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Abstract

Remote sensing images are images of the Earth surface acquired from satellites or air-

borne equipment. These images are becoming widely available nowadays, with many

commercial and non-commercial services providing them. The technology of the sensors

required to capture this kind of images is evolving fast. Not only classical sensors are

improving in terms of resolution and noise level, but also new kinds of sensors are prov-

ing to be useful. Multispectral image sensors are standard nowadays, synthetic aperture

radar (SAR) images are very popular, and hyperspectral sensors are receiving more and

more attention in many applications.

The availability of different kind of sensors (also called modalities) is very advanta-

geous since it allows us to capture a wide variety of properties of the objects contained in

a scene as measured by each sensor. These properties can be exploited to extract richer

information about the objects contained in the scene. One of the main applications of

remote sensing images is the detection of changes in multitemporal datasets, i.e., detect-

ing changes in images of the same area acquired at different times. Change detection

for images acquired by homogeneous sensors has been of interest for a long time. How-

ever the wide range of different sensors found in remote sensing makes the detection of

changes in images acquired by heterogeneous sensors an interesting challenge.

Accurate change detectors adapted to either homogeneous or heterogeneous sensors

are needed for the management of natural disasters such as floods, volcano eruptions or

earthquakes [UY12]. Databases of optical images are readily available for an extensive

catalog of locations. However, good climate conditions and daylight are required to

capture them. On the other hand, SAR images can be quickly captured, regardless of

the weather conditions or the daytime. For these reasons, optical and SAR images are

of specific interest for tracking natural disasters, by detecting the changes before and

after the event. For this kind of applications an optical image is usually available from a

database before the disaster and a SAR image can be quickly captured after the disaster.

The main interest of this thesis is to study statistical approaches to detect changes

in images acquired by heterogeneous sensors.

Chapter 1 presents an introduction to remote sensing images. It also briefly reviews
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the different change detection methods proposed in the literature. Additionally, this

chapter presents the motivation to detect changes between heterogeneous sensors and its

difficulties.

Chapter 2 studies the statistical properties of co-registered images in the absence of

change, in particular for optical and SAR images. In this chapter a finite mixture model

is proposed to describe the statistics of these images. The performance of classical

statistical change detection methods is also studied by taking into account the proposed

statistical model. In several situations it is found that these classical methods fail for

change detection.

Chapter 3 studies the properties of the parameters associated with the proposed sta-

tistical mixture model. We assume that the model parameters belong to a manifold in the

absence of change, which is then used to construct a new similarity measure overcoming

the limitations of classic statistical approaches. Furthermore, an approach to estimate

the proposed similarity measure is described. Finally, the proposed change detection

strategy is validated on synthetic images and compared with previous strategies.

Chapter 4 studies Bayesian non parametric algorithm to improve the estimation of

the proposed similarity measure. This algorithm is based on a Chinese restaurant process

and a Markov random field taking advantage of the spatial correlations between adjacent

pixels of the image. This chapter also defines a new Jeffreys prior for the concentration

parameter of this Chinese restaurant process. The estimation of the different model

parameters is conducted using a collapsed Gibbs sampler. The proposed strategy is

validated on synthetic images and compared with the previously proposed strategy.

Finally, Chapter 5 is dedicated to the validation of the proposed change detection

framework on real datasets, where encouraging results are obtained in all cases. Including

the Bayesian non parametric model into the change detection strategy improves change

detection performance at the expenses of an increased computational cost.



Résumé

Les images de télédétection sont des images de la surface de la Terre acquises par des

satellites ou des avions. De telles images sont de plus en plus disponibles et fournies par

des services commerciaux ou non-commerciaux. Les technologies des capteurs utilisés

pour faire l’acquisition de ces images évoluent rapidement. On peut observer une amélio-

ration significative des capteurs existants en termes de résolution et de rapport signal sur

bruit. Mais de nouveaux types de capteurs ont également vu le jour et ont montré des

propriétés intéressantes pour le traitement d’images. Ainsi, les images multispectrales et

radar sont devenues très classiques et les capteurs hyperspectraux reçoivent de plus en

plus d’attention dans de nombreuses applications.

La disponibilité de différents types de capteurs (donnant lieu à différentes modalités)

est très intéressante car elle permet de capturer une grande variété de propriétés des

objets contenus dans une scène et mesurés par chaque capteur. Ces propriétés peuvent

être exploitées pour extraire des informations plus riches sur les objets contenues dans une

scène. Une des applications majeures de la télédétection est la détection de changements

entre des images multi-temporelles, i.e., détecter les changements dans des images de la

même scène acquise à des instants différents. Détecter des changements entre des images

acquises à l’aide de capteurs homogènes est un problème classique qui a reçu un grand

intérêt dans la littérature. Mais le problème de la détection de changements entre images

acquises par des capteurs hétérogènes est un problème beaucoup plus difficile

Avoir des méthodes de détection de changements adaptées aux images issues de cap-

teurs homogènes et hétérogènes est nécessaire pour le traitement de catastrophes na-

turelles comme les inondations, les éruptions volcaniques ou les tremblements de terre

[UY12]. Des bases de données constituées d’images optiques sont déjà disponible avec

une liste conséquente de lieux géographiques. Mais il est nécessaire d’avoir de bonnes

conditions climatiques et une lumière suffisante pour faire l’acquisition de nouvelles im-

ages optiques associées à la même scène. En revanche, les images radar sont accessibles

rapidement quelles que soient les conditions climatiques et peuvent même être acquises

de nuit. Pour ces raisons, détecter des changements entre des images optiques et radar

(acquises avant et après une éventuelle catastrophe) est un problème d’un grand intérêt

ix
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en télédétection.

L’intérêt principal de cette thèse est d’étudier des méthodes statistiques de détention

de changements adaptés aux images issues de capteurs hétérogènes.

Chapitre 1 rappelle ce qu’on entend par une image de télédétection et résume rapi-

dement quelques méthodes de détection de changements disponibles dans la littérature.

Le chapitre présente également les motivations à développer des méthodes de détection

de changements adaptées aux images hétérogènes et les difficultés associiées.

Chapitre 2 étudie les propriétés statistiques des images de télédétection en l’absence

de changements, en particulier, pour les images optiques et radar. Ce chapitre introduit

un modèle de mélange de lois adapté aux propriétés statistiques de ces images. La

performance des méthodes classiques de détection de changements est également étudiée

en considérant ce modèle statistique. Dans plusieurs cas d’études, ce modèle permet

d’expliquer certains défauts de certaines méthodes de la literature.

Chapitre 3 étudie les propriétés des paramètres du modèle de mélange introduit

au chapitre précédent. Ca chapitre fait l’hypothèse que les paramètres de ce modèle

appartiennent à une variété en l’absence de changements entre les différentes images.

cette hypothèse est utilisée pour définir une nouvelle mesure de similarité entre images

qui permet d’éviter les défauts des approches statistiques classiques utilisées pour la

détection de changements. Une méthode permettant d’estimer cette mesure de similarité

est également présentée. Enfin, la stratégie de détection de changements basée sur cette

mesure de similarité est validée à l’aide d’images synthétiques et comparées avec plusieurs

méthodes de référence.

Chapitre 4 étudie un algorithme Bayésien non-paramétrique qui permet d’améliorer

l’estimation de la variété introduite au chapitre précédent. Cet algorithme est basé sur

un processus de restaurant Chinois et un champs de Markov qui exploite la corrélation

spatiale entre des pixels voisins de l’image. Ce chapitre définit également une nouvelle

loi a priori de Jeffrey pour le paramètre de concentration de ce champs de Markov.

L’estimation des paramètres de ce nouveau modèle est effectuée à l’aide d’un échan-

tillonneur de Gibbs de type “collapsed Gibbs sampler”. La stratégie de détection de

changement issue de ce modèle non-paramétrique est validée à l’aide d’images synthé-

tiques et comparée avec la stratégie proposée au chapitre précédent.

Le dernier chapitre de cette thèse est destiné à la validation des algorithmes de
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détection de changements développés dans cette thèse sur des jeux d’images réelles mon-

trant des résultats encourageant pour tous les cas d’étude. Le modèle Bayésien non-

paramétrique permet d’obtenir de meilleurs performances que le modèle paramétrique,

mais ceci se fait au prix d’une complexité calculatoire plus importante.
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Acronyms and notations

Acronyms

The acronyms used throughout this thesis can be found in the following table.

BNP Bayesian non parametric

DMM Dirichlet mixture model

DPMM Dirichlet process mixture model

EM Expectation maximization

MCMC Markov chain Monte Carlo

MRF Markov random field

pdf Probability density function

pdfs Probability density functions

ROC Receiver operating characteristic

SAR Synthetic aperture radar

Notations

The notations used throughout this thesis can be found in the following table. Lowercase

bold letters denote column vectors, while uppercase bold letters denote matrices. Please

note that sub-indexes are denoted using a lowercase letter, and their upper limit is

denoted by the capital letter, e.g., the sub-index k can take the values 1 ≤ k ≤ K. The

notation z\n denotes all the elements of the vector z, except the n-th element.

D Number of images in a dataset.

W Analysis window.

N Number of pixels in W.

