New statistical modeling of multi-sensor images with application to change detection

Jorge PRENDES

Supervisors: Marie CHABERT, Frédéric PASCAL, Alain GIROS, Jean-Yves TOURNERET

October 22, 2015

< □ > < @ > < 注 > < 注 > ... 注

Introduction 00000	Image model 000000	Similarity measure	Expectation maximization 00 0000	Bayesian non parametric 000000000000 0000	Conclusions 00000

Outline

- 2 Image model
- 3 Similarity measure
- 4 Expectation maximization
- 5 Bayesian non parametric

6 Conclusions

J. Prendes

New statistical modeling of multi-sensor images with application to change detection

TéSA - Supélec-SONDRA - INP/ENSEEIHT - CNES

Section 1

Introduction

(日) (문) (문) (문) (문)

Introduction ●0000	Image model 000000	Similarity measure	Expectation maximization 00 0000	Bayesian non parametric 000000000000 0000	Conclusions 00000
Introduction					

Change Detection for Remote Sensing

Remote sensing images are images of the Earth surface captured from a satellite or an airplane.

Multitemporal datasets are groups of images acquired at different times. We can detect changes on them!

J. Prendes

TéSA - Supélec-SONDRA - INP/ENSEEIHT - CNES

Introduction 0●000	Image model 000000	Similarity measure	Expectation maximization oo oooo	Bayesian non parametric 000000000000 0000	Conclusions 00000
Introduction					

Heterogeneous Sensors

J. Prendes

Optical images are not the only kind of images captured. For instance, SAR images can be captured during the night, or with bad weather conditions.

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

Introduction 00000	Image model 000000	Similarity measure	Expectation maximization 00 0000	Bayesian non parametric 0000000000000 0000	Conclusions 00000
Introduction					

Difference Image

- ▲ 日 > ▲ 国 > ▲ 国 > ▲ 国 > ▲ 日 > ▲

J. Prendes

TéSA - Supélec-SONDRA - INP/ENSEEIHT - CNES

Introduction 000●0	Image model 000000	Similarity measure	Expectation maximization 00 0000	Bayesian non parametric 000000000000 0000	Conclusions 00000
Introduction					

Sliding window

< ロ > < 回 > < 回 > < 回 > < 回 >

J. Prendes

New statistical modeling of multi-sensor images with application to change detection

э

Introduction 0000●	Image model 000000	Similarity measure	Expectation maximization 00 0000	Bayesian non parametric 0000000000000 0000	Conclusions 00000
Introduction					

Similarity measures

Statistical similarity measures

- Measure the dependency between pixel intensities
 - Correlation
 Coefficient
 - Mutual Information
- Others
 - KL-Divergence

Estimation of the joint pdf

- Non parametric computation
 - Histogram
 - Parzen windows
- Based on a parametric modeling
 - Bivariate gamma distribution [1]

< < >> < </p>

TéSA - Supélec-SONDRA - INP/ENSEEIHT - CNES

- Pearson distribution [2]
- Copulas modeling [3]

 F. Chatelain et al. "Bivariate Gamma Distributions for Image Registration and Change Detection". In: IEEE Trans. Image Process. 16.7 (2007), pp. 1796–1806.

[2] M. Chabert and J.-Y. Tourneret. "Bivariate Pearson distributions for remote sensing images". In: Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS). Vancouver, Canada, July 2011, pp. 4038–4041.

[3] G. Mercier, G. Moser, and S. B. Serpico. "Conditional Copulas for Change Detection in Heterogeneous Remote Sensing Images". In: IEEE Trans. Geosci. Remote Sens. 46.5 (May 2008), pp. 1428–1441.

J. Prendes

Section 2

Image model

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Introduction 00000	lmage model ●00000	Similarity measure	Expectation maximization 00 0000	Bayesian non parametric 0000000000000 0000	Conclusions 00000
Image model					

Optical image

 Affected by additive Gaussian noise

$$\begin{split} I_{\mathsf{Opt}} &= T_{\mathsf{Opt}}(P) + \nu_{\mathcal{N}(0,\sigma^2)} \\ I_{\mathsf{Opt}} | P \sim \mathcal{N} \big[\mathsf{T}_{\mathsf{Opt}}(P), \sigma^2 \big] \end{split}$$

where

- T_{Opt}(P) is how an object with physical properties P would be ideally seen by an optical sensor
- σ^2 is associated with the noise variance

Histogram of the normalized image

[1] J. Prendes, M. Chabert, F. Pascal, A. Giros, and J.-Y. Tourneret, "A new multivariate statistical model for change detection in images acquired by homogeneous and heterogeneous sensors," IEEE Trans. Image Process., vol. 24, no.-3, pp. 799–812, March 2015.

