Performances de détection et de localisation des terminaux SAR dans le contexte de transition MEOSAR

Victor Bissoli Nicolau

Jean-Yves Tourneret - Martial Coulon - INP-ENSEEIHT/IRIT Yoan Grégoire - Michel Sarthou - Lionel Ries - CNES Thibaud Calmettes - Michel Monnerat - TAS

27 janvier 2014

Introduction

- Recherche et sauvetage par satellite
- Bilan de liaison
- Simulateur Cospas-Sarsat
- Objectifs de la thèse

2 Performances optimales du système

- Modèle de signal Cospas-Sarsat
- Performances d'estimation des paramètres
- Performances de localisation

3 Études complémentaires

- Utilisation d'information a priori
- Ajout de bruit de phase
- Localisation avec signaux multiples

4 Application aux signaux à spectre étalé

Conclusions et perspectives

Introduction

Performances optimales du système Études complémentaires Application aux signaux à spectre étalé Recherche et sauvetage par satellite Bilan de liaison Simulateur Cospas-Sarsat Objectifs de la thèse

Recherche et sauvetage par satellite

FIGURE 1: Balises de détresse et fonctionnement du système Cospas-Sarsat.

Recherche et sauvetage par satellite Bilan de liaison Simulateur Cospas-Sarsat Objectifs de la thèse

Recherche et sauvetage par satellite

- 1985 Système LEOSAR : satellites en orbite basse (à 850 km d'altitude)
 - Utilise l'effet Doppler pour la localisation
 - Couverture non-continue de la Terre
- 1998 Système GEOSAR : satellites géostationnaires (à 35800 km d'altitude)
 - Réduit le retard du système LEOSAR
 - Problèmes d'obstructions et de signaux plus faibles

FIGURE 2: Orbites des systèmes LEOSAR et GEOSAR.

Introduction

Performances optimales du système Études complémentaires Application aux signaux à spectre étalé Recherche et sauvetage par satellite

Bilan de liaison Simulateur Cospas-Sarsat Objectifs de la thèse

Recherche et sauvetage par satellite

FIGURE 3: 644 événements de recherche et sauvetage en 2011 avec 2313 personnes sauvées.

Dans 35% des cas, Cospas-Sarsat a fourni la seule alerte.

TéSA

Recherche et sauvetage par satellite Bilan de liaison Simulateur Cospas-Sarsat Objectifs de la thèse

Recherche et sauvetage par satellite

- Système MEOSAR : satellites de navigation en orbite moyenne (à 23600 km)
 - Satellites américains (GPS), russes (GLONASS) et européens (Galileo)
 - Disponibilité élevée des satellites et robustesse face aux obstacles

FIGURE 4: Zones de couverture des satellites LEOSAR et MEOSAR.

Introduction

Performances optimales du système Études complémentaires Application aux signaux à spectre étalé Recherche et sauvetage par satellite Bilan de liaison Simulateur Cospas-Sarsat Objectifs de la thèse

Bilan de liaison

• Étude de la qualité des liaisons montante et descendante

FIGURE 5: Bilan de liaison pour le système MEOSAR.

Introduction

Performances optimales du système Études complémentaires Application aux signaux à spectre étalé Recherche et sauvetage par satellite Bilan de liaison Simulateur Cospas-Sarsat Objectifs de la thèse

Bilan de liaison

FIGURE 6: Rapports C/N_0 et C/I_0 du bilan de liaison pour le système MEOSAR.

Recherche et sauvetage par satellite Bilan de liaison Simulateur Cospas-Sarsat Objectifs de la thèse

Simulateur Cospas-Sarsat

• Étude des performances de démodulation du message de détresse

FIGURE 7: Organisation des traitements du simulateur Cospas-Sarsat.