S Sensor used to acquire an image.

Sd Sensor used to acquire the d-th image.

in,S Intensity measured by S for the n-th pixel.

in D-dimensional vector of pixel intensities acquired by all sensors for the

n-th pixel.

xiii
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I Matrix containing all the intensities in.

K Number of different objects in W.

P Physical properties of an object.

Pk Physical properties of the k-th object.

wk Proportion of W covered by the k-th object.

w K-dimensional vector containing all wk.

TS(P ) How S images an object with properties P .

ηS Acquisition noise of S.

F(v) Application dependent distribution family with parameter vector v.

V0 Prior distribution for v.

vn Parameter vector that identifies a distribution from F for the n-th pixel.

V Matrix containing all the vn.

v
′
k Parameter vector that identifies a distribution from F for the k-th object.

V
′ Matrix containing all the vectors v

′
k.

M “No-change” Manifold.

T̂k,Sd
Estimated parameters for the k-th component of the d-th sensor.

v̂k Estimated parameters for the k-th component.

dW Similarity measure for the analysis window W .

dM(v̂n) Similarity measure for the n-th pixel.

DP(α,V0) Dirichlet process with concentration parameter α and base pdf V0.

SBP(α) Stick breaking process with concentration parameter α.

CRP(α) Chinese restaurant process with concentration parameter α.

ψ(·) Digamma function.

α Concentration parameter.

zn Class label for the n-th pixel.

z Vector containing the class labels of all pixels.

ρX,Y Population correlation coefficient between X and Y .

rX,Y Sample correlation coefficient between samples of X and Y .

MI(X;Y ) Mutual information between X and Y .

DKL(P |Q) Kullback-Liebler divergence or P respect to Q.

DKL(P,Q) Symmetric Kullback-Liebler divergence.

G A simple weighted graph.

ωnm Weight of the edge connecting the nodes n and m in the graph G.
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Introduction

Remote sensing images are images of the Earth surface acquired from satellites or air-

borne equipment. These images are becoming widely available nowadays, with many

commercial and non-commercial services providing them. The technology of the sensors

required to capture this kind of images is evolving fast. Not only classical sensors are im-

proving in terms of resolution and noise level, but also new kinds of sensors are proving to

be useful. Multispectral image sensors are standard nowadays, synthetic aperture radar

(SAR) images [CM91; CGM95] are very popular, and hyperspectral sensors [Sch06] are

receiving more and more attention in many applications.

One of the main applications of remote sensing images is the detection of changes in

multitemporal datasets, i.e., detecting changes in images of the same area acquired at

different times. Change detection for images acquired by homogeneous sensors has been

of interest for a long time. However the wide range of different sensors found in remote

sensing makes the detection of changes in images acquired by heterogeneous sensors an

interesting challenge.

The main interest of this thesis is to study statistical approaches to detect changes

in images acquired by heterogeneous sensors. The chapters composing this thesis are

detailed below.

Organization of the thesis

Chapter 1

This chapter presents an introduction to remote sensing images, the different existing

sensors and their properties, with a special focus on optical and SAR images: how the

sensors work, different sensor variants, what are their advantages, weaknesses, uses, and

what properties of a given scene is observed with them. It also presents the motivation

to detect changes between heterogeneous sensors and its difficulties. This chapter also

1
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explores the different change detection methods proposed in the literature, their strengths

and limitations. First the methods proposed for homogeneous sensors are presented,

most notably for two optical images or two SAR images. This chapter also presents the

methods available to deal with heterogeneous images, especially the method proposed in

[MMS08].

Chapter 2

This chapter studies the statistical properties of co-registered images in the absence of

change. To achieve that, we introduce a general model for the statistics of the pixel

intensity of independent sensors. The particular cases of optical and SAR images is

developed. The joint distribution of these intensities on uniform areas (i.e., an areas

of the image where all the pixels present the same statistics) is analyzed. To do this,

the intensities associated with a given pixel (i.e., a given location) on all the images are

collected into a multidimensional random vector. The model is extended to non-uniform

areas, resulting in a finite mixture model. The goodness of fit (as measured using a

Kolmogorov–Smirnov test) is compared between the proposed model and descriptions

of the joint probability density function using histograms. The performance of classical

statistical change detection methods are studied by taking into account the proposed

statistical model in several different situations. Based on the proposed model, several

situations where these measures fail are analyzed. The reason why measures based on

statistical dependency fail as change detectors in these situations is also analyzed.

Chapter 3

This chapter studies the properties of the parameters associated with the model presented

in Chapter 2. The behavior of these parameters is analyzed on changed an unchanged

areas of the image. Based on this, it is proposed that the model parameters belong to

a manifold in the absence of change [P3,P4]. This manifold is then used to construct

a new similarity measure overcoming the limitations of classic statistical approaches as

noted in Chapter 2. The similarity measure is constructed as the distance between the

estimated mixture parameters (computed using the pixel intensities belonging to the

estimation window) and this manifold. An approach to estimate a distance measure

between the mixture parameters and the manifold is finally described. The estimation

of the mixture parameters is addressed, based on a modified expectation maximization

(EM) algorithm [FJ02]. The proposed similarity measure is validated on synthetic
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images, and its performance for change detection is compared with that of other methods.

Chapter 4

The parameter estimation method considered in Chapter 3 presents two main limitations:

the number of components in the mixture must be known, and the spatial correlation

between neighboring pixels has been ignored [P1,P2]. A non parametric Bayesian frame-

work is proposed in this chapter to deal with these limitations. To overcome the first

limitation, the number of components in the mixture distribution is considered as a

random variable to be estimated using a Bayesian nonparametric model [GB12] (BNP),

namely a Dirichlet process mixture model (DPMM). A hierarchical Bayesian model is

proposed to estimate some of the parameters required by the DPMM by means of a

Jeffreys prior for which its density is derived. The second limitation is addressed by the

introduction of a Markov random field [BKR11] (MRF) for the pixel labels associating

each pixel to a component of the mixture distribution. To estimate the parameters of this

new Bayesian non parametric model, a Markov chain Monte Carlo (MCMC) approach is

considered. A collapsed Gibbs sampler algorithm is derived to improve the convergence

of the MCMC based estimation.

Chapter 5

The proposed model was validated on synthetic images generated according to the model

presented in Chapter 2. This validation favors the proposed method since they are based

on the same assumptions. This chapter is dedicated to the validation of the proposed

change detection framework on real datasets. Three study cases considered of relevance

are included, namely a pair of homogeneous Pléiades images, a pair of heterogeneous

optical images, and a pair of heterogeneous optical and SAR images [P5]. The proposed

EM based method is found to outperform the classical methods in all the studied cases.

Moreover, the BNP-MRF based approach outperforms the EM approach in all cases, at

the cost of an increased computational time.

Main contributions

In what follows the contributions of the different chapters of this thesis are summarized.
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Chapter 1

In this chapter an overview about the properties of remote sensing images, most notably

optical and SAR images is detailed. An overview of change detection approaches for

homogeneous and heterogeneous is also presented.

Chapter 2

This chapter studies the statistical properties of co-registered images in the absence of

change. We propose a statistical model characterized by a mixture distribution to de-

scribe the joint distribution of the pixel intensities. The performances of classic statisti-

cal change detection methods are studied by taking into account the proposed statistical

model. In particular, we explain why some methods based on statistical dependency

measures can fail for detecting changes in remote sensing images.

Chapter 3

This chapter analyzes the behavior of the parameters of the statistical model presented

in Chapter 2. Based on this, we propose a new similarity measure overcoming the

limitations highlighted in the previous chapter. This similarity measure is data based,

which makes it very flexible and can be built based on the application needs. Moreover,

the proposed statistical model is validated on synthetic images.

Chapter 4

This chapter presents a parameter estimation approach that improves the one presented

in Chapter 3. This is achieved by introducing a non parametric Bayesian framework into

the parameter estimation. More precisely, a Dirichlet process mixture model [GB12] is

studied to deal with the variable number of objects within each analysis window. A

Jeffreys prior is proposed and derived to deal with the uncertainty on this number of

objects. A Markov random field [BKR11] (MRF) prior is also assigned to the pixel labels

associating each pixel to a component of the mixture distribution. Finally we propose a

collapsed Gibbs sampler [VP08] to estimate the model parameters of this new Bayesian

non parametric model.
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Chapter 5

This chapter validates the proposed change detection framework on real datasets, where

the proposed model outperforms the other methods studied [P5]. The EM based method

is found to outperform the previous methods by an important margin. Moreover, the

BNP-MRF based method outperforms all studied methods, included the EM based one.

However, this improvement comes at the cost of an incremented computational complex-

ity. The chapter concludes that each method (BNP-MRF or EM) is suitable for different

applications depending whether the computational cost is an important factor.

List of publications

Submited to journal

[P1] J. Prendes, M. Chabert, F. Pascal, A. Giros, and J.-Y. Tourneret, “A Bayesian

nonparametric model coupled with a Markov random field for change detection in

heterogeneous remote sensing images”.