J. Prendes

TéSA - Supélec-SONDRA - INP/ENSEEIHT - CNES

Introduction 00000	lmage model ○●○○○○	Similarity measure	Expectation maximization 00 0000	Bayesian non parametric 0000000000000 0000	Conclusions 00000
Image model					

SAR image

 Affected by multiplicative speckle noise (with gamma distribution)

$$I_{SAR} = T_{SAR}(P) \times \nu_{\Gamma\left(L,\frac{1}{L}\right)}$$
$$I_{SAR}|P \sim \Gamma\left[L,\frac{T_{SAR}(P)}{L}\right]$$

where

- T_{SAR}(P) is how an object with physical properties P would be ideally seen by a SAR sensor
- L is the number of looks of the SAR sensor

J. Prendes

Introduction 00000	lmage model 00●000	Similarity measure	Expectation maximization 00 0000	Bayesian non parametric 000000000000 0000	Conclusions 00000
Image model					

Joint distribution

Independence assumption for the sensor noises

 $p(I_{Opt}, I_{SAR}|P) =$ $p(I_{Opt}|P) \times p(I_{SAR}|P)$

Conclusion Statistical dependency (CC, MI) is not always an appropriate similarity measure

I Prendes

A ► <

∃ > TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

Introduction 00000	lmage model 000●00	Similarity measure	Expectation maximization 00 0000	Bayesian non parametric 0000000000000 0000	Conclusions 00000
Image model					

Sliding window

- Usually includes a finite number of objects, K
- Different values of P for each object

$$\Pr(P = P_k | W) = w_k$$

$$p(I_{\text{Opt}}, I_{\text{SAR}} | W) = \sum_{k=1}^{K} w_k p(I_{\text{Opt}}, I_{\text{SAR}} | P_k)$$

Mixture distribution!

J. Prendes

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

Introduction 00000	lmage model 0000€0	Similarity measure	Expectation maximization 00 0000	Bayesian non parametric 000000000000 0000	Conclusions 00000
Image model					

Resulting improvement

J. Prendes

Introduction 00000	lmage model 00000●	Similarity measure	Expectation maximization 00 0000	Bayesian non parametric 000000000000 0000	Conclusions 00000
الملم متر مترمينا					

Limitation of dependency based measures

Correct detection

Incorrect detection

TéSA – Sudélec-SONDRA – INP/ENSEEIHT – CNES

J. Prendes

Section 3

Similarity measure

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Introduction 00000	Image model 000000	Similarity measure ●0000	Expectation maximization 00 0000	Bayesian non parametric 0000000000000 0000	Conclusions 00000
Similarity meas	ure				

Motivation

Parameters of the mixture distribution

Can be used to derive
 [T_{Opt}(P), T_{SAR}(P)] for each object

$$I_{\text{Opt}}|P \sim \mathcal{N}[T_{\text{Opt}}(P), \sigma^{2}]$$
$$I_{\text{SAR}}|P \sim \Gamma\left[L, \frac{T_{\text{SAR}}(P)}{L}\right]$$

Related to P

J. Prendes

They are all related

くロト 《 伊 ト 4 注 ト 4 注 ト 注 の へ
て で
SONDRA - INP/ENSEEIHT - CNES

 $T_{\text{Opt}}(P)$

0

Introduction 00000	Image model 000000	Similarity measure ○●○○○	Expectation maximization 00 0000	Bayesian non parametric 000000000000 0000	Conclusions 00000
Similarity meas	sure				

Distance measure

Unchanged regions

J. Prendes

- Pixels belong to the same object
- *P* is the same for both images

•
$$\hat{\mathbf{v}} = \left[\hat{T}_{\mathsf{Opt}}(P), \hat{T}_{\mathsf{SAR}}(P)\right]$$

