 signal components

ith a high confidence (100%) and a very low p -value. 

This example shows the interest of the proposed multi-

stimator method which is able to spotlight the true signal spec-

ral structures and to play down the importance of other detected

eaks thanks to a confidence attribute got from the results of sev-

ral spectral estimators. For example, when using a Welch esti-

ator with Hanning or Blackman windows, estimators 2 and 3 of

ig. 13 , the peak at frequency 0.42 would be classified as a NB. The

usion strategy helps to adjust this conclusion by classifying it as

 SW with a high confidence index (see Table 2 ). It is important

o mention that the proposed method does not need to set a pri-

ri thresholds and is able to detect all peaks whatever their energy

nd whatever the color of the noise. The detection performance is

hat of the set of the chosen methods, and not of one of them.

nother example of strategy results on a different simulated signal

an be found in [8] . 
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Fig. 13. Results of detection and classification on signal described in Table 1 for the five selected spectral estimators: the true frequency values of the seven sine waves are 

spotted with black arrows. (for a better view, see colored web version). 

Table 2 

Fusion results on simulated signal described in Table 1 : display of 8 attributes of the final identity cards. 

Frequency Amplitude SNR 
 j SNR + j Rel. Bandwidth p -value Class Confidence 

˜ νmax j A j (dB) (dB) ˜ B j p 0 j C j CI j 
(22) (27) (33) (12) (31) 

0.32 9.78 4.93 32.66 1.29 4.28E–103 SW 100% 

0.11 5.17 –4.43 24.9 1.04 3.51E–44 SW 100% 

0.19 1.92 –6.34 22.78 0.89 2.48E–36 SW 100% 

0.42 0.86 –9.04 19.29 1.29 4.42E–28 SW 100% 

0.1 5.11 –8.35 20.99 1.04 7.50E–28 SW 100% 

0.41 0.84 –13.95 14.09 0.86 1.13E–19 SW 100% 

0.07 1.63 –21.42 7.92 0.86 3.98E–08 NB 100% 

0.0587 1.00 –23.29 4.75 0.86 7.91E–05 NB/NP 80% 

0.1557 0.19 –23.64 5.70 0.86 3.48E–04 NB/NP 80% 

0.1829 0.21 –24.81 4.53 1.5 8.56E–20 NB 40% 

0.1257 0.56 –20.22 7.50 1.19 5.01E–06 SW/NP 40% 

0.3863 0.45 –22.33 5.39 2.38 2.88E–05 NB/NP 40% 

0.3343 0.56 –24.06 5.27 1.19 3.32E–05 NB/NP 40% 

0.3063 0.44 –23.68 5.65 0.86 6.36E–05 NB/NP 40% 

0.3666 0.49 –21.98 6.35 1.19 1.09E–04 NB/NP 40% 

0.448 0.27 –22.69 5.64 1.19 9.99E–04 NB/NP 40% 

0.094 0.53 –21.47 6.25 0.86 1.92E–05 NB/NP 20% 

0.4159 0.23 –24.66 4.67 0.86 9.44E–05 NB/NP 20% 

0.3556 0.31 –23.64 5.70 0.86 2.13E–04 NB/NP 20% 
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Fig. 14. Graphic view of the fusion results on simulated signal described in Table 1 : 

the 19 sequences are plotted as a function of confidence index, p -value and SNR 
 : 

red “+ ” for high confidence and low p -value, green “o” for high confidence but 

higher p -value, black “x” for low confidence. 
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.2. The acoustic noise of a domestic heat pump 