- Deux paramètres importants ont été identifiés :
 - Temps de montée du signal (T_r)
 - Rythme symbole $(R_s = 1/T)$

Recherche et sauvetage par satellite Bilan de liaison Simulateur Cospas-Sarsat Objectifs de la thèse

Objectifs de la thèse

- Étudier la localisation du système MEOSAR
- Étudier l'influence de T_r et de T sur les mesures de TOA

Recherche et sauvetage par satellite Bilan de liaison Simulateur Cospas-Sarsat Objectifs de la thèse

Objectifs de la thèse

- Étudier la localisation du système MEOSAR
- Étudier l'influence de T_r et de T sur les mesures de TOA
- Étudier l'influence du bruit de phase sur les mesures de FOA

Modèle de signal Cospas-Sarsat Performances d'estimation des paramètres Performances de localisation

Introduction

- Recherche et sauvetage par satellite
- Bilan de liaison
- Simulateur Cospas-Sarsat
- Objectifs de la thèse

2 Performances optimales du système

- Modèle de signal Cospas-Sarsat
- Performances d'estimation des paramètres
- Performances de localisation

3 Études complémentaires

- Utilisation d'information a priori
- Ajout de bruit de phase
- Localisation avec signaux multiples

4 Application aux signaux à spectre étalé

Conclusions et perspectives

Modèle de signal Cospas-Sarsat Performances d'estimation des paramètres Performances de localisation

Modèle de signal Cospas-Sarsat

Modulation de phase avec mise en forme de Manchester

r(t) = s(t) + w(t)

Modèle de signal Cospas-Sarsat Performances d'estimation des paramètres Performances de localisation

Modèle de signal Cospas-Sarsat

Modélisation du temps de montée avec la fonction d'erreur

$$f_{\alpha}(t) = \operatorname{erf}(\alpha t) = \frac{2}{\sqrt{\pi}} \int_{0}^{\alpha t} e^{-x^{2}} dx$$

FIGURE 10: Fonction sigmoïde $f_{\alpha}(t)$ pour différents temps de montée T_r .

Modèle de signal Cospas-Sarsat Performances d'estimation des paramètres Performances de localisation

Modèle de signal Cospas-Sarsat

Modélisation du temps de montée avec la fonction d'erreur

FIGURE 11: Chaîne de calcul pour les bornes de performance.

Modèle de signal Cospas-Sarsat Performances d'estimation des paramètres Performances de localisation

Performances d'estimation des paramètres

Modèle de signal Cospas-Sarsat Performances d'estimation des paramètres Performances de localisation

Performances d'estimation des paramètres

• BCRM pour l'estimation conjointe de $\boldsymbol{\lambda} = (T, \tau, \nu)^T$

$$\begin{array}{ll} \text{Dur\'e du symbole}: & \text{BCRM}_{\text{c}}(T) = 4\sqrt{\frac{\pi}{2}} \frac{1}{\alpha\beta^2 \left(\frac{C}{N_0}\right) N^3} \\ \\ \text{TOA}: & \text{BCRM}_{\text{c}}(\tau) = \frac{4}{3}\sqrt{\frac{\pi}{2}} \frac{1}{\alpha\beta^2 \left(\frac{C}{N_0}\right) N} \\ \\ \text{FOA}: & \text{BCRM}_{\text{c}}(\nu) = \frac{1}{\pi^2 \frac{T_0^3}{3} \frac{C}{N_0}} \end{array}$$

Modèle de signal Cospas-Sarsat Performances d'estimation des paramètres Performances de localisation

Performances d'estimation des paramètres

Estimation de ν : méthode de transformée de Fourier [RB74]

[RB74] D. Rife and R. R. Boorstyn. Single tone parameter estimation from discrete-time observations. *IEEE Trans. Inf. Theory*, 20(5) :591-598, Sept. 1974.