Changed regions

- Pixels belong to different objects
- *P* changes from one image to another

•
$$\hat{\mathbf{v}} = \left[\hat{T}_{\mathsf{Opt}}(P_1), \hat{T}_{\mathsf{SAR}}(P_2)\right]$$

TéSA - Supélec-SONDRA - INP/ENSEEIHT - CNES

Introduction Image r 00000 00000	nodel Similarity measure 0 00000	Expectation maximization 00 0000	Bayesian non parametric 000000000000 0000	Conclusions 00000				
Similarity measure								

Manifold

- For each unchanged window,
 v(P) = [T_{Opt}(P), T_{SAR}(P)]
 can be considered as a point
 on a manifold
- The manifold is parametric on *P*
- Estimating v(P) from pixels with different values of P will build the manifold

(日) (同) (三) (

TéSA - Supélec-SONDRA - INP/ENSEEIHT - CNES

 J. Prendes, M. Chabert, F. Pascal, A. Giros, and J.-Y. Tourneret, "A new multivariate statistical model for change detection in images acquired by homogeneous and heterogeneous sensors," IEEE Trans. Image Process., vol. 24, no. 3, pp. 799–812, March 2015.

J. Prendes

Introduction 00000	Image model 000000	Similarity measure 000€0	Expectation maximization 00 0000	Bayesian non parametric 000000000000 0000	Conclusions 00000			
Similarity meas	Similarity measure							

Manifold estimation

- The manifold is a priori unknown
- We must estimate the distance to the manifold
- PDF of v(P)

J. Prendes

- Good distance measure
- Learned using training data from unchanged images

*H*₀ : Absence of change*H*₁ : Presence of change

$$\hat{
ho}_{oldsymbol{
u}}(\hat{oldsymbol{
u}}) \mathop{\gtrless}\limits_{H_0}^{H_1} au \ \equiv \ \hat{
ho}_{oldsymbol{
u}}(\hat{oldsymbol{
u}})^{-1} \mathop{\gtrless}\limits_{H_1}^{H_0} rac{1}{ au}$$

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

Introduction 00000	Image model 000000	Similarity measure 0000●	Expectation maximization oo oooo	Bayesian non parametric 000000000000 0000	Conclusions 00000		
Similarity measure							

Summary

J. Prendes

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

<ロ> <四> <四> <日> <日> <日</p>

New statistical modeling of multi-sensor images with application to change detection

æ

Section 4

Expectation maximization

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction 00000	Image model 000000	Similarity measure	Expectation maximization •• •••••	Bayesian non parametric 000000000000 0000	Conclusions 00000				
Expectation m	Expectation maximization								
Motiva	tion								

- To estimate v(P) we must estimate the mixture parameters θ
- We can use a maximum likelihood estimator

$$\hat{\theta} = \arg \max_{\theta} \mathsf{p}(I_{\mathsf{Opt}}, I_{\mathsf{SAR}}|\theta)$$

EM algorithm: find local maxima of the likelihood function
 The value of K is fixed, or estimated heuristically^[1]

 M. A. T. Figueiredo and A. K. Jain, "Unsupervised learning of finite mixture models," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 3, pp. 381–396, March 2002.

J. Prendes

• • • • • • • • • • • • •

Introduction 00000	Image model 000000	Similarity measure	Expectation maximization	Bayesian non parametric 000000000000 0000	Conclusions 00000
Expectation m	aximization				

J. Prendes

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 めるの

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

Introduction 00000	Image model 000000	Similarity measure	Expectation maximization	Bayesian non parametric 000000000000 0000	Conclusions 00000
Expectation m	aximization				

J. Prendes

・ロト・日本・日本・日本・日本

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

Introduction 00000	Image model 000000	Similarity measure	Expectation maximization	Bayesian non parametric 000000000000 0000	Conclusions 00000
Expectation m	aximization				

J. Prendes

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めんの

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

Introduction 00000	Image model 000000	Similarity measure	Expectation maximization	Bayesian non parametric 000000000000 0000	Conclusions 00000
Expectation m	aximization				

J. Prendes

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

Introduction 00000	Image model 000000	Similarity measure	Expectation maximization	Bayesian non parametric 000000000000 0000	Conclusions 00000
Expectation m	aximization				