In this Section the proposed method is applied on a real-world

ignal in order to help for the acoustic study of a domestic heat

ump polluting the neighborhood. Fig. 15 presents a zoom on the

esults obtained by the five selected spectral estimators on one

ecorded acoustic signal at the middle of the day. For sake of sim-

licity, the color legend which was given in Fig. 13 is directly de-

ailed for each detected peak. This particular zoom reinforces the

dea that choosing a specific spectral analysis would induce conclu-

ions that are for sure to be smoothed by considering several dif-
Fig. 15. Results of detection and classification o
erent spectral estimators. For example, the peak at 1,041 Hz is de-

ected by all the five estimators with a very low p -value but three

imes as a SW and twice as a NB. Moreover, a peak is detected

round 1,015 Hz by the three first analysis but not by the two last

nes, while another peak is detected around 1,078 Hz by the two

ast Blackman–Tukey estimators while the three other ones do not

etect it. These results have been positively validated by experts

n acoustics. This strategy has been applied to several real-world

ignals. Fusion results on a hydraulic noise of an oil station can be

sed to identify vibrations induced by this noise [7] . Once again,

s for the previous simulated signal, this example highlights the

nterest of the approach. 

.3. Towards a surveillance tool 

To go further, this spectral analysis and fusion strategy can be

elpful in maintenance for the surveillance of complex machines.

nly to illustrate this purpose, the noise of the heat pump, that

as accused by neighborhood to produce harmful noise, has been

ecording twice, one in the middle of the day, the signal analysed

n the previous Section, and a second one in the middle of the

ight. Analytical fusion results can be computed for each signal,

hich can be directly used for a tracking of the frequencies. For a

raphic view of the results, Fig. 16 displays the frequency attributes

f the detected sequences in each fusion. For sake of clarity, all de-

ected sequences are represented, whatever their class and p -value,

he color scale being linked to their amplitude attribute. This al-
n a domestic heat pump acoustic signal. 
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Fig. 16. Proposed method in a comparative objective for the monitoring of a do- 

mestic heat pump acoustic signal recorded in the middle of the day (below) and in 

the middle of the night (above). Plot of the frequency attribute of the detected se- 

quences, color scale being the amplitude attribute. (for a better view, see coloured 

web version). 
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lows to compare immediately the spectral structure of both signals

and to highlight the increase in the number of peaks of the sig-

nal recorded during the night. Moreover, these adding peaks have

also much higher power, within an harmonic structure, at frequen-

cies sensitive to human hearing, all this being the signature of the

harmful noise the neighborhood was complaining about. For fur-

ther insight of a surveillance tool, see [26] where an automatic

time-frequency tracking method is proposed. 

8. Conclusion 

In a context of longtime stationary processes, at least several

hundred of samples and more often several thousand, embedded

in non-white Gaussian noises of unknown variance and composed

of several hundred of spectral structures, this paper presents a new

data-driven approach in order to automatically detect and charac-

terize the spectral structures from spectra estimated by Fourier-

based estimators. The core idea is to apply a statistical hypothesis

testing in the frequency domain. To that end, based on a simple

generic model, an approximation of the probability density func-

tion of the estimated PSD is derived whatever the window and the

overlap and taking into account an estimation of the noise spec-

trum. Indeed, noise being non-white, noise spectrum estimation is

carried through nonlinear filters. Without a priori hypothesis on

the signal except the Gaussianity of the additive noise, a p -value

is used to give a measure of a strength of evidence of a spectral

structure against the noise-only hypothesis. Applying this test for

all local maxima of the estimated PSD allows the detection of the

number of relevant spectral structures with a level of confidence

determined by this p -value. A specific least square approach refines

the frequency and amplitude estimates of the so detected struc-

tures and provides a characterization of their spectral shape rela-

tively to the oversampled spectral window of the used PSD esti-

mator. These attributes are helpful for mapping the detected struc-

tures in an original feature space, defined by a local signal to noise

ratio and the quadratic error with the spectral window. A classifi-

cation step enables then the labelling of each structure according

to its signal source (sine wave, narrow band or noise). In order to

avoid the choice of a spectral estimator and of an ineluctable com-

promise, this detection and classification approach is applied on a

set of estimators taking advantages of all of their specific proper-

ties and allowing the definition of a confidence index. A last fu-

sion step outputs a complete attribute vector referred to as iden-

tity card for each detected spectral structure and ready to use in a

decision-making process. 