Modèle de signal Cospas-Sarsat Performances d'estimation des paramètres Performances de localisation

Performances d'estimation des paramètres

• Estimation de ν

Modèle de signal Cospas-Sarsat Performances d'estimation des paramètres Performances de localisation

Performances d'estimation des paramètres

• Estimation de T et τ : méthode de rééchantillonnage adaptée de [HCL03]

FIGURE 14: Filtrage adapté et rééchantillonnage de $\phi(t)$ pour $\mathbf{b} = (1, 1, -1)$.

[HCL03] S. Houcke, A. Chevreuil, P. Loubaton. Blind equalization - Case of an Unknown Symbol Period. *IEEE Trans. Signal Process.*, 51(3) :781-793, March 2003.

Modèle de signal Cospas-Sarsat Performances d'estimation des paramètres Performances de localisation

Performances d'estimation des paramètres

• Estimation de T et τ

Modèle de signal Cospas-Sarsat Performances d'estimation des paramètres Performances de localisation

Performances de localisation

- Estimation de position $\mathbf{p} = (x, y, z)^T$ à partir de mesures de TOA et de FOA
 - En considérant la balise statique et la voie descendante connue

$$au_i = au_0 + \frac{\rho_i}{c} + \epsilon_i, \qquad
u_i = \delta_f + f_0 \frac{\nu_i}{c} + \epsilon_{\nu_i}, \qquad i = 1, ..., M$$

• La BCRM de la position est obtenue par une transformation de paramètres

$$BCRM(p_i) = \left[(\mathbf{G}^T \mathbf{C}^{-1} \mathbf{G})^{-1} \right]_{ii}, \quad i = 1, \dots, 3$$

- $\bullet~{\bf C}$: précision des mesures de TOA et FOA
- G : géométrie de la constellation

Modèle de signal Cospas-Sarsat Performances d'estimation des paramètres Performances de localisation

Performances de localisation

• Indicateurs de la géométrie des satellites :

- GDOP : dispersion des satellites
- $GDOP_f$: dispersion des vecteurs vitesses des satellites

FIGURE 16: Géométrie favorable.

FIGURE 17: Géométrie défavorable.

- Estimation de la position : algorithme itératif
 - Position initiale : moyenne des vecteurs position des satellites

Modèle de signal Cospas-Sarsat Performances d'estimation des paramètres Performances de localisation

Performances de localisation

FIGURE 18: Estimation de la position de la balise pour des géométries favorables.

Modèle de signal Cospas-Sarsat Performances d'estimation des paramètres Performances de localisation

Performances de localisation

FIGURE 19: Estimation de la position de la balise pour des géométries défavorables.

Utilisation d'information a priori Ajout de bruit de phase Localisation avec signaux multiples

Introduction

- Recherche et sauvetage par satellite
- Bilan de liaison
- Simulateur Cospas-Sarsat
- Objectifs de la thèse

2 Performances optimales du système

- Modèle de signal Cospas-Sarsat
- Performances d'estimation des paramètres
- Performances de localisation

3 Études complémentaires

- Utilisation d'information a priori
- Ajout de bruit de phase
- Localisation avec signaux multiples

4 Application aux signaux à spectre étalé

Conclusions et perspectives

Utilisation d'information a priori Ajout de bruit de phase Localisation avec signaux multiples

Utilisation d'information a priori

• Exploiter les tolérances sur le rythme symbole et le temps de montée

- $R_s = 400 \pm 4$ symboles/s
- $T_r = 150 \pm 100 \ \mu \text{s}$
- Estimation Bayésienne
 - Borne de Cramér-Rao Bayésienne modifiée

$$\mathrm{BCRBM} = \frac{1}{\mathrm{BCRM}^{-1} + \mathbf{I}_{\mathrm{P}}(\boldsymbol{\lambda})}$$

• Contribution de l'information a priori

$$[\mathbf{I}_{\mathrm{P}}(\boldsymbol{\lambda})]_{ij} = \mathbb{E}_{\boldsymbol{\lambda}}\left[\frac{\partial \ln p(\boldsymbol{\lambda})}{\partial \lambda_i} \frac{\partial \ln p(\boldsymbol{\lambda})}{\partial \lambda_j}\right]$$