J. Prendes

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 めるの

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

Introduction 00000	Image model 000000	Similarity measure	Expectation maximization	Bayesian non parametric 0000000000000 0000	Conclusions 00000		
Expectation maximization							

J. Prendes

▲□▶▲□▶▲□▶▲□▶ ▲□▶ □ ● ● ●

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

Introd	
0000	

nage model

Similarity me 00000 Expectation maximization

Bayesian non parametrie

Conclusions

Results

Results – Synthetic Optical and SAR Images

Synthetic SAR image

Mutual Information

Correlation Propo Coefficient

- ・ロト・白ト・油ト・油ト・油・ シック

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

Change mask

J. Prendes

	lmage model		Expectation maximization	Bayesian r
00000	000000	00000	00	0000000
			0000	0000

Bayesian non parametrie

Conclusions

Results

J. Prendes

Results - Real Optical and SAR Images

 G. Mercier, G. Moser, and S. B. Serpico, "Conditional copulas for change detection in heterogeneous remote sensing images," IEEE Trans. Geosci. and Remote Sensing, vol. 46, no. 5, pp. 1428–1441, May 2008.

0

< □ > < 同 >

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

PFA

Performance - ROC

Results – Pléiades Images

Special thanks to CNES for providing the Pléiades images [1] J. Prendes, M. Chabert, F. Pascal, A. Giros, and J.-Y. Tourneret, "Performance assessment of a recent change detection method for homogeneous and heterogeneous images", Revue Francaise de Photogrammétrie et de Télédétection, vol. 209, pp. 23-29, January 2015.

J. Prendes

TéSA - Supélec-SONDRA - INP/ENSEEIHT - CNES

Expectation maximization ŏŏoo

Results

J. Prendes

Results – Pléiades and Google Earth Images

Google Earth - July 2013

< (T) > <

∃ > TéSA - Supélec-SONDRA - INP/ENSEEIHT - CNES

Section 5

Bayesian non parametric

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Introduction 00000	Image model 000000	Similarity measure	Expectation maximization 00 0000	Bayesian non parametric •000000000000 •000	Conclusions 00000
Bayesian non p	arametric				

- Unknown number of objects in an image
- High variability in the expected number of objects (urban vs rural)
- Spatial correlation in images

Introduction 00000	Image model 000000	Similarity measure	Expectation maximization 00 0000	Bayesian non parametric 000000000000 0000	Conclusions 00000
Bayesian non p	arametric				

Proposed solution

- Dirichlet Process Mixture
 - Chinese Restaurant Process prior on the labels
- Markov Random Field prior on the labels
- Jeffreys Prior on the concentration parameter
- Implemented through a Collapsed Gibbs Sampler

[1] J. Prendes, M. Chabert, F. Pascal, A. Giros, and J.-Y. Tourneret, "A Bayesian nonparametric model coupled with a Markov random field for change detection in heterogeneous remote sensing images".

J. Prendes

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

(日) (同) (三) (

Introduction 00000	Image model 000000	Similarity measure	Expectation maximization 00 0000	Bayesian non parametric 00●0000000000 0000	Conclusions 00000
Bayesian non p	arametric				

Classic mixture

J. Prendes

- Introduce a Bayesian framework into the labels: K is not fixed
- Classic mixture model

$$egin{aligned} &oldsymbol{i}_n |oldsymbol{v}_n \sim \mathcal{F}(oldsymbol{v}_n) \ &oldsymbol{v}_n |oldsymbol{V}' \sim \sum_{k=1}^K w_k \deltaig(oldsymbol{v}_n - oldsymbol{v}'_k) \end{aligned}$$

 $i_n = [i_{Opt,n}, i_{SAR,n}]$, and \mathcal{F} is a distribution family which is application dependent, i.e., a bivariate Normal-Gamma distribution.

