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A New Exact Low-Complexity MMSE Equalizer for
Continuous Phase Modulation
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Abstract— This letter introduces a new low-complexity
frequency-domain equalizer for continuous phase modulations
(CPM). The derivation of a fractionally spaced representation
for circular block-based CPM leads, without any approximation,
to a simple yet efficient frequency-domain equalization. The pro-
posed equalizer is compared to the state-of-the-art approaches.
Simulation results show the equivalence in terms of performance
with a lower or similar complexity.

Index Terms— Continuous phase modulation, frequency-
domain equalizer, frequency-selective channel.

I. INTRODUCTION

CONTINUOUS Phase Modulation (CPM) signals are
commonly known for their good spectral efficiency

and their constant complex envelop, which is robust to the
non-linearities introduced by embedded amplifiers. They are
mainly considered for applications such as deep-space, aero-
nautical or tactical communications and for IoT.

Compared to linear modulations, CPM transmission over
frequency-selective channels is a challenging task. Optimal
joint channel equalization and detection using a Maximum
A Posteriori (MAP) trellis based detector is too prohibitive
as its complexity grows exponentially with both the CPM
and the channel memory. Contrary to the single carrier (SC)
case using linear modulation, as the received signal is not a
linear function of the transmitted data symbols, sub-optimal
linear equalization and detection using the minimum mean
square error (MMSE) criterion should be performed into two
steps: first linear equalization is usually performed over the
over-sampled complex signal envelop, then the output is fed to
a non linear detector for CPM for Gaussian channels. MMSE
based approaches mainly consider the generalization of SC
frequency-domain equalization (FDE) for linear modulations
to the case of CPMs (using cyclic prefix or unique word
block transmissions). SC-FDE using linear modulations leads
to a circular linear Gaussian model, linear with respect to
the transmitted data symbols whose Time-Domain (TD) and
Frequency-Domain (FD) auto-correlation matrices are usually
both diagonal, leading to, with some abuse of terminology,
the so-called ‘one-tap’ FD equalizer. FDE for CPM signals
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also ends up with a circular linear Gaussian model, but with
respect to a vector of samples of the over-sampled complex
signal, which is correlated by nature. Therefore, without any
further hypothesis, both TD and FD auto-correlation matri-
ces of those samples are not diagonal, and having a ‘one-
tap’ FD equalizer highly depends on the structure of the
model used. The use of SC-FDE blindly drawn from the
linear case is a rough approximation leading to some heavy
performance degradations. In this letter, it is shown that by
carefully considering the model and the representation of the
received over-sampled CPM signal, a ‘one-tap’ FD equalizer
is achievable, by using the cyclic statistical properties of the
signal in case of circular block-based transmission and a
Fractionally-Spaced (FS) representation of the signal.

Concerning CPMs, Pancaldi and Vitetta [1] and
Thillo et al. [2] propose minimum mean square
error frequency-domain equalizers (MMSE-FDE).
Pancaldi and Vitetta [1] use the Laurent Decomposition
(LD) [3] of the binary CPM signals to describe the signal
as a sum of P linear Pulse Amplitude Modulations (PAM)
with complex pseudo-symbols and then equalizes those
pseudo-symbols and make use of a FS representation to
derive the equalizer’s expression. Without using the LD,
Thillo et al. [2] derive an equalizer based on an over-sampled
version of the continuous non-linear CPM using a polyphase
representation of the received signal and then outputs an
equalized over-sampled version to feed a classical non linear
receiver. It can be formally proved that those equalizers
are equivalent up to post-treatment and thus have the same
performance [4]. To further reduce the complexity of this
scheme, Thillo et al. [2] also describe a low-complexity
approximated MMSE-FDE. Tan and Stuber [5] propose a
symbol spaced FD equalizer based on the LD and another
one based on an orthogonal representation of the signal.
Unfortunately, it can be shown that those approaches cannot
cope with all types of multi-path channels [4] as they
assume the delays of the paths to be multiples of the
symbol duration. Those approaches have been studied for
aeronautical telemetry in [6]. Brown and Vigneron [7] also
use an orthogonal representation of the signal to perform a
FD equalization but, unlike the Gram-Schmidt procedure of
Tan and Stuber [5], it proposes to use Legendre Polynomials
to generate the orthogonal basis functions. A completely
different approach has been proposed in [8], using the
tilted-phase representation of CPM signals and working
on the over-sampled signal. Approximated low-complexity
filter-based equalizers based on the MMSE criterion are
proposed, in both the time and frequency domains, and the
turbo principle based on soft linear filtering as proposed
by Tüchler and Singer [9] is applied. Xu et al. [10] use a
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FS representation of the signal which is strictly similar to
the one proposed in [8]. However both of them do not take
into account the auto-correlation of CPM signals, resulting
in a loss of performance. Darsena et al. [11] develop a
Zero-Forcing and a MMSE linear time-varying equalizer in
the Time-Domain for CPM over doubly-selective channels
based on the Basis Expansion Model (BEM) and a widely
linear counterpart of those equalizers has been introduced
in [12]. However, this approach has a high computational
complexity as it requires full-matrix inversion, even if only
time-invariant channels are considered in case of large channel
spread whereas our approach has a constant computational
complexity with the channel spread.