Utilisation d'information a priori Ajout de bruit de phase Localisation avec signaux multiples

Utilisation d'information a priori

• Utilisation d'information a priori sur la période symbole : $p(T) \sim \mathcal{N}(\mu_T, \sigma_T^2)$

- μ_T : valeur nominale de T
- σ_T^2 : précision avec laquelle on connaît T

$$\mathrm{BCRBM}_{\mathrm{c}}(\tau) = \mathrm{BCRM}(\tau) \frac{3\alpha\beta^2\sqrt{\frac{2}{\pi}} \left(\frac{C}{N_0}\right)\frac{N^3}{3} + \frac{1}{\sigma_T^2}}{3\alpha\beta^2\sqrt{\frac{2}{\pi}} \left(\frac{C}{N_0}\right)\frac{N^3}{12} + \frac{1}{\sigma_T^2}}$$

- Information très précise : $\lim_{\sigma_{\pi}^2 \to 0} BCRBM_c(\tau) = BCRM(\tau)$
- Information n'est pas utile : $\lim_{\sigma_{\tau}^2 \to \infty} \mathrm{BCRBM}_c(\tau) = \mathrm{BCRM}_c(\tau)$

$$\operatorname{BCRM}_{c}(\tau) = 4 \operatorname{BCRM}(\tau)$$

Utilisation d'information a priori Ajout de bruit de phase Localisation avec signaux multiples

Utilisation d'information a priori

• Utilisation d'information a priori sur la période symbole

Utilisation d'information a priori Ajout de bruit de phase Localisation avec signaux multiples

Utilisation d'information a priori

• Simulations - Estimation de (T, τ) avec une méthode de corrélation classique

Utilisation d'information a priori Ajout de bruit de phase Localisation avec signaux multiples

Utilisation d'information a priori

• Utilisation d'information a priori sur le temps de montée (T_r)

• Estimation de T_r

$$\operatorname{BCRM}(T_r) = \frac{8 \operatorname{erf}^{-1}(0.9)}{3} \sqrt{\frac{\pi}{2}} \frac{T_r}{\beta^2 \left(\frac{C}{N_0}\right) N}$$

- L'estimation de T_r est découplée de l'estimation de (ν, T, τ)
- Un a priori sur T_r est sans intérêt pour l'estimation des autres paramètres

Utilisation d'information a priori Ajout de bruit de phase Localisation avec signaux multiples

Utilisation d'information a priori

- Simulations
 - Estimation de (T, τ)
 - Méthode de corrélation

Utilisation d'information a priori Ajout de bruit de phase Localisation avec signaux multiples

Ajout de bruit de phase

- Étude de l'instabilité de l'oscillateur de la balise
 - Paramètre clé pour l'estimation du FOA
 - Modélisation du bruit de phase

$$\Psi(t) = 2\pi f_0 t + \underbrace{\sum_{k=2}^{K} \frac{\Omega_{k-1}}{k!} t^k}_{\text{derive de phase}} + \underbrace{[\psi(t) - \psi(0)]}_{\text{instabilité de phase}} + \Psi(0)$$

• Bruit de scintillation de fréquence (réaliste pour les balises)

• Densité spectrale :
$$S_{\psi}(f) = f_0^2 \frac{\sigma_y^2(\tau_{\rm a})}{2\ln(2)} f^{-3}$$

Utilisation d'information a priori Ajout de bruit de phase Localisation avec signaux multiples

Ajout de bruit de phase

• Simulations - estimation du décalage Doppler (ν) - méthode de FFT

Utilisation d'information a priori Ajout de bruit de phase Localisation avec signaux multiples