Conference papers

[P2] J. Prendes, M. Chabert, F. Pascal, A. Giros, and J.-Y. Tourneret, “Change detection

for optical and radar images using a Bayesian nonparametric model coupled with a

Markov random field”, in Proc. IEEE Int. Conf. Acoust., Speech, and Signal Proc.,

Brisbane, Australia, April 2015.

[P3] J. Prendes, M. Chabert, F. Pascal, A. Giros, and J.-Y. Tourneret, “A multivariate

statistical model for multiple images acquired by homogeneous or heterogeneous

sensors”, in Proc. IEEE Int. Conf. Acoust., Speech, and Signal Proc., Florence,

Italy, May 2014.

Journal papers

[P4] J. Prendes, M. Chabert, F. Pascal, A. Giros, and J.-Y. Tourneret, “A new multivari-

ate statistical model for change detection in images acquired by homogeneous and

heterogeneous sensors”, IEEE Trans. Image Process., vol. 24, no. 3, pp. 799–812,

March 2015.



6 LIST OF TABLES

[P5] J. Prendes, M. Chabert, F. Pascal, A. Giros, and J.-Y. Tourneret, “Performance

assessment of a recent change detection method for homogeneous and heterogeneous

images”, Revue Française de Photogrammétrie et de Télédétection, vol. 209, pp. 23–

29, January 2015.

Other conference papers

[P6] M. Ressl, J. Prendes and R. Saint-Nom, “Undergraduate speech processing aware-

ness”, in Proc. IEEE Int. Conf. Acoust., Speech, and Signal Proc., Kyoto, Japan,

March 2012.

[P7] J. Prendes, M. Ressl, and R. Saint-Nom, design and execution”, “Speaker verifica-

tion: A flexible platform architecture for experiment in Proc. IASTED Int. Conf.

Artificial Intell. and Appl., Innsbruck, Austria, February 2011.



Chapter 1

Remote sensing and change

detection

Contents

1.1 Remote sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Optical sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.2 SAR sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.3 Heterogeneous sensors . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Change detection . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.1 Change detection for optical images . . . . . . . . . . . . . . . 12

1.2.2 Change detection for SAR images . . . . . . . . . . . . . . . . 13

1.2.3 Change detection based on a similarity measure . . . . . . . . . 13

1.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.1 Remote sensing

For a long time, airborne or satellite remote sensing imagery has been used to track

changes on the Earth surface for applications including urban growth tracking [SSS12;

Tis+04], plantation monitoring [Sun+11; Sen+13], and urban database updating [Pou+11].

For this purpose, different sensors have been investigated including optical [Sch06; LFT12;

Alp+07], synthetic aperture radars (SAR) [Sch06; CM91; CGM95; Fro+82] or multi-

spectral sensors [Sch06; QP07].

1.1.1 Optical sensors

Due to the involved wavelengths, optical sensors provide high resolution images, and are

generally easy to interpret, since they directly correlate to what a human would see.

Because of this, huge databases of optical images are currently available. Optical sensors

are usually composed of at least three different “sub-sensors” measuring different spectral

7
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Figure 1.1: Spectral bands of the Pléiades sensors.

bands, one sensible to red light wavelengths, another sensible to green light wavelengths,

and a third one sensible to blue light wavelengths, being also common to find another

sensor, sensible to infrared light wavelengths. When more than three spectral bands

are acquired, the resulting image is called a multispectral image or hyperspectral im-

age depending on the number of acquired spectral bands. A sensing element for each

spectral band is repeated in a grid, once for each pixel. Having several elements per

pixel reduces the number of pixels we can measure at the same time, and thus it limits

the image resolution. In other words, the more spectral bands to measure the lowest

the resolution. This problem is usually addressed by including another sensor called

panchromatic, which is sensible to a wide range of wavelengths (trying to include all the

measured wavelengths), which is in its own grid and thus is not affected by the presence

of the other sensors, allowing it to produce higher resolution images. These images are

then combined through a pan-sharpening process [LFT12] to generate an image with

the spectral characteristics of the multispectral image and the spatial resolution of the

panchromatic image. One particular kind of optical images we are interested in results

from the Pléiades satellites, which are two satellites capturing high resolution multi-

spectral images. The spectral sensitivity of the sensors associated with these satellites

[Bar+14] is depicted in Fig. 1.1. The multispectral image obtained with these satellites

consists of 4 bands (blue, green, red and infra-red) with a spatial resolution of 2m, while

the panchromatic image has a resolution of 70cm, although it is distributed as a resam-

pled image with 50cm of spatial resolution. This pansharpening process for a Pléiades

image can be observed in Fig. 1.2, where the multispectral image has been pansharpened

using the corresponding panchromatic image to obtain a result combining the advantages

of both.
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1.1.2 SAR sensors

On the other hand, SAR images can be acquired even at night or under bad weather

conditions and thus are more rapidly available in emergency situations [IM09]. The

physical principle behind SAR sensors is completely different from optical images. One

key difference is that while optical sensors capture the reflected sunlight of the Sun on the

different objects, SAR sensors are active, in that they generate the “light” to be reflected.

This allows SAR sensors to acquire images during the day as well as during the night.

To form the image a pulse of a coherent radio wave is emitted through an antenna, and

the echo produced by the wave being reflected on the scene is recorded in amplitude

and phase. This process is repeated in different locations, which is easily achieved if the

antenna is mounted on a moving object, like an airplane or a satellite. All the echoes

at different positions are then combined to focus the image. This process allows one to

synthetically increase the aperture of the antenna, obtaining a result equivalent to that

of using an antenna as long as the distance traveled while emitting and recording the

radio waves. Wavelengths emitted by the SAR antenna can usually range anywhere from

meters to millimeters, with smaller wavelengths allowing higher resolution images. The

wavelength of the radio signal plays an important role on how the signal interacts and is

reflected by the objects being imaged. Not only the material of the object is important

but also its shape and size, since radio signals interact with objects of sizes similar

to their wavelength. Because of this, clouds do not interact with the generated radio

wave, allowing images to be obtained even with bad weather conditions. When focused,

these images present a high variance multiplicative noise (referred to as “speckle noise”)

due to the constructive and destructive interferences on each pixel of the reflections of

the emitted coherent radio wave. Consequently, several beams are emitted in order to

generate several images which are then averaged in order to reduce the noise, resulting

in the so-called multi-look SAR images, where the number of looks is the number of

images being averaged. Nevertheless, SAR images are generally more difficult to interpret

because of their lower signal to noise ratio and because the observation is not linked to

what a human would see.

1.1.3 Heterogeneous sensors

The availability of different kind of sensors (also called modalities) is very advantageous.

This allows us to capture a wide variety of properties of the objects contained in a scene as

measured by each sensor, which can be exploited to extract richer information about the
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objects in the scene. This information can be used to classify the content of the image in

different groups, such as: urban areas, rural areas, forestation, water surfaces, etc. Note

that hyperspectral images are particularly useful for this classification, although they

present much lower resolution than multispectral or SAR images. Combining information

from different sensors requires the different images to be coregistered so that pixels

corresponding to the same spatial location are identified as such. Remote sensing images

usually include meta-information about the location of the image, with different degrees

of accuracy, which helps their coregistration. When the images are not coregistered,

different image processing techniques can be used to coregister them. Another advantage

of having images from different modalities is that their complementary properties can

be combined by image processing techniques, as with the pansharpening process that

combines the spatial resolution of the panchromatic image and the spectral resolution of

the multispectral image.

Image processing techniques can also be used on remote sensing images to find objects

such as planes, buildings, forestation and cars. In a sequence of multitemporal images,

these objects can be tracked from one image to another, where the modality of the image

can change according to its availability (e.g., tracking objects at night is more easily

achieved by SAR images). Another application of multitemporal images is the detection

of changes, which consists in finding the differences between two images captured at

different times. Since the different image modalities have advantages and disadvantages

in different conditions, these multitemporal images are likely to be obtained by different

sensors. This situation is particularly challenging since the images to be compared do

not reflect the same characteristics of the objects present in the scene, so that they

cannot be directly compared. In this thesis we will focus on the detection of changes

in coregistered images captured by heterogeneous sensors. More precisely this work will

pay a specific attention to detecting changes between optical and SAR images since. As

previously discussed, combining the advantages of these sensors can be very interesting

for several image processing applications.

Accurate change detectors adapted to either homogeneous or heterogeneous sensors

are needed for the management of natural disasters such as floods, volcano eruptions or

earthquakes [UY12]. Databases of optical images are readily available for a extensive

catalog of locations. However, good climate conditions and daylight are required to

capture them. On the other hand, SAR images can be quickly captured, regardless of

the weather conditions or the daytime. For these reasons, optical and SAR images are
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of specific interest for tracking natural disasters, by detecting the changes before and

after the event. For this kind of applications an optical image is usually available from a

database before the disaster and a SAR image can be quickly captured after the disaster.

To finish this part, we would like to point out the difference between sensors with

a different working principle and homogeneous or heterogeneous sensors. We consider

two sensors to be heterogeneous when they observe different physical properties of the

captured scene, regardless of their working principle being the same or not. As an

example, optical and SAR sensors have a different working principle, i.e., the physical

phenomena on which they function is different. These are clearly heterogeneous sensors.