In this letter, we derive an exact low-complexity
MMSE-FDE based on the FS representation of the CPM wave-
forms, only considering time-invariant frequency-selective
channels. As in [2], we perform a linear MMSE-FDE over
the over-sampled complex envelope of the CPM signals, but
by using the FS representation, we can fully benefit from
the properties of circular block-based CPM and reduce the
complexity, without making any kind of approximation in
the equalizer derivation. While performing the same as the
equalizer proposed by Pancaldi and Vitetta [1] and the “full
complexity” polyphase domain equalizer of Thillo et al. [2],
we will show that the proposed approach has a significant
lower complexity, of the same order as the approximated low
complexity version of Thillo et al. [2]. Moreover, we will also
prove that the MMSE-FDE from [8] is an approximation of
the proposed FS equalizer.

This letter is organized as follows. Section II presents the FS
representation for circular block-based CPM signals transmit-
ted over frequency-selective channels. In section III, the cor-
responding FS block MMSE-FDE is derived. In section IV,
we compare the computational complexity of different equaliz-
ers of the same kind. Simulation results are given in section V,
while conclusions are drawn in section VI.

II. BLOCK-BASED CPM REPRESENTATION

Let α = [α0, · · · , αN−1] ∈ {±1,±3, . . . ,±M − 1}N be a
block of N independent and identically distributed (iid) sym-
bols drawn from a M -ary alphabet. The equivalent baseband
complex envelope s(t) of the transmitted CPM signal is:

s(t) =
√

2Es

Ts
exp

(
j2πh

N−1∑
i=0

αiq(t − iTs)
)

(1)

where Es is the symbol energy, Ts is the symbol dura-
tion, h is the modulation index, Lcpm is the CPM memory,
q(t) =

∫ t

0 g(ρ)dρ if t ≤ LcpmTs and q(t) = 1/2 if t > LcpmTs

and g(t) is the pulse response.
To perform efficient frequency domain equalization, we first

need to circularize the channel, as for linear modulation,
enabling the efficient use of a Fast Fourier Transform (FFT)
at the receiver. To this end, we can use several methods such
as the introduction of a Cyclic Prefix (CP) or a known Unique
Word (UW) (also called Training Sequence). We assume the
use of a UW despite its loss of spectral efficiency compared
to a CP as it can be used to increase the performance in
case of Decision Feedback Equalizer or to perform some
useful estimations, such as the carrier phase and frequency or

the channel parameters. However, the proposed method still
applies to CP-based equalization schemes.

After appending some termination symbols and
the UW [13], the CPM signal is transmitted over
a frequency-selective channel with impulse response
hc(t) =

∑L−1
l=0 alδ(t− ρl) where L is the number of paths, ρl

and al are the delay and the complex attenuation of the lth path.
As in [13], we assume that the transmitted CPM is roughly

bandlimited to B = k
2Ts

, k ≥ 2. Then it can be sampled
uniformly at a rate of Te = Ts/k, without a significant loss of
information. At the receiver, we assume ideal low-pass filtering
using the front-end filter Ψ(t). Denoting h(t) = Ψ(t) ∗ hc(t),
where ∗ is the convolution operator, the received signal can
be written as [13]:

r(t) = h(t) ∗ s(t) + w(t) =
∑
m

s(m
Ts

k
)h

(
t − m

Ts

k

)
+ w(t)

(2)

w(t) is a complex baseband additive white Gaussian noise
with power spectral density 2 N0.

In the following, in order to derive the analytic expression
of the auto-correlation of the over-sampled received signal,
we will consider the LD presented in [3] for binary CPM
signals with non-integer modulation indices, without loss of
generality and for ease of presentation. The LD allows us to
describe the CPM signal as a sum of P pulses modulated
by complex pseudo-symbols. Based on this decomposition,
exact expression of the time-averaged auto-correlation of the
transmitted signal can be easily derived [3], [14]. The results
presented in this letter can be extended as the LD has been
expanded in [15] for M -ary CPM signals or for integer
modulation indices in [16].