Localisation avec signaux multiples

- Objectif : exploiter plusieurs mesures pour améliorer la localisation ($T_e = 50$ s)
- Un signal émis par la balise : $BCRM(p_i) = \left[(\mathbf{G}^T \mathbf{C}^{-1} \mathbf{G})^{-1} \right]_{ii}$
- L signaux émis par la balise

BCRM
$$(p_i) = \left[\left(\sum_{n=1}^{L} \mathbf{G}_n^T \mathbf{C}_n^{-1} \mathbf{G}_n \right)^{-1} \right]_{ii}, \quad i = 1, \dots, 3$$

- C_n : précision des mesures de TOA et FOA
- G_n : géométrie de la constellation
- En considérant C_n et G_n constantes :

$$\operatorname{BCRM}(p_i) = \frac{1}{L} \left[(\mathbf{G}^T \mathbf{C}^{-1} \mathbf{G})^{-1} \right]_{ii}, \quad i = 1, \dots, 3$$

Utilisation d'information a priori Ajout de bruit de phase Localisation avec signaux multiples

Localisation avec signaux multiples

• Estimation de position - algorithme itératif

Utilisation d'information a priori Ajout de bruit de phase Localisation avec signaux multiples

Localisation avec signaux multiples

Estimation de position

FIGURE 22: Estimation de position pour de multiples signaux reçus et $C/N_0 = 34.8$ dB Hz.

Utilisation d'information a priori Ajout de bruit de phase Localisation avec signaux multiples

Localisation avec signaux multiples

• Estimation de position

FIGURE 23: Comparaison de la méthode d'estimation de p avec la moyenne des positions.

$$\hat{\mathbf{p}}_{k+1} = \mathbf{p}_k + \left(\sum_{n=1}^{L} \mathbf{G}_{k,n}^T \mathbf{C}_n^{-1} \mathbf{G}_{k,n}\right)^{-1} \times \sum_{n=1}^{L} \left[\mathbf{G}_{k,n}^T \mathbf{C}_n^{-1} \mathbf{y}_{k,n}\right]$$
(3.53)

Recherche et sauvetage par satellite

- Bilan de liaison
- Simulateur Cospas-Sarsat
- Objectifs de la thèse

Performances optimales du système

- Modèle de signal Cospas-Sarsat
- Performances d'estimation des paramètres
- Performances de localisation

Études complémentaires

- Utilisation d'information a priori
- Ajout de bruit de phase
- Localisation avec signaux multiples

Application aux signaux à spectre étalé

Conclusions et perspectives

Modèle de signal CDMA MEOSAR Performances d'estimation des paramètres Performances de localisation **Conclusions et perspectives**

Modèle de signal CDMA MEOSAR Performances d'estimation des paramètres Performances de localisation **Conclusions et perspectives**

Application aux signaux à spectre étalé

- Contexte : LEO/GEOSAR → MEOSAR (répéteurs transparents)
- Signaux CDMA •
 - Plus grande précision de mesure de TOA
 - Robustesse face aux interférences
 - Technique de codage par l'accès multiple : x(t) = m(t)c(t)

Modèle de signal CDMA MEOSAR Performances d'estimation des paramètres Performances de localisation Conclusions et perspectives

Application aux signaux à spectre étalé

- Modulation OQPSK (Offset QPSK)
 - Deux voies en quadrature avec décalage d'un demi symbole
 - Réduit les changements abrupts du signal modulé
 - Moins sensible au bruit des amplificateurs

Modèle de signal CDMA MEOSAR Performances d'estimation des paramètres Performances de localisation Conclusions et perspectives

Application aux signaux à spectre étalé

Modèle de signal CDMA MEOSAR

$$s_{\mathcal{R}}(t) = \frac{A}{\sqrt{2}} \sum_{n=0}^{N_c-1} b_{\mathcal{R}_{\lfloor n/\kappa \rfloor}} c_{\mathcal{R}_n} g_c(t - nT_c - \tau)$$
$$s_{\mathcal{I}}(t) = \frac{A}{\sqrt{2}} \sum_{n=0}^{N_c-1} b_{\mathcal{I}_{\lfloor n/\kappa \rfloor}} c_{\mathcal{I}_n} g_c(t - nT_c - T_c/2 - \tau)$$