Let now consider two optical sensors, with the same working principle, where one of

these sensors is sensible to the visible spectra while the other is sensible to the infrared

spectra. We also consider these sensors heterogeneous.

1.2 Change detection

Change detection is a classification problem between two different classes representing

change and no change between two or more images. Generally the detection of changes

becomes more challenging when the images to be compared are not coregistered [BS97].

The focus of this thesis is the detection of changes between multitemporal coregistered

remote sensing images. The features considered by change detection methods are gener-

ally chosen according to the kind of sensor. Many techniques have been developed in the

literature to detect changes between homogeneous images, especially in the case of two

optical images. As a consequence many different approaches have been developed for

optical and SAR images separately. In this thesis we propose a new flexible change de-

tection strategy capable of dealing with homogeneous and heterogeneous sensors. More

precisely this work will pay a specific attention to detecting changes between optical and

SAR images, since the combination of these sensors is interesting in several practical

applications.

1.2.1 Change detection for optical images

Well illuminated optical images are usually affected by an additive random Gaussian

noise due to the thermal noise present in the sensor components (see Section 2.1.1 for

more details). For this reason, many detection methods are based on the difference be-

tween intensities or on the difference between spectral bands in the case of multispectral
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images leading to the so-called spectral change vector [BB07]. The difference image was

initially derived pixel-wise [Sin89; Fun90; BF00b; BF02; Cel09b; MMS02]. However a

parcel-wise derivation, using local averaging increases robustness with respect to noise,

misregistration, miscalibration and other artifacts [BF00a; PRC05]. The difference im-

age can also be derived in a transformed domain related to the wavelet transform for

instance [Cel09a; CK10; MAS11], or the histogram of oriented gradients [SKZ14]. Some

of these approaches also exploit the spatial correlation present in images by combining

different image features with Markov random fields [Ben+15a; BS09; SKZ14; Ben+15b;

MAS11]. These methods consider that in absence of change all sensors capture similar

intensities on all images. Unfortunately this assumption does not hold in the case of

heterogeneous sensors and thus these methods cannot be directly applied in such case.

Some interesting change detection methods adapted to optical images are based on

neural networks [Gho+07; GSB13; Pac+07; Paj06; Lon+12; Hus+13] and support vector

machines [PF10; NC06; Lon+12; Hus+13]. However, these “black-box” methods do

not exploit the properties of these images. In this chapter we are going to develop the

techniques of interest for this thesis. However, a survey of many popular change detection

methods has been done in [Rad+05] and the reader can refer to it for more details.

1.2.2 Change detection for SAR images

As previously discussed, SAR images are affected by a multiplicative speckle noise due

to the constructive and destructive interference on each pixel of the reflections of the

emitted coherent radio wave. Consequently, many change detection methods are based

on the ratio of the image intensities rather than the difference [TLB88; RV93; VFH93;

Fjo+88; BBM05; CDB06; MS06]. In this case the difference image is usually computed

as the difference between the logarithm of the images, which is referred to as the log-

ratio. Moreover, some techniques have been proposed to merge the information obtained

from different channels in multi-channel SAR images [MS09; MSV07].

As in the case of optical images, some change detection methods are based on neu-

ral networks [BF97; Pra+13] or on the joint distribution of the two images [Cha+07;

Qui+14; Giu+13].

1.2.3 Change detection based on a similarity measure

There exist other groups of change detection methods that are based on some statistical

measures obtained from the target images. These methods are generally based on a





1.2. CHANGE DETECTION 15

presence and absence of change is available, such threshold can be adjusted for a given

probability of false alarm.

The principle of change detection using a similarity measure is depicted in Fig. 1.3,

where two synthetic optical and SAR images are considered as an example. An analysis

window is highlighted in red in each image. The region within this window is then iso-

lated from the rest of the image, since the different analysis windows will be analyzed

independently. A similarity measure is then applied to them to obtain the scalar value

d, which is the similarity measure between the two images. This similarity measure d

is then thresholded according to a binary hypothesis test to decide whether a change

has been found within the analysis windows or not. Finally, this process is repeated for

all the analysis windows within the target images to obtain a change mask indicating

the regions of the image which have been affected by changes between the two acqui-

sitions. Obviously, the key component of this process is the definition of the similarity

measure. Such statistical approaches have been extensively developed in the literature

[SS14; Alb+07; IG04; Alb09; PV13; Hus+13]. In this work we are going to focus on sev-

eral similarity measures appropriate to the application under consideration, with certain

limitations as detailed hereafter.

The correlation coefficient is a very popular similarity measure to detect changes

between images acquired by homogeneous sensors [IG04]. This coefficient measures the

linear correlation between two random variables. In this case, it is assumed that, in

the absence of change, the pixel intensities in the two images are linearly correlated.

The correlation coefficient ρ for two random variables X and Y with a joint distribution

p(x, y) is given by

ρX,Y =

∫
Y

∫
X
(x− µX)(y − µY )p(x, y)dxdy√∫

X
(x− µX)2p(x)dx

√∫
Y
(y − µY )

2p(y)dy
(1.1)

where µX = E[X] and µY = E[Y ] are the population means of X and Y respectively.

Moreover, a maximum likelihood estimation of this coefficient, denoted rX,Y , can be

easily obtained from a group of samples [xn, yn] with 1 ≤ n ≤ N as

rX,Y =

∑N
n=1 (xn − x̄)(yn − ȳ)√∑N

n=1 (xn − x̄)
2
√∑N

n=1 (yn − ȳ)
2

(1.2)

where x̄ and ȳ are the sample means of [x1, . . . , xN ] and [y1, . . . , yN ] respectively. How-

ever, the assumption of linear correlation is generally not valid in the case of hetero-

geneous sensors [Ing02; IG04; IM09; CVA03], which makes the correlation coefficient

inefficient for random variables X and Y associated with heterogeneous images.
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To address this limitation other techniques have been developed, including the mutual

information, which is defined as

MI(X;Y ) =

∫

Y

∫

X

p(x, y) log

(
p(x, y)

p(x)p(y)

)
dxdy (1.3)

The mutual information allows the dependency between two non linearly dependent im-

ages to be measured, yielding MI(X;Y ) = 0 when X and Y are statistically independent,

and a non-zero value when they are dependent (regardless the dependency being linear

or not). Of course, the mutual information is more difficult to estimate than the correla-

tion coefficient since it requires to estimate the joint distribution of the pixel intensities.

This estimation can be achieved using a joint histogram or methods based on Parzen

windows [KC02]. Unfortunately, the resulting mutual information is strongly dependent

on the bins used to generate the histogram [FS86] or on the Parzen window size [KC02].

One alternative considered by several authors in the literature and the first one

attempted in this thesis is to consider parametric distributions and to estimate their

parameters using pixels located within a sliding window. Distributions that have been

recently considered include bivariate gamma distributions for two SAR images, where

a specific definition of the bivariate gamma distribution was considered in [Cha+07].

The parameters of this bivariate gamma distribution are then estimated based on the

observed pixel intensities. The mutual information is then obtained from the analytic

expression of the bivariate gamma distribution, and used as a similarity measure. Ex-

tensions to heterogeneous sensors, where the statistics of the two marginal distributions

are not necessarily the same have also been proposed in [IG04; CT11]. In particular, a

multivariate Pearson distribution was proposed in [CT11]. The family of univariate Pear-

son distributions has the interesting property of comprising both, the gamma and the

normal distribution. Their multivariate extensions can be adopted to fit different image

modalities on each marginal distribution, which can be interesting for SAR and optical

images. Again, the mutual information could be obtained from the analytic expression

of the multivariate Pearson distribution, and used as a similarity measure.

However, change detection between images acquired by heterogeneous sensors has

received much less attention in the literature than the optical/optical or radar/radar

cases. One can cite the recent approach developed in [MMS08]. This method is based on

the idea that the Kullback–Leibler divergence DKL can be used as a similarity measure

between two analysis windows when the two images are captured by the same sensor.

This divergence is asymmetric and computes the dissimilarity between two distributions
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P and Q as follows,

DKL(P |Q) =

∫ +∞

−∞
pP (x) log

(
pP (x)

pQ(x)

)
dx (1.4)

where pP (x) and pQ(x) are the probability density functions (pdfs) of the distributions

P and Q respectively. This divergence is asymmetric in the sense that DKL(P |Q) is not

necessarily equal to DKL(Q|P ). To address this issue, different approaches have been

proposed in the literature. In [MMS08], the following symmetric version is used

DKL(P,Q) = DKL(Q,P ) = DKL(P |Q) +DKL(Q|P ). (1.5)

The use of this divergence as a similarity measure is based on the assumption that for two

homogeneous sensors, the distribution of the pixel intensities within an unchanged area

should be similar, yielding a low value for DKL. However, the pdfs of pixel intensities are

generally different when heterogeneous sensors are considered. In [MMS08] it is proposed

to transform the probability distribution associated with one sensor into the distribution

of the other before computing the DKL. In order to ensure symmetry into the process,

this transformation is performed twice, i.e., from sensor A to sensor B and from sensor

B to sensor A. The method investigated in [MMS08] to learn these transformations was

based on the estimation of appropriate copulas from training samples belonging to a “no

change” area. Generally this method is not straight forwards for the case of more than

two images. To the best of our knowledge the method presented in [MMS08] is one of

the latest change detection approaches proposed for heterogeneous sensors.