By simply reordering the samples, compared to the
representation given in [2], we can derive a classical
fractionally-spaced (FS) representation that does not make
use of the multi-channels representation (as for the polyphase
representation developed in [2]). In this FS representation,
by denoting Te = Ts/k, the received signal can be written as
follows r = [r(0), r(Te), r(2Te), . . . , r((kN −1)Te)]T where,
from equation (2), we have

r[l] � r[lTe] =
∑
m

s(m
Ts

k
)h

(
(l − m)

Ts

k

)
+ w(l

Ts

k
) (3)

=
∑
m

s[m]h[l − m] + w[l] (4)

This can be rewritten as r = hs + w where h is a circulant
matrix with first column h = [h[0], h[1], . . . , h[Lc − 1],
0, . . . , 0]T and Lc is the over-sampled channel impulse length.
Note that s is the vector of collected samples from the
over-sampled complex envelop of the transmitted CPM signal
(which are correlated by nature), which is not to be confused
with the transmitted data symbols vector α as in SC-FDE
for linear modulations. Finally, this can be stated in the
frequency-domain as

R = F kNr = HS + W (5)

where F kN is the Fourier matrix of size kN × kN ,
H = F kNhF H

kN , S = F kNs and W = F kNw. By DFT
properties, H is a diagonal matrix with H = diag(F kNh).
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TABLE I

COMPUTATIONAL COMPLEXITY COMPARISON BETWEEN DIFFERENT EQUALIZERS FOR CPM WITH AN OVERSAMPLING FACTOR k = 2

III. MMSE EQUALIZATION FOR FS REPRESENTATION

The optimal equalization approach consists in performing
jointly the channel equalization and the detection of the
transmitted sequence. However, due to the non-linearity of
CPMs, the complexity of this approach is prohibitive. An usual
choice is to perform separately the channel equalization and
the CPM detection. In this context, we derive in the following
a linear FD equalizer based on the MMSE criterion. The output
of the equalizer is then used for classical MAP detection (see
for example [17]) as done in [2]. Let JMMSE be the matrix of
size kN × kN minimizing the following Mean Square Error
(MSE) criterion MSE = E

{
(S−JMMSER)H(S−JMMSER)

}
.

A straightforward derivation [18] shows that the matrix
JMMSE of size kN × kN minimizing the MSE is given by:

JMMSE = RSSH
HK−1 (6)

with K = HRSSH
H +N0IkN and RSS is the time-averaged

auto-correlation matrix of S. We note that the matrix RSS

can be precomputed using the LD [3] for binary CPM with
non-integer modulation indices as shown in [2] and thus stored
at the receiver side.

This equalizer is equivalent in its derivation to the one
using the polyphase representation presented in [2]. The only
difference is within the use of the FS representation: it leads
to a different ordering of the matrices elements implied in
equation (6), exhibiting nice properties. Indeed, we will show
in the following that RSS, as H , is a diagonal matrix for the
FS representation (contrary to the polyphase representation),
which enables a lower complexity for the equalizer. First,
as for linear modulation, the use of a UW or a CP introduces
an equivalence between the linear convolution and a circular
convolution in Eq.(2). Thus, the received sequence corresponds
to the circular convolution of the circularly extended
transmitted sequence (composed by the data block and
the xUW) and the channel impulse response. Therefore, over
a finite-time observation window corresponding to this block,
this circular convolution can be seen as a linear convolution
of h and a periodic version of s. Hence, by considering
this periodic version of s while deriving the statistical
properties, the time-averaged auto-correlation function of s is
periodic of period kN over this block. As s(t) is a complex
signal, the auto-correlation is Hermitian, i.e. r∗ss(l) = rss(−l).
We now obtain: r∗ss(l) = rss(−l) = rss(kN − l). Then, we can
show that the time-domain time-averaged auto-correlation
matrix is circulant:

rss

=

⎡
⎢⎢⎣

rss(0) r∗ss(1) r∗ss(2) . . . r∗ss(kN−1)
rss(1) rss(0) r∗ss(1) . . . r∗ss(kN−2)

...
...

...
. . .

...
rss(kN−1) rss(kN−2) rss(kN−3) . . . rss(0)

⎤
⎥⎥⎦

(7)

=

⎡
⎢⎢⎢⎣

rss(0) rss(kN−1) rss(kN−2) . . . rss(1)
rss(1) rss(0) rss(kN−1) . . . rss(2)

...
...

...
. . .