A key idea of this data-driven approach is that all parameters

are automatically set up according to the input data and the cho-

sen spectral estimators without any other a priori knowledge. The

output as identity cards can be directly used for physical interpre-

tation or as digital input of a diagnostic system. This approach is

free from spectrum display and does not need a priori knowledge

upon frequency bands as the usual methods in vibration analysis

for example. This paper shows the analysis of acoustic measures of
 domestic heat pump and the output directly yields a complete

igital spectral description of spectra. Users have only to conclude

bout the links of the detected structures to the physical phenom-

na helped with a comprehensive list of attributes. 

Based on this strategy, additional works have been developed in

rder to group harmonic families and sidebands [27] , to associate

etected structures to system kinematic when available [28] and

o develop a surveillance tool [26] , that has been succesfully ap-

lied for an early detection and an exact localisation of a mechan-

cal failure in an onshore wind turbine [25] . 

ppendix A. Normalized variance for Welch and Blackman 

stimators 

Given that spectral windows and variance for Fourier-based es-

imators are often mentioned in this paper, this appendix recalls

he equations in the general case for the two main estimators,

elch and Blackman–Tuckey. The spectral window denoted W ( ν)

s defined as in (9) . The time effective window, denoted w [ m ], is

uch that DFT (w [ m ]) = W (ν) , where DFT denotes discrete Fourier

ransform. 

For a Welch estimator [29] , the signal x [ k ] is split up into N seg

egments of sample size K Welch ≤ K , overlapping by D samples with

 < K , and weighted by any window. In this case, the normalized

ariance of ˆ γx ( ν) , denoted varn Welch , as a function of the time ef-

ective window, denoted g Welch [ m ], is 

arn Welch = 

1 

N seg 

N seg −1 ∑ 

n =1 −N seg 

(
1 − | n | 

N seg 

)
g 2 

Welch 
[ nD ] 

g 2 
Welch 

[0] 
. 

pecial cases: 

• if N seg = 1 , then varn Welch = 1 , 
• for N seg without overlapping, D = 0 and varn Welch = 1 /N seg . 

For a Blackman–Tukey estimator [30] , the autocorrelation func-

ion of x [ k ] is weighted by any window over 2 K BT − 1 samples,

ith 2 K BT − 1 ≤ K. In this case, the normalized variance of ˆ γx ( ν) ,

enoted varn BT , as a function of the time effective window, de-

oted g BT [ m ], is 

arn BT = 

1 

K 

K BT −1 ∑ 

n = −K BT +1 

K 

K − | n | g 
2 
BT [ n ] . 

ppendix B. Local signal to noise ratio as a function of the 

tatistical test 

It is of interest to express the statistical test T ( ν) defined in

10) according to the local signal to noise ratio SNR 
 defined in

22) . Considering that the statistical test is applied only to frequen-

ies at the local maxima of ̂ γx ( ν) , 

or ν ∈ M = 

{ 

max 
ν

̂ γx ( ν) 

} 

, ̂ γx ( ν) = γmax i = 

A 

2 
i 

4 

1 

B e T s 
, 

ith T s the sampling period and B e the noise equivalent bandwidth

efined in (24) . The noise estimation is assumed to be unbiased

see Section 3.1 ), therefore 

or ν ∈ M = 

{ 

max 
ν

̂ γx ( ν) 

} 

, ˜ γn ( ν) = σ 2 
i . 

ence, 

 ( ν) = 

̂ γx ( ν) ˜ γn ( ν) 
= 

A 

2 
i 

4 σ 2 
i 

1 

B e T s 
. 

sing (22) and writing the last equality in dB scale lead to 

NR 
 = 10 log [ B e T s T ( ν) ] , 

here the product B e T s is a well-known quantity to characterize a

ourier method. 
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