1.3 Conclusions

Section 1.1 introduced remote sensing images, with a specific attention to optical and

SAR remote sensing images. The functioning of the sensors capturing these images was

summarized, with a particular interest for the physical properties of the different objects

that are captured by each sensor. Their advantages and weaknesses were highlighted.

We also introduced the concept of homogeneous and heterogeneous sensors that will be of

importance in this thesis. Section 1.1.3 analyzed the advantages of having heterogeneous

sensors, and motivated the change detection problem for these images. One of the main

reasons supporting this analysis is that the available images do not always arise from the

same modality, especially considering the strengths of each sensor.

The different change detection methods proposed in the literature, their strengths and

limitations were explored in Section 1.2. First the methods proposed for homogeneous
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sensors were briefly summarized, most notably for two optical images in Section 1.2.1

and for two SAR images in Section 1.2.2. Statistical methods dealing with these hetero-

geneous images were presented in Section 1.2.3, with a specific interest for the method

proposed in [MMS08].
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As discussed in Chapter 1, various statistical strategies were proposed for change

detection that rely on the estimation of the joint probability distribution of the pixel

intensities. These strategies usually derive a similarity measure from a statistical measure

obtained from this joint distribution. In most cases, the correct estimation of the joint

distribution is of great importance, and thus several join distribution models have been

proposed. In [Cha+07] a bivariate version of the gamma distribution was proposed,

while [CT11] proposed a bivariate generalization of the Pearson distribution. The goal

of this chapter is to investigate the joint behavior of the pixel intensities and derive a

model for it.
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More precisely, this chapter introduces a flexible statistical model for the pixel in-

tensities associated with several images acquired by different sensors. The approach to

obtain this statistical model differs from previous approaches since it begins by study-

ing the physical processes that generate the heterogeneous images. To achieve this, the

marginal statistical properties of the pixel intensity for different kinds of sensors (mainly

optical and radar) is studied in Section 2.1. The joint behavior of several pixels belonging

to an analysis window and acquired by heterogeneous sensors is studied in Section 2.2.

We first consider uniform areas in the image, and later extend this model to the more

general case of non-uniform areas which are commonly observed in analysis windows.

The implications of this model on different classical change detection methods are

analyzed in Section 2.3, with a specific interest on how this model allows us to predict

the behavior of change detectors based on statistical dependency measures, address-

ing strengths and limitations. Finally, conclusions and implications of this chapter are

discussed in Section 2.4.

2.1 Image generation

A uniform area of an image is a region where the pixels have the same physical properties

(denoted as P ). For example, this could be the case for a region of the image covered by

a corn crop, or water, or grass. Each sensor measures some particular property of the

imaged object, which depends on the physical properties P of this object. For instance,

an optical sensor measures the object reflectivity to the wavelengths in the optical range,

while a LiDAR sensor [Wei06] measures the height of the object. If we assume that P

provides a full description of the object being imaged, we can denote the measurement

obtained by the sensor S as a function of P , i.e.,

iS = TS(P ) (2.1)

where iS represents the pixel intensity measured by the sensor S, and TS(·) is a trans-

formation depending on the sensor, which represents how it captures an object with

physical properties P . For instance, for a LiDAR sensor, the transformation TLiDAR(P )

extracts the height information from P .

However, the measurements of any sensor S are corrupted by noise, which can change



2.1. IMAGE GENERATION 21

in behavior and nature depending on the sensor. Because of this, iS can be more accu-

rately expressed as

iS = fS [TS(P ), ηS ] (2.2)

where ηS is a random variable representing the noise produced by sensor S, and fS [·, ·] is

a function indicating how such noise interacts with the measured intensity. Consequently,

iS is a random variable. The distribution family of this variable depends on fS [·, ·] as well

as on the distribution of ηS , while the parameters identifying one particular distribution

of the family depend on TS(P ), i.e., we can write

iS |TS(P ) ∼ FS [TS(P )] (2.3)

where FS(·) is a distribution family computed from ηS and fS(·, ·) is parameterized by

TS(P ), which for simplicity and without any loss of generality, can be expressed as

iS |P ∼ FS(P ) (2.4)

In what follows, we study FS(P ) through the analysis of ηS and fS [·, ·] for the case

of optical and SAR sensors, while TS(P ) is considered to be unknown. It is important

to note that the focus of this thesis is on the study of optical and SAR remote sensing

images. However, the presented model is general and could be applied to other kind of

sensors. In Chapter 3 the relationship between the transformations TS(P ) of different

sensors S1, . . . , SD will be studied, and a method to estimate it from training data will

be proposed.

2.1.1 Optical images

Optical images have been thoroughly studied in the literature (see [Cas96; LJW08]).

Several kinds of noises are identified, and their predominance depends on the conditions

on which the image has been taken.

For instance, under low light conditions, a few number of photons arrives to the

optical sensor, producing the so called “shot noise” [HMC03]. In this case, the detection

of photons is considered a Poisson process, and thus the measured intensities thus follow

a Poisson distribution.

iopt|P ∼ kopt Poisson
[
k−1

opt TOpt(P )
]

(2.5)
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where kopt is a constant defined by the sensor amplification, i.e., a high value of kopt

represents a high amplification. Under low light conditions optical sensors need to in-

crease their sensitivity in order to obtain a bright enough image, which is achieved by

incrementing kopt. In digital cameras this amplification is associated with the ISO pa-

rameter [Sta06]. For kopt small enough, the Poisson distribution can be approximated

by a Normal distribution as follows

koptPoisson
[
k−1

opt TOpt(P )
]

≈ koptN
[
k−1

opt TOpt(P ), k
−1
opt TOpt(P )

]
(2.6)

≈ N [TOpt(P ), kopt TOpt(P )] (2.7)

Under good light conditions, kopt is small. Since the variance of the shot noise is

proportional to kopt, for small kopt the shot noise can be omitted. The most common

noise observed under this conditions is the so called “thermal noise”, caused by the

thermal agitation of electrons in the components of the sensor. This noise is usually

modeled as a zero-mean Gaussian noise, whose variance is proportional to the operation

temperature of the sensor. In this situations, the following model is more adequate,

iopt = Topt(P ) + ηopt (2.8)

ηopt ∼ N
(
0, σ2opt

)
(2.9)

where σopt is a constant that depends on the sensor and its operation temperature. This

results in the following expression for iopt

iopt|P ∼ N
[
Topt(P ), σ

2
opt

]
. (2.10)

These two noise sources could be combined in a single more complex model. However,

this would increase the number of model parameters and certainly make their estimation

more difficult. Moreover, most optical satellite images are obtained during the day, when

the illumination conditions are good. Thus, a usual factor considered when capturing

these images is the saturation due to reflections on particular objects of the scene. For

the stated reasons, we assume that the statistical behavior of optical remote sensing

images, is described by the following family of distributions

Fopt(P ) = N
[
Topt(P ), σ

2
opt

]
. (2.11)

Note that different optical sensors will capture slightly different features from the

physical properties P . Consider for instance the sensor used by the Pléiades satellite
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Figure 2.1: Spectral bands of the Pléiades sensors.

constellation. These satellites capture multispectral images in 4 bands: blue, green, red

and near infrared, with a resolution of 2 meters per pixel, and a panchromatic image

with a resolution of 0.5 meters per pixel. Usually these images undergo a pansharpening

process to generate a 4 band multispectral image with high spatial resolution. The 4

resulting images can be considered as 4 independent images acquired by 4 sensors, where

each sensor captures one spectral band. To illustrate this, consider the spectral bands of

the Pléiades sensors [Bar+14] as shown in Fig. 2.1. Let iB be a pixel belonging to the blue

band acquired by the equivalent “blue” sensor of the Pléiades satellite, corresponding to

an object with physical properties P , and R(P, λ) be a function indicating the reflectivity

of P at the wavelength λ. Then, the value of TB(P ) corresponding to iB can be obtained

as

TB(P ) =

∫ ∞

−∞
FB(λ)R(P, λ)dλ (2.12)

where FB(P ) is the amplitude of the spectral filter corresponding to the blue color. In the

same way we can obtain TR(P ), TG(P ) and TIR(P ), which are independent projections

of P into a 4-dimensional space.

2.1.2 Synthetic aperture radar images

When a radar image is acquired, the resulting pixel intensity is commonly assumed to

have an exponential distribution with rate parameter TSAR(P ). The main cause of noise

in SAR images is due to the coherence of the signal used to illuminate the scene. This

signal is emitted from the radar, bounces on the objects in the ground, and returns to

the radar. The coherence of the signal leads to constructive and destructive interferences
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in the image. To model this behavior, the resulting pixel intensity is usually modeled as

a random variable with an exponential distribution as follows

iSAR|P ∼ exp[TSAR(P )]. (2.13)

where exp (λ) represents an exponential distribution with scale parameter λ. To mitigate

the effect of this noise, several images of the scene are captured and averaged to obtain

the final SAR image [OQ04; Fjo+88], so that

iSAR|P =
1

L

L∑

l=1

iSAR,l (2.14)

iSAR,l ∼ exp[TSAR(P )] (2.15)

where iSAR is the result of averaging L images denoted iSAR,l with 1 ≤ l ≤ L. These

kind of images are the so-called “multi-look” SAR images, where L is the number of

looks. If the different variables iSAR,l are assumed statistically independent, iSAR can be

described as

iSAR|P ∼ Γ
(
L, TSAR(P )L

−1
)

(2.16)

where Γ(k, θ) represents the gamma distribution with shape and scale parameters k and

θ respectively. If the different looks iSAR,l are not independent, non integer values for L

are usually considered.