...
rss(kN−1) rss(kN−2) rss(kN−3) . . . rss(0)

⎤
⎥⎥⎥⎦ (8)

We can see that rss is finally circulant with first column rss

being [rss(0), rss(1), . . . , rss(kN − 1)]T . The auto-correlation
matrix in the frequency domain RSS is thus diagonal by
DFT property. We point out that this diagonalization is not
possible in case of [2] as they do not use a FS representation
of the received signal resulting in a different auto-correlation
matrix in the time-domain. Moreover the diagonal terms are
all real. Hence, the equalizer JMMSE is simply a diagonal
matrix with generic term given by J [l] = RSS[l]H∗[l](RSS[l]
|H [l]|2 + N0)−1.

If we impose the coarse approximation RSS = IkN

(i.e. neglecting the signal correlation and assuming the
signal energy normalized to 1), the equalizer becomes
Japprox[l] = H∗[l](|H [l]|2 + N0)−1 which corresponds to the
highly suboptimal equalizer proposed in [8] with k = 2.

IV. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we analyze the computational complexity of
the proposed equalizer. The complexity will be expressed in
number of floating-point operations (flops) per block as in [2],
where a flop corresponds to one real multiplication plus one
real addition [1].

We have shown that Rss and K are diagonal matrices.
Hence, the computation of K−1 requires 4kN real multipli-
cations and 2kN real additions, plus kN real divisions for
the inversion. The product RssH

HK−1 is done with 3kN
real multiplications. Thus, the computation of JMMSE requires
2kN real additions, 7kN real multiplications and kN real
divisions. The equalization is then performed with kN com-
plex multiplications as we only deal with a diagonal matrix
of size kN . So, we can conclude that the complexity of our
receiver is dominated by the DFT and IDFTs operations and
is in O

(
kN log(kN) + PN log(N)

)
. This is the same for the

low complexity MMSE-FDE proposed in [8] (only removing
2kN real multiplications), and comparing our equalizer with
equalizers leading to the same performance (as it will be
shown in the following section), TABLE I highlights that the
computational complexity of our receiver is lower.

V. SIMULATIONS RESULTS

We first compare, by the means of simulation, the pro-
posed equalizer (called “FS-MMSE-FDE”) with the following
other exact MMSE-FDE equalizers: (a) the equalizer proposed
in [2]. This equalizer uses the polyphase representation and
produces an estimated signal by only considering the channel
contribution. It will be called “PP-MMSE-FDE”; (b) the
equalizer proposed in [1]. This equalizer both considers the



CHAYOT et al.: NEW EXACT LOW-COMPLEXITY MMSE EQUALIZER FOR CPM 2221

Fig. 1. Achievable coding rate over chan 1.

Fig. 2. BER over the aeronautical channel by satellite.

contribution of the channel and the LD to produce an estimate
of the LD pseudo-symbols using the FS representation. It will
be called “LD-FS-MMSE-FDE”; (c) a modified version of the
equalizer proposed in [1], using a polyphase representation
instead of a FS. It will be called “LD-PP-MMSE-FDE”.

For the simulations, we consider two binary CPM schemes
with a raised-cosine pulse shape (noted RC), a memory of
Lcpm = 3 and a modulation index h ∈ { 1

4 , 1
2}. The transmitted

signal is composed of 8 blocks of 512 symbols, where each
block is composed of data symbols, termination symbols and a
Unique Word of size 16. The channel is the channel proposed
in [5] as chan 1, but with modified delays: multiples of Ts/2
instead of Ts and the same Power Delay Profile.

Fig. 1 plots the obtained achievable rates for the 4 compared
MMSE-FDE. The achievable coding rate is estimated by
computing the area under the Extrinsic Information Transfer
Chart (EXIT chart) of the detector [19]. The results show
that the proposed equalizer has the same performance as
the equalizers [2] and [1] (actually both having the same
performance, as it has been shown in [4], up to post-treatment
which is applied here).

Fig. 2 plots obtained bit error rates for the binary RC CPM
scheme with h = 1/2, considering now a coded transmission
and an iterative concatenated scheme between the CPM MAP
detector and the channel MAP decoder. Used channel for
simulations is an aeronautical channel, modeled as a two-paths
channel with a second path delayed by 3.7Ts compared to the
first one. A convolutional code with polynomial generators
(5, 7)8 has been added and 20 iterations have been done in
the iterative procedure between the CPM MAP detector and

the channel MAP decoder. For the same complexity, the fact
that we do not approximate the auto-correlation matrix, as it is
done in [8], allows our equalizer to increase the performance
of 2dB at a BER of 10−3 and to achieve the same performance
of other state-of-the-art approaches.

VI. CONCLUSION

A new exact MMSE-FDE for CPM waveforms is presented,
having a lower complexity for the same performance compared
to the MMSE-FDE proposed in the literature. Indeed, based on
a FS representation for the circular block-based CPM, the pro-
posed frequency-domain equalizer only needs the inversion of
diagonal matrices as for linear modulations.
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