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

・ロト ・回ト ・ヨト ・ヨト

3

Introduction 00000	Image model 000000	Similarity measure	Expectation maximization oo oooo	Bayesian non parametric 000000000000 0000	Conclusions 00000
Bayesian non p	arametric				

Bayesian approach

Prior in the mixture parameters

$$oldsymbol{v}_k^\prime \sim \mathcal{V}_0$$

 $oldsymbol{w} \sim \mathsf{Dir}_\mathcal{K}(lpha)$

• Now make
$$K \to \infty$$

v_n will still present clustering behavior
 There is an infinite number of parameters for the prior of *v_n*

 $\operatorname{Dir}_{\mathcal{K}}(\alpha)$ is a \mathcal{K} dimensional Dirichlet distribution, with concentration parameter α .

J. Prendes

New statistical modeling of multi-sensor images with application to change detection

A (10) > (10)

TéSA - Supélec-SONDRA - INP/ENSEEIHT - CNES

Introduction 00000	Image model 000000	Similarity measure	Expectation maximization 00 0000	Bayesian non parametric 000000000000 0000	Conclusions 00000
Bayesian non p	arametric				

Bayesian non parametric

J. Prendes

Dirichlet Process	Chinese Restaurant Process
$oldsymbol{i}_n oldsymbol{v}_n \sim \mathcal{F}(oldsymbol{v}_n)$	$m{i}_n z_n\sim \mathcal{F}ig(m{v}_{z_n}ig)$
$oldsymbol{v}_n \sim \mathcal{V}$	$oldsymbol{z} \sim CRP(lpha)$
$\mathcal{V} \sim DP(\mathcal{V}_0, \alpha).$	$oldsymbol{ u}_k^\prime \sim \mathcal{V}_0.$
$p_{BNP}(z_n i_n,\mathcal{V}_0,\boldsymbol{V}')\propto \begin{cases} lpha p(i_n,\mathcal{V}_0,\boldsymbol{V}') \\ N'_{z_n}p(i_n,\mathcal{V}_0,\boldsymbol{V}') \end{cases}$	$ i_n \mathcal{V}_0) $ if z_n is new label $ i_n \boldsymbol{v}'_{z_n}) $ if z_n is existing label
$p_{BNP}(z_n \boldsymbol{z}_{\backslash n}, \boldsymbol{I}, \mathcal{V}_0) \propto \begin{cases} \alpha \ p(\boldsymbol{i}) \\ N'_{z_n} \frac{p(\boldsymbol{I})}{p(\boldsymbol{I}_{\lbrace \boldsymbol{z} \rbrace})} \end{cases}$	$ \frac{ \mathcal{V}_0 }{ z_n \mathcal{V}_0 } $ if z_n is new label $ \frac{ z_n \mathcal{V}_0 }{ z_n \mathcal{V}_0 } $ if z_n is existing label

TéSA - Supélec-SONDRA - INP/ENSEEIHT - CNES

э.

New statistical modeling of multi-sensor images with application to change detection

æ

Introduction 00000	Image model 000000	Similarity measure	Expectation maximization oo oooo	Bayesian non parametric 00000●0000000 0000	Conclusions 00000
Bayesian non p	arametric				

Bayesian non parametric

J. Prendes

TéSA - Supélec-SONDRA - INP/ENSEEIHT - CNES

New statistical modeling of multi-sensor images with application to change detection

3

Introduction 00000	Image model 000000	Similarity measure	Expectation maximization oo oooo	Bayesian non parametric 0000000000000 0000	Conclusions 00000
Bayesian non pa	arametric				

Concentration Parameter

 α with Gamma prior proposed in (Escobar 1995, Antoniak 1974)

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

New statistical modeling of multi-sensor images with application to change detection

J. Prendes

Introduction 00000	Image model 000000	Similarity measure	Expectation maximization oo oooo	Bayesian non parametric 0000000000000 0000	Conclusions 00000
Bayesian non p	arametric				

Concentration Parameter

- Method to define uninformative priors
- α non informative w.r.t. K

$$p(\alpha|N) \propto \sqrt{\mathsf{E}_{\mathcal{K}}\left[\left(\frac{d}{d\alpha}\log p(\mathcal{K}|\alpha, N)\right)^{2}\right]}$$
$$p(\alpha|N) \propto \sqrt{\frac{\Delta \Psi_{N}^{(0)}(\alpha)}{\alpha} + \Delta \Psi_{N}^{(1)}(\alpha)}$$
$$\Delta \Psi_{N}^{(i)}(\alpha) = \Psi^{(i)}(N+\alpha) - \Psi^{(i)}(1+\alpha)$$