The result in (2.16) can be expressed following the structure of (2.2) as

iSAR = TSAR(P )× ηSAR (2.17)

ηSAR ∼ Γ
(
L,L−1

)
(2.18)

where ηSAR is called the multiplicative speckle noise.

2.2 Joint behavior of the images

Section 2.1 introduced a model describing the statistical behavior of a pixel intensity.

However, in order to build a change detector, we are interested in modeling the joint

statistical behavior of the pixel intensities arising from the different sensors. To achieve

that, this section studies the joint statistical properties of the pixel intensities across the

different modalities, i.e., the statistical properties of i = [i1, . . . , iD]
T , a vector contain-

ing the intensities obtained by each sensor Sd, for any d = 1, . . . , D, for a particular
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pixel. Particularly, given an analysis window W , we are interested in the joint intensity

probability density function (pdf) p(i|W ) in the absence of change, which is studied in

Section 2.2.2. In order to derive this distribution, Section 2.2.1 studies the characteristics

of p(i|P ) on unchanged areas.

2.2.1 Uniform regions

Assume that we have acquired D images using D different sensors, and that no change

has occurred between these D acquisitions. Moreover, consider a uniform region, i.e., a

region where the physical properties P of the objects being observed do not change (e.g.,

a corn field with Pcorn, or an area covered by water with Pwater). Under this assumption,

P is not a random variable; it takes a particular value, which depends on the chosen

uniform area. Studying the statistical distribution of these areas can be achieved by

studying p(i|P ).

Since our interest focuses on the intensity distribution conditionally on P , we can

consider Td(P ) for any d = 1, . . . , D as deterministic (in the sense that it is not a random

variable). Recalling that id = fd(Td(P ), ηd) from (2.2), the joint distribution of i can be

written

p(i|P ) = p(i1, . . . , iD|P ) (2.19)

= p[f1(T1(P ), η1), . . . , fD(TD(P ), ηD)|P ] (2.20)

Since the sensors capturing the images are not related, we propose to assume that the

random variables η1, ..., ηD associated with the sensor noises are statistically independent.

Consequently, p(i|P ) can be written as

p(i|P ) =
D∏

d=1

p[fd(Td(P ), ηd)|P ] (2.21)

=
D∏

d=1

p(id|P ). (2.22)

Following this model, the family distribution F[S1,...,SD](P ) for p(i|P ) is

F[S1,...,SD](P ) =
D∏

d=1

FSd
(P ) (2.23)

where each FSd
(P ) can be obtained in a similar way as explained in Section 2.1 for

the optical and SAR images. For conciseness, F[S1,...,SD](P ) will be denoted simply as

FD(P ).
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2.2.2 Non uniform regions

A classical way of handling the change detection problem is to analyze the image using a

sliding window and to define a change indicator for each window position [Ing02]. In this

case, we are particularly interested in the statistical properties of the pixel intensities

within a sliding window W , which we will denote p(i|W ).

To obtain this pdf, we assume that the region of interest (covered by the sliding

window) is composed of a finite number K of uniform areas with different physical

properties P1, ..., PK . Because of this, we propose to describe the physical properties of

the region of interest by a discrete random variable with distribution

p(P |W ) =
K∑

k=1

wk δ(P − Pk) (2.24)

where wk is the weight or probability of Pk which represents the relative area of W

covered by Pk. Using (2.22) and the total probability theorem, the joint distribution of

the pixel intensity can be expressed as

p(i|W ) =

∫

P

p(i|P )p(P |W )dP (2.25)

=

∫

P

p(i|P )

(
K∑

k=1

wk δ(P − Pk)

)
dP (2.26)

=
K∑

k=1

wk

∫

P

p(i|P ) δ(P − Pk)dP (2.27)

=

K∑

k=1

wk p(i|Pk) (2.28)

which leads to the equation

p(i|W ) =

K∑

k=1

wk

D∏

d=1

p(id|Pk). (2.29)

In this case, the family of distributions associated with the pixel intensities within an

analysis window W , denoted as FW (w1, P1, . . . , wK , PK), is a mixture of distributions

belonging to the family FD(P ). Moreover, according to (2.22), each component of this

mixture is the product of densities associated with independent random variables.

Note that previous models proposed in the literature are mainly obtained by trying to

match the statistical properties of the marginal distributions. On the contrary, the pro-

posed model is derived by proposing a physical model for the pixel intensity acquisition

under realistic assumptions concerning the sensors.
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given distribution or not, by assuming that the sample based cumulative density function

(cdf) can be expressed as the population cdf with an additive random walk constrained

to start and end in zero. An hypothesis test is designed, where the test statistic is the

maximum difference between the sample based histogram and the population cdf (i.e.,

the maximum absolute value taken by the random walk). In the bivariate generalization

of the test, the fact that three non linearly dependent cdf can be obtained (depending

on the integration direction of the random variable) is taken into account by keeping

the biggest of the three possible differences. The hypothesis H0 indicating that the

sample population was produced by the same distribution is accepted whenever the p-

value is less than the significance level α. The histogram for the p-value obtained with

the proposed model and with the histogram description or the joint distribution are

compared in Fig. 2.2(d), where it can be observed that the proposed model produces

better descriptions of the data than the histogram. The algorithm used to estimate the

parameters of the proposed model will be presented in Section 3.3. Based on this we

can assert that the proposed method obtains a better fit to the data than a histogram

description. Moreover, the histogram description requires 20× 20 = 400 scalar numbers

to represent the data, while in this case the proposed method requires 5 parameters

per component (two means, two variances, and a weight). Since for this example the

algorithm in Section 3.3 was limited to produce a maximum of 10 component, this

estimated model is always represented by 50 or less scalar parameters.

2.3 Dependency based measures

Based on the results obtained in Section 2.2, this section analyzes the behavior of the

correlation coefficient and the mutual information as change detectors by analyzing some

relevant examples. Moreover, it is also shown that these examples are in good agreement

with the proposed model.

2.3.1 Unchanged optical images

Figs. 2.3(a) and 2.3(b) display examples of two optical images acquired by the same sensor

associated with an unchanged area, where three kinds of objects can be clearly seen: a red

roof, grass, and parts of trees. According to the proposed model, the joint distribution

of these images should be a mixture of three Gaussian components. This mixture can be

observed in Fig. 2.3(c), where the joint pixel intensity distribution, i.e., p(iold, inew) was
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Figure 2.3: Images of an unchanged area in south of Toulouse and the corresponding

joint distribution estimated from a histogram.

estimated by using a bivariate histogram. In order to be able to display this distribution

in a two dimensional space we only considered the luminance of each optical image.

The histogram was then constructed by considering each pair of corresponding pixels in

both images as a realization of a random variable. The space was divided in a grid of

classes, and the number of realizations corresponding to each class was counted. The

class division used to compute the histogram was obtained by cross validation. Red color

represents a high count, while dark blue color means a count close to zero. As expected

from the proposed model, three main clusters are observed in the joint distribution. With

dashed lines the physical property corresponding to each cluster has been highlighted,

where (by recalling (2.3) and (2.4)) the parameters of the given cluster can be obtained

through [Told(P ), Tnew(P )]. In this case, the centroid of the three clusters in Fig. 2.3(c)

are located very close to a straight line defined by µS1 = λ µS2 + β. Since these images

have been acquired by the same kind of sensor, the observed relationship is the one

associated with images with differences in brightness and contrast [Woj98], where the

parameters λ and β account for contrast and brightness respectively.

The estimated correlation coefficient for these images is close to 0.77, while the

estimated mutual information is 0.84 (which was obtained by replacing the joint intensity

distribution by its histogram). By themselves these values do not provide any useful

information. However, we can remark that the correlation coefficient is closer to 1 than

to 0, and that the mutual information is different from 0. Nevertheless, these results

should be compared to the results obtained in changed areas. A hypothesis test allowing

one to show whether these results are significant, different or not in presence and absence
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Figure 2.4: Images before and after the construction of a road in south of Toulouse and

the corresponding joint distribution estimated from a histogram.

of change could also be performed.

2.3.2 Changed optical images

Figs. 2.4(a) and 2.4(b) show a pair of optical images captured from the same sensor

and corresponding to a changed area. The first image is quite uniform and is mainly

composed of grass, while a new road takes most of the central portion of the second

image. In order to apply the proposed model for this image, we can consider that both

images are composed by the intersection of all the objects in the image, i.e., in the second

image we have an upper and a lower grass triangle and a central stripe with the road,

whereas in the first image we have an upper and lower grass triangle and a central stripe

which is also made of grass. Following this method, if there are Kold different objects in

Iold and Knew in Inew we can conclude that the number of clusters obtained in the joint

distribution will belong to the interval [max (Kold,Knew),Kold ×Knew].

