Hand-Over Strategies for LEO/MEO Satellite Systems

E. Papapetrou, F.-N. Pavlidou

Aristotle University of Thessaloniki
Department of Electrical & Computer Engineering

2nd MCM

Madrid
March 1st 2002
Hand-Over Strategies For LEO/MEO Satellite Systems

Outline

• Handover Management Issues
• Proposed solutions so far
• The DDBHP scheme
• Simulation Results
• Conclusions
• Further work
Hand-Over Strategies For LEO/MEO Satellite Systems

Handover Management Issues

- Eliminate forced termination of calls
- Support an efficient network operation

Proposed Solutions

- Guard Channels
- Queuing of Handover requests (QH)
- Guaranteed Handover Procedure (GH)
Dynamic Doppler Based Handover Prioritization Scheme (DDBHP)

- The serving satellite is able to determine and monitor the MS position. This procedure:
 - is based on the measurement of Doppler shift (appropriate devices are included in all receivers)
 - involves no additional signaling

- Based on the Doppler shift and on mathematical calculations the serving satellite is able to derive:
 - the time remaining until the terminal exits the serving cell
 - the exact location at which the terminal will exit the cell (i.e. the destination cell)
Hand-Over Strategies For LEO/MEO Satellite Systems

DDBHP
Understanding Geometry
Dynamic Doppler Based Handover Prioritization Scheme (DDBHP)

- DDBHP is based on a time threshold (t_{TH}) which defines an elevation angle under which the handover procedure is initiated.

- At call set-up:
 - if the time remaining until the terminal exits the serving cell is bigger than t_{TH} then the call is accepted if a free channel exists.
 - otherwise a channel is needed in both the current and the subsequent cell in order to accept the new call.

- When the terminal reaches the point corresponding to t_{TH}:
 - if a channel exists in the destination cell it is reserved.
 - otherwise the request is queued.
Simulation Scenario

- Street of coverage
 - square cells
 - no cell overlap
 - earth rotation was not taken into consideration

- Three constellations were simulated:
 - Iridium-like (cell size: 500 Km, 10 channels/cell, 100 users/cell)
 - Globalstar-like (cell size: 1000 Km, 20 channels/cell, 100 users/cell)
 - Typical MEO (cell size: 2000 Km, 40 channels/cell, 100 users/cell)

- Poisson generated traffic
 - mean call duration of 180 secs
 - total load : 20%-80% of the cell capacity
Hand-Over Strategies For LEO/MEO Satellite Systems

Simulation Results

Iridium-like system
Simulation Results

Globalstar-like system
Simulation Results

Typical MEO system

![Graphs showing simulation results for typical MEO system]
Simulation Results

Iridium-like system

![Graph showing simulation results for different hand-over strategies compared to the Iridium-like system, with labels for QH, GH, and DDBHP.]
Simulation Results

Globalstar-like system
Simulation Results

Typical MEO system

![Graph showing simulation results for Typical MEO system with labels QH, GH, and DDBHP against Load (Erlang).]
Conclusions

- DDBHP supports guaranteed handover at a lower network cost (i.e. zero P_f is achieved at lower values of P_b)
- Inherently DDBHP is able to cope with cases that the destination cell is not in the opposite direction of the satellite movement (more realistic approach of satellite systems)
- DDBHP supports both beam and satellite handover

Further work

- Identification of the parameters affecting the protocol performance
- Analytical solution for the derivation of the best threshold
- Performance evaluation of DDBHP when cell overlap and earth rotation are considered