• Modèle pour l'impulsion $g_c(t)$ avec des fonctions sigmoïdes - *chip*

Modèle de signal CDMA MEOSAR Performances d'estimation des paramètres Performances de localisation Conclusions et perspectives

Performances d'estimation des paramètres

Signal actuel

$$\begin{aligned} \mathrm{BCRM}_{\mathrm{c}}(\nu) &= \frac{1}{\pi^2 \frac{T_p^3}{3} \frac{C}{N_0}} \\ \mathrm{BCRM}_{\mathrm{c}}(\tau) &= \frac{4}{3} \sqrt{\frac{\pi}{2}} \frac{1}{\alpha \beta^2 \left(\frac{C}{N_0}\right) N} \end{aligned}$$

- $T_p = 160 \text{ ms}$
- Nombre de symboles N = 144
- $\alpha = 1.5 \times 10^4$
- Indice de modulation $\beta=1.1$

Signal CDMA

$$BCRM_{c}(\nu) = \frac{1}{\pi^{2} \frac{T_{0}^{3}}{3} \frac{C}{N_{0}}}$$
$$BCRM_{c}(\tau) = 4\sqrt{\frac{\pi}{2}} \frac{1}{\alpha \left(\frac{C}{N_{0}}\right) N_{c}}$$

- $T_0 = 1 \, \mathrm{s}$
- Nombre de *chips* $N_c = 38400$
- $\alpha = 1.5 \times 10^5$

Modèle de signal CDMA MEOSAR Performances d'estimation des paramètres Performances de localisation Conclusions et perspectives

Performances d'estimation des paramètres

Estimation de l'effet Doppler ν

Modèle de signal CDMA MEOSAR Performances d'estimation des paramètres Performances de localisation Conclusions et perspectives

Performances d'estimation des paramètres

• Estimation du temps d'arrivée τ

Modèle de signal CDMA MEOSAR Performances d'estimation des paramètres Performances de localisation Conclusions et perspectives

Performances de localisation

Estimation de position

FIGURE 27: Géométrie favorable.

FIGURE 28: Géométrie défavorable.

Modèle de signal CDMA MEOSAR Performances d'estimation des paramètres Performances de localisation Conclusions et perspectives

Performances de localisation

Modèle de signal CDMA MEOSAR Performances d'estimation des paramètres Performances de localisation Conclusions et perspectives

Introduction

- Recherche et sauvetage par satellite
- Bilan de liaison
- Simulateur Cospas-Sarsat
- Objectifs de la thèse

2 Performances optimales du système

- Modèle de signal Cospas-Sarsat
- Performances d'estimation des paramètres
- Performances de localisation

3 Études complémentaires

- Utilisation d'information a priori
- Ajout de bruit de phase
- Localisation avec signaux multiples

4 Application aux signaux à spectre étalé

Conclusions et perspectives

Modèle de signal CDMA MEOSAR Performances d'estimation des paramètres Performances de localisation Conclusions et perspectives

Conclusions

- Bilan de liaison pour le système MEOSAR
- Modèle de signal de détresse à l'aide de fonctions sigmoïdes
 - Performances d'estimation des paramètres
 - Performances de localisation
 - Obtention de BCRM faciles à interpréter
- Localisation avec information a priori, bruit de phase et signaux multiples
- Application aux signaux CDMA

Modèle de signal CDMA MEOSAR Performances d'estimation des paramètres Performances de localisation Conclusions et perspectives