In this case, the mixture distribution is expected to have two components, where

the parameters for one of them can be obtained from [Told(Pgrass), Tnew(Pgrass)], and for

the other they can be obtained from [Told(Pgrass), Tnew(Proad)]. Since both components

share the same parameters in the dimension of iold, both components are expected to

be vertically aligned. This result can be clearly seen in Fig. 2.4(c), which was obtained

by the same procedure as Fig. 2.3(c). In this situation (i.e., when both components

are vertically or horizontally aligned), the correlation coefficient as well as the mutual

information are expected to yield estimates close to zero.

For these images, the estimated correlation coefficient is 0.011 while the estimated
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Figure 2.5: Old image with a group of trees, new image preparing the ground for a new

construction, and their corresponding joint distribution estimated from a histogram.

mutual information is 0.14 (computed used the joint histogram of Fig. 2.4(c) as the

joint distribution estimation). In both cases, this value is closer to zero than the result

obtained for unchanged areas. Finally, one could quickly conclude that in circumstances

such as those presented in these images the mutual information and the correlation

coefficient are good similarity measures to detect changes. However, as it will be shown

in what follows, the mutual information and the correlation coefficient are not always

good similarity measures for change detection.

2.3.3 Uniform regions

Previously we presented two situations where the correlation coefficient and the mutual

information produced significantly different estimates for changed and unchanged areas.

However, this is not always the case. Based on the proposed statistical model we can

construct cases where both similarity measures always detect a change regardless of the

presence or absence of this change. One of these situations can be constructed by con-

sidering two different images whose mixture distribution only contains one component,

which can be easily achieved by taking two images with only one object each. We would

like to recall here that we are assuming that the intensity distribution of each component

of the mixture is constructed as the distribution of two independent random variables.

In such scenario, we expect both, the correlation coefficient and the mutual information,

to detect such region as changed.

Consider two images with a unique object such as those displayed in Figs. 2.5(a)

and 2.5(b) where the first image shows a forest area and the second image shows the soil
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Figure 2.6: (a) and (b) Optical images for an unchanged homogeneous area with different

brightnesses and contrasts, and (c) the corresponding joint distribution (estimated using

a 2D histogram).

ground of a construction site. These images are clearly different and a similarity measure

computed between these two images should clearly detect a change between them. The

joint histogram, which is shown in Fig. 2.5(c) (computed using the same procedure

as previously described for Fig. 2.3(c)), shows that their distribution consists of only

one component whose parameters can be obtained from [Told(Ptree), Tnew(Psoil)]. It can

be seen that their joint distribution is elliptical, due to both images having different

variances. However they are still independent. In this case the estimated correlation

coefficient is 0.019 while the mutual information is 0.062, which is in agreement with

the results obtained for the changed images of Fig. 2.4. As expected, a change between

these two images is correctly detected.

However, we can also consider the case where the only object present in both images

is the same, as depicted in Figs. 2.6(a) and 2.6(b), where both images show the same

forest area captured by the same sensor at different dates. These images present no

change and should be considered as unchanged. Their joint histogram, which is shown

in Fig. 2.6(c) (computed using the same procedure previously described for Fig. 2.3(c)),

clearly shows that their distribution consists of only one component whose parameters

can be obtained from [Told(Ptree), Tnew(Ptree)]. In this case the computed correlation

coefficient is 0.051 while the mutual information is 0.048, which are very similar to

those obtained for the images of Fig. 2.5, i.e., corresponds to a change between the

two images. In these cases the mutual information, the correlation coefficient, or any

dependency measure are clearly bad similarity measures, since they will detect a change
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Figure 2.7: (a) Optical image with two different objects, (b) the unchanged image cor-

responding to a sensor with TS(P ) = TOpt(P )[1− TOpt(P )] and (c) the corresponding

joint distribution (estimated using a 2D histogram).

between Figs. 2.6(a) and 2.6(a) whereas these two images are clearly not affected by any

change.

2.3.4 Non linearly related sensors

Another situation where measures based on the dependency between two random vari-

ables fail to detect changes can be constructed by choosing a pair of sensors which are

related by a function which is not bijective. In this case, we can consider a scene con-

sisting of two objects with physical properties P1 and P2 such that TS(P1) = TS(P2) for

at least one of the sensors.

Such a situation is displayed in Figs. 2.7(a) and 2.7(b). Fig. 2.7(a) represents an

optical image with half of it is covered by trees, whereas the other half is made of soil.

Fig. 2.7(b) represents a SAR image with TSAR(P ) = Topt(P )[1− Topt(P )] affected by

multiplicative speckle noise. In this case, the two images are not affected by any change

and the visual differences in Figs. 2.7(a) and 2.7(b) are only due to differences between

Topt(P ) and TSAR(P ). Note that the way TSAR has been constructed yields TSAR(Ptree) =

TSAR(Psoil). This can be observed in Fig. 2.7(b), where no difference can be seen between

the two halves of the image. The joint histogram of the two Figs. 2.7(a) and 2.7(b), which

is shown in Fig. 2.6(c) (computed using the same procedure previously described for

Fig. 2.3(c)), clearly shows that their distribution consists of two components, where the

parameters of each component can be obtained from [Topt(Ptree), TSAR(Ptree)], and the

parameters of the other can be obtained from [Topt(Psoil), TSAR(Psoil)], which happens
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(a) Correlation coefficient. (b) Mutual information.

Figure 2.8: Similarity of the images in Figs. 2.2(a) and 2.2(b) as measured by (a) the

correlation coefficient and (b) the mutual information.

to be the same as [Topt(Psoil), TSAR(Ptree)]. This situation is very similar to the one

observed in Fig. 2.4(c), and thus we expect that the correlation coefficient and the

mutual information will produce a measure indicating the presence of a change. The

estimated correlation coefficient is close to −0.058 for this example, while the mutual

information yields a similarity of 0.13, which are in accordance with those in Fig. 2.4. In

this situation, as in Fig. 2.6, the correlation coefficient and the mutual information are

not appropriate to detect the absence of change between the two images.

2.3.5 Real images

Previously we analyzed the behavior of the correlation coefficient and of the mutual

information (which can be extended to any measure based on statistical dependency) in

different situations and detected several situations where these measures are not suited

to detect changes. This phenomenon can also be observed in real images, as those shown

in Fig. 2.8. These results are based on the images in Fig. 2.2. Figs. 2.8(a) and 2.8(b)

shows the estimated mutual information and correlation coefficient for all the moving

windows withing the image, where we would expect to see in blue (low similarity) a

pattern similar to the change highlighted in Fig. 2.2(c). However, the most prominent

changes detected by both methods are found on the football fields in the center of the

image, the channel across the image, and the green area at the side of the channel. This

behavior is easily explained by the previous analysis, since the football fields consist in

uniform areas bigger than the analysis window, so that these windows show the behavior

described in Section 2.3.3. This problem has been partially addressed by [IM09] by

considering variable window sizes, trying to avoid sizes of the moving windows that
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Figure 2.9: Even if the proposed model results in an improved model of the joint pixel

intensities, its use does not reflect in any measurable improvement in the change detection

performance compared to a histogram description when the mutual information is used

as a similarity measure, as shown by these ROC curves.

result in them containing only uniform regions.

Another factor to consider is that whenever we compute a similarity measure, we dis-

card some information considered as irrelevant and we keep some information considered

as relevant. These irrelevant and relevant quantities are summarized into a single quan-

tity, namely the similarity measure. When considering the mutual information or the

correlation coefficient, we arbitrarily decide that the relevant information is contained

solely in the dependency of the two random variables. This property yields a limit on

the performance that can be obtained using this similarity measure. Even when the

joint distribution estimation is improved, as shown in Section 2.2.3, the resulting change

detection performance is not necessarily improved when using the mutual information as

a similarity measure. To prove this, we applied a mutual information based change de-

tector on the images presented in Fig. 2.2. In order to compute the mutual information,

we estimated the joint distribution in 3 ways: using a histogram description with 5× 5

classes, using 20×20 classes, and using the proposed method and the parameter estima-

tion algorithm from Section 3.3. We used the receiver operating characteristic (ROC)

curves depicted in Fig. 2.9 as a performance evaluation, where it can be observed that

the performance obtained when using the mutual information to detect changes is not

necessarily improved when a better statistical model is used for the images, motivating

the definition of a new similarity measure for change detection.
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2.4 Conclusions

This chapter introduced a statistical model to describe the joint distribution of any

finite number of images independently of the kind of sensors used for their acquisition.

This model is based on the assumption that the image acquired by different sensors

are corrupted by independent noises. This implies that the observed pixel intensities

are independent conditional to an unobserved variable P that represents the physical

properties of the object being imaged. Extending this pixel intensity model to an analysis

window results in a mixture distribution model.