• $p(\alpha|K, N)$ rejection sampling from $Gamma\left(K + \frac{1}{2}, -\frac{1}{\log t}\right)$

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

<ロ> <同> <同> < 回> < 回>

New statistical modeling of multi-sensor images with application to change detection

J. Prendes

3

Introduction 00000	Image model 000000	Similarity measure	Expectation maximization 00 0000	Bayesian non parametric 0000000●0000 0000	Conclusions 00000	
Bayesian non p	arametric					

Concentration Parameter

J. Prendes

Introduction 00000	Image model 000000	Similarity measure	Expectation maximization 00 0000	Bayesian non parametric 000000000000000000000000000000000000	Conclusions 00000
Bayesian non parametric					

Markov random fields

- Markov random fields are a common tool to capture spatial correlation
- We would like to define

$$\mathsf{p}(z_n|\boldsymbol{z}_{\setminus n}) = \mathsf{p}(z_n|\boldsymbol{z}_{\delta(n)})$$

• MRF define the constraints to define a joint distribution p(Z)

A (1) > (1) > (1)

TéSA - Supélec-SONDRA - INP/ENSEEIHT - CNES

Introduction 00000	Image model 000000	Similarity measure	Expectation maximization 00 0000	Bayesian non parametric 000000000000000 0000	Conclusions 00000
Bayesian non parametric					

Markov random fields

We will define the joint distribution as

$$p(z_n | \mathbf{z}_{\backslash n}) \propto \exp \left[H(z_n | \mathbf{z}_{\backslash n}) \right]$$
$$H(z_n | \mathbf{z}_{\backslash n}) = H_n(z_n) + \sum_{\substack{m \in \delta(n) \\ z_n = z_m}} \omega_{nm} \mathbf{1}_{z_n}(z_m)$$

• The trick is to take $H_n(z_n) = \log p(z_n | I_n, \mathbf{V}', \mathcal{V}_0)$

New statistical modeling of multi-sensor images with application to change detection

J. Prendes

Introduction 00000	Image model 000000	Similarity measure	Expectation maximization 00 0000	Bayesian non parametric 00000000000000 0000	Conclusions 00000	
Bayesian non parametric						

Markov random fields

Introduction 00000	Image model 000000	Similarity measure	Expectation maximization 00 0000	Bayesian non parametric 000000000000 0000	Conclusions 00000
Bayesian non p	parametric				

J. Prendes

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

Introduction 00000	Image model 000000	Similarity measure	Expectation maximization 00 0000	Bayesian non parametric 000000000000 0000	Conclusions 00000
Bayesian non parametric					

<ロ> <同> <同> <同> < 同>

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

J. Prendes

Introduction 00000	Image model 000000	Similarity measure	Expectation maximization oo oooo	Bayesian non parametric 000000000000 0000	Conclusions 00000
Bayesian non p	parametric				

J. Prendes

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

Introduction 00000	Image model 000000	Similarity measure	Expectation maximization oo oooo	Bayesian non parametric 000000000000 0000	Conclusions 00000
Bayesian non p	arametric				

J. Prendes

 $N'_{z_n} \frac{\mathsf{p}(\boldsymbol{I}_{\{z_n\}}|\mathcal{V}_0)}{\mathsf{p}(\boldsymbol{I}_{\{z_n\}\setminus n}|\mathcal{V}_0)} \prod_{\underline{m} \in \underline{\delta}(\underline{n})} e^{\omega_{nm}}$ $z_n = \dot{z}_m$

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

ntroduction Image model	Similarity measure 00000	Expectation maximization 00 0000	Bayesian non parametric 000000000000 0000	Conclusions 00000
Bayesian non parametric				

J. Prendes

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

Introduction 00000	Image model 000000	Similarity measure	Expectation maximization 00 0000	Bayesian non parametric 000000000000 0000	Conclusions 00000
Bayesian non parametric					

J. Prendes

・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ うへぐ

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

Bayesian non parametric 0000

Results

J. Prendes

Results – Synthetic Optical and SAR Images

Synthetic optical image

Synthetic SAR image

Information

[1] J. Prendes, M. Chabert, F. Pascal, A. Giros, and J.-Y. Tourneret, "Change detection for optical and radar images using a Bayesian nonparametric model coupled with a Markov random field", in Proc. IEEE ICASSP, Brisbane, Australia, April 2015.