Recommandations

- Ajout de contraintes sur le bruit de phase de la balise
- L'ajout de contraintes sur T n'est pas dans le domaine technologique des balises
 - Durcissement facteur 250 par rapport à l'exigence actuelle
 - Contraintes de coût/performance pour les balises
- Utilisation du GDOP et du $GDOP_f$ lors du calcul de position
- Utilisation de signaux CDMA : localisation 10 fois plus précise

Modèle de signal CDMA MEOSAR Performances d'estimation des paramètres Performances de localisation Conclusions et perspectives

Perspectives

- Estimation de la vitesse de la balise
- Développement de méthodes d'estimation moins coûteuses
 - Pour l'estimation des paramètres
 - Pour l'estimation de position dans le cas de multiples émissions
- Étudier la coopération entre les stations de réception pour le suivi des satellites

Victor Bissoli Nicolau

victor.bissoli@tesa.prd.fr

GDOP et **GDOP**f

$$GDOP = \sqrt{\operatorname{Tr}\left[(\mathbf{H}^{T}\mathbf{H})^{-1}\right]} \qquad \mathbf{H} = \begin{bmatrix} \mathbf{u}_{1}(\mathbf{p}) & \mathbf{u}_{2}(\mathbf{p}) & \cdots & \mathbf{u}_{M}(\mathbf{p}) \\ 1 & 1 & \cdots & 1 \end{bmatrix}^{T}$$
$$GDOP_{f} = \sqrt{\operatorname{Tr}\left[(\mathbf{H}_{f}^{T}\mathbf{H}_{f})^{-1}\right]} \qquad \mathbf{H}_{f} = \begin{bmatrix} \boldsymbol{\chi}_{1}(\mathbf{p}) & \boldsymbol{\chi}_{2}(\mathbf{p}) & \cdots & \boldsymbol{\chi}_{M}(\mathbf{p}) \\ 1 & 1 & \cdots & 1 \end{bmatrix}^{T}$$

$$\frac{\partial \tau_{1i}}{\partial \mathbf{p}} = \frac{1}{c} \left[\mathbf{u}_i(\mathbf{p}) - \mathbf{u}_1(\mathbf{p}) \right]^T, \quad i = 2, \dots, M,$$
$$\frac{\partial \nu_{1i}}{\partial \mathbf{p}} = \frac{1}{c} \left[\boldsymbol{\chi}_i(\mathbf{p}) - \boldsymbol{\chi}_1(\mathbf{p}) \right]^T, \quad i = 2, \dots, M,$$

$$\boldsymbol{\chi}_{i}(\mathbf{p}) = f_{0} \frac{\mathbf{u}_{i}(\mathbf{p})\mathbf{u}_{i}^{T}(\mathbf{p}) - \mathbf{I}}{\rho_{i}} \mathbf{v}_{i}, \qquad i = 2, \dots, M.$$

(

Performances de détection et de localisation des terminaux SAR dans le contexte de transition MEOSAR

52 / 52

m

Méthode de rééchantillonnage

- Le filtrage adapté produit une somme de fonctions triangulaires à $T, 2T, \ldots, NT$
- La valeur absolue du signal est rééchantillonnée selon une grille pré-spécifiée
- Maximisation de la somme du signal rééchantillonné (fonction de contraste)
- Obtention des estimateurs \hat{T} et $\hat{\tau}$

Méthode de corrélation

- Signaux actuels
 - Estimation de ν : méthode de FFT sur la porteuse pure
 - Compensation de l'effet Doppler
 - Estimation du message à l'aide d'un filtrage adapté
 - Estimation de $({\it T},\tau)$: corrélation avec la réplique du signal
- Signaux CDMA
 - Estimation de (ν, T_c, τ) : corrélation avec le préambule (1/6 s)
 - Compensation de l'effet Doppler
 - Dé-étalement du signal avec le code connu
 - Estimation du message à l'aide d'un filtrage adapté
 - Estimation de (ν, T_c, τ) : corrélation avec la réplique du signal (1 s)