TéSA - Supélec-SONDRA - INP/ENSEEIHT - CNES

イロト イポト イヨト イヨト

New statistical modeling of multi-sensor images with application to change detection

Change mask

ntrod	

Bayesian non parametric 0000

Results

Results – Real Optical and SAR Images

J. Prendes

SAR image during

the flooding

Change mask

Mutua Information

Image: A math a math

TéSA - Supélec-SONDRA - INP/ENSEEIHT - CNES

Introduction 00000	Image model 000000	Similarity measure	Expectation maximization 00 0000	Bayesian non parametric ○○○○○○○○○○○○ ○○●○	Conclusions
Results					

Results – Pléiades Images

Special thanks to CNES for providing the Pléiades images

J. Prendes

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

Introd				
00000				

Bayesian non parametric 0000

Results

Results – Pléiades and Google Earth Images

Pléiades – May 2012

Google Earth - July 2013

BNP

(日) (同) (三) (

J. Prendes

TéSA - Supélec-SONDRA - INP/ENSEEIHT - CNES

New statistical modeling of multi-sensor images with application to change detection

Change mask

Section 6

Conclusions

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

Introduction 00000	Image model 000000	Similarity measure	Expectation maximization 00 0000	Bayesian non parametric 000000000000 0000	Conclusions •0000
Conclusions					

J. Prendes

- New statistical model to describe heterogeneous images
- New similarity measure showing encouraging results for homogeneous and heterogeneous sensors
- Interesting for many applications
 - Change detection local similarity measure
 - Classification
 - Registration global similarity measure

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

Introduction 00000	Image model 000000	Similarity measure	Expectation maximization 00 0000	Bayesian non parametric 000000000000 0000	Conclusions 0●000
Conclusions					

Future Work

- Study the method performance for different image features (wavelets, gradient, texture coefficients)
 - Homogenize the parametrization for different image modalities
 - Wavelets coefficients: Generalized Gaussian distribution

J. Prendes

TéSA - Supélec-SONDRA - INP/ENSEEIHT - CNES

Introduction 00000	Image model 000000	Similarity measure	Expectation maximization oo oooo	Bayesian non parametric 000000000000 0000	Conclusions 00●00
Conclusions					

Euture Work

Consider a robust estimation of the mixture parameters

- M-Estimators [1]
- Using noise sparsity approaches [2]
- Consider intra-object dependency of the pixel intensities

i.e., in the case of pansharpened images

- Estimate parameters using empirical likelihood methods [3]
 - Overcomes the need to propose a particular statistical model

[1] P. J. Huber. Robust Statistics. Wiley Series in Probability and Statistics. Wiley, 2004

[2] J. Wright et al. "Robust Face Recognition via Sparse Representation". In: IEEE Trans. Pattern Anal. Mach. Intell. 31.2 (Feb. 2009), pp. 210-227

[3] A. B. Owen. Empirical Likelihood. Chapman & Hall/CRC Monographs on Statistics & Applied Probability. CRC Press, 2001

3

Introduction 00000	Image model 000000	Similarity measure	Expectation maximization 00 0000	Bayesian non parametric 0000000000000 0000	Conclusions 000€0
Conclusions					

Future Work

- Add a prior on the spatial parameter of the MRF
- Speed-up the BNP-MRF algorithm with a smart initialization
 - i.e., initialize the algorithm with the output of mean-shift [4]
 - Preliminary results: 10x reduction in the number of iterations

[4] D. Comaniciu and P. Meer. "Mean shift: a robust approach toward feature space analysis". In: IEEE Trans. Pattern Anal. Mach. Intell. 24.5 (May 2002), pp. 603–619

Introduction 00000	Image model 000000	Similarity measure	Expectation maximization 00 0000	Bayesian non parametric 0000000000000 0000	Conclusions 0000●
Conclusions					

Thank you for your attention

Jorge Prendes jorge.prendes@tesa.prd.fr

J. Prendes

New statistical modeling of multi-sensor images with application to change detection

A ►

∃ >

TéSA - Supélec-SONDRA - INP/ENSEEIHT - CNES