The proposed model was used to analyze the performance of some classical change

detection algorithms. Not only significant flaws were detected on dependency based sim-

ilarity measures, but we have also shown that improving the statistical model used to

describe the joint pixel intensity distribution does not necessarily improve the detector

performance compared to simpler methods, such as those using a histogram. This allows

us to conclude that improving the statistical description of an analysis window is worth-

less if it is only used to obtain a statistical dependency based measure. As a consequence

a new similarity measure is required if we want to improve the detection performance.
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As stated in Chapter 2, similarity measures based on the statistical dependency

between the pixel intensities are not necessarily best suited to detect changes between

images acquired by heterogeneous sensors. To fill this gap, the present chapter proposes

a new similarity measure based on the statistical model introduced in Chapter 2. More

precisely, we assume that some properties of the mixture model parameters hold on

unchanged areas only. This finding leads to the definition of a new a similarity measure

based on the parameters of this statistical model.

Section 3.1 introduces the assumption that in the absence of change the parameters

of the mixture model clusters defined in (2.29), should belong to a given manifold. This

manifold depends upon the physical properties P of the objects in the scene and upon the

sensor types. In Section 3.2, this assumption is used to build a similarity measure based

on the distance between the observed parameters and the manifold. A simple approach

based on the expectation maximization (EM) algorithm is proposed in Section 3.3 to

estimate the parameters of the mixture model, which is required to obtain the similarity

measure. Section 3.4 evaluates the performance of the method on synthetic images.

37
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Finally conclusions are drawn in Section 3.5.

3.1 Manifold definition

Consider the vector v(P1, . . . , PD) = [T1(P1), . . . , TD(PD)]
T where Pd represents the

physical properties of the object observed by the sensor Sd. The vector v(P1, . . . , PD)

defines a parametric function of [P1, . . . , PD]
T from P

D (where P represents the space

where P lives) in the space T1(P)×· · ·×TD(P), i.e., the space containing all the possible

parameters of the joint distribution defined by

p(i) =
D∏

d=1

p(id|Pd). (3.1)

Now consider the particular case where all the sensors observe the same object.

In other words, the object has not changed from one acquisition to the other. We

can express this as P1 = P2 = · · · = PD = P and the parameter vector denoted as

v(P ) is a parametric function from P to the space T1(P) × · · · × TD(P). Even though

v(P1, . . . , PD) and v(P ) have the same image space, the domain space of v(P ) is reduced.

Our assumption is that this space reduction leads the vector v(P ) = [T1(P ), . . . , TD(P )]
T

to live within a manifold denoted as M ⊂ T1(P) × · · · × TD(P) In what follows we will

refer to areas corresponding to P1 = P2 = · · · = PD = P as unchanged areas. Another

assumption is that in changed areas there is no reason for the vector v(P1, . . . , PD) to

belong to M. This difference will allow the manifold M to be used as a reference for

change detection.

The manifold M characterizes the relationships between the involved sensors. It

should be noted that, from (2.2) and (2.3), the equation (2.23) in unchanged areas can

be expressed using v(P ) as

F(P ) = F [v(P )] (3.2)

i.e., the distribution family describing a component of the mixture (2.29) can be com-

pletely parametrized by v(P ).

For instance, consider two sensors S1 and S2 differing only by their brightness and

contrast such that T2(P ) = λ1T1(P ) + λ2 [Woj98], the vector v(P )

v(P ) = [T1(P ), T2(P )]
T

= [T1(P ), λ1T1(P ) + λ2]
T
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Figure 3.1: Manifolds M obtained with simple sensor combinations (Red curve: two

identical sensors, Blue curve: sensors with different brightness and contrast with a sat-

uration).

defines a manifoldM in the space T1(P )×T2(P ) whose representation is a straight line.

The case where λ1 = 1 and λ2 = 0 is depicted by the red line in Fig. 3.1. Note that situa-

tions such as sensor saturations would lead to more complex expressions for v(P ) leading

to non linear manifold, as depicted by the blue curve in Fig. 3.1. However, in general the

relationship between Ti(P ) and Tj(P ) is unknown for j 6= i. Moreover, the generic (i.e.,

for any sensor S) transformations TS(P ) are generally intractable. Section 3.2 proposes

a method to build a similarity measure based on the manifold M defined by v(P ).

3.1.1 Unchanged areas

As previously discussed, since an object is the same for all images associated with an

unchanged area, the physical properties P for a given pixel do not change for all the

images. Such object will produce a component in the mixture distribution (2.29) follow-

ing the result in (3.2). Consequently, the parameter vector describing this component

belongs to the manifold M, defined under the “no change” hypothesis.

Figs. 3.2(a) and 3.2(b) displays two synthetic images that were generated from a

ground truth noiseless image by adding independent additive Gaussian noises with the

same variance for both images. These images represent two optical images acquired with

the same sensor and captured with the same settings (i.e., brightness and contrast). If we

consider the different objects contained in these images we can retrieve the ground truth
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Figure 3.2: (a) and (b) are two (different) synthetic images obtained for the same sensor

on a unchanged area. The v(P ) of every each region is shown in (c).

values v(P ) that generated them. Fig. 3.2(c) shows the location of the vectors v(P ) in

the space T1(P )×T2(P ). Since both images were generated by adding noise to the same

ground truth image, the manifold relating them is the straight line T1(P ) = T2(P ), as

depicted by the red line in Fig. 3.2(c). As expected, the values of v(P ) follow exactly

the relationship described by the red manifold M in Fig. 3.1.

Fig. 3.3 illustrates a slightly more complex situation. Fig. 3.3(a) was generated in

the same way as in Fig. 3.2(a). However, in order to generate Fig. 3.3(b) the ground

truth noiseless image was transformed using the brightness and contrast transformation

min (1, max (0, 2x− 0.3)). The blue areas of Fig. 3.3(b) are those with low pixel intensity

and saturated towards zero, and the red areas are those with high pixel intensity and

saturated towards one. These images correspond to two images captured by the same

sensor, but having different brightness and contrast. Fig. 3.3(c) shows the location of

the vectors v(P ) in the space T1(P )× T2(P ). Because of the way the images have been

generated, the manifold relating T1(P ) and T2(P ) is the blue curve of Fig. 3.1, also

depicted by the red line in Fig. 3.3(c). As expected, the values of v(P ) follow exactly

the relationship described by manifold.

3.1.2 Changed areas

Now let observe what happens when a change occurs in the observed scene between

the two acquisitions. On changed areas, the object present on each image is not the

same, and thus the physical properties observed by the sensor SD are not the same. A

pixel in this situation cannot belong to a mixture component with distribution F [v(P )].
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Figure 3.3: (a) and (b) are two synthetic images obtained for the same sensor with

different brightness and contrast settings on an unchanged area. The v(P ) of every each

region is shown in (c).

Such pixel belongs to a component of a mixture distribution with parameters given by

v(P1, . . . , PD).

This can be easily observed in Figs. 3.4 and 3.5. In this case, the second image in

Figs. 3.2 and 3.3 has been rotated by 90o in order to introduce changes in the scene.

Figs. 3.2(c) and 3.3(c) show the location of the corresponding vectors v(P1, P2) that

produce each component of the mixture distribution. As observed, the vectors v(P1, P2)

are no longer constrained to belong to the manifold M highlighted with a red line in

each case. We would like to highlight that some vectors v(P ) do belong to the manifold.

However, these vectors correspond to the areas present in the middle of the image which

are not affected by the applied rotation.

3.2 A new similarity measure

Sections 3.1.1 and 3.1.2, suggest that the distance between v(P1, . . . , PD) and the man-

ifold M can be exploited for change detection. Several parameter vectors v can be

estimated on each analysis window, one for each object within the window. When an

object within the analysis window does not change in all images, the estimation v̂ of v

for the component representing that area should belong to the manifoldM. When con-

sidering a changed areas, v̂ is not subject to the same constraint, which can be expressed
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Figure 3.4: (a) and (b) are two synthetic images obtained for the same sensor on a

changed area. The v(P1, P2) of every each region is shown in (c).

as

{
v̂ = v̂(P ) if absence of change

v̂ = v̂(P1, . . . , PD) if presence of change
(3.3)

where [P1, . . . , PD]
T 6= [P, . . . , P ]T . In other words, if the estimated vector v̂ belongs to

M, then the two scenes are the same; otherwise, they are different.

Since the transformations TSd
for d = 1, . . . , D are a priori unknown, it is not possible

to obtain an analytical description of the manifold M. To overcome this situation, it is

proposed to estimate the manifold M from a training dataset composed of unchanged

images, considering P as a hidden variable.

3.2.1 Distance to the manifold

The parameter vectors associated with different components of the mixture distribution

can be estimated from the pixel intensities observed within an analysis window W to

obtain several estimated vectors v̂. Since these vectors v̂ are estimates, they will be

subject to an estimation error, i.e., a variance, and this will not exactly lie on M, but

in a small neighborhood around it. Consequently, testing whether v̂ belongs exactly to

M is not a good strategy, since doing so would result in a high rate of false positives,

i.e., detecting changes for unchanged areas. This effect can be observed in Fig. 3.6. On

the left hand side of Fig. 3.6(a) the vectors v(P ) obtained from the ground truth images

used to generate Figs. 3.2(a) and 3.2(b) are plotted in the space T1(P ) × T2(P ). The

right hand side of Fig. 3.6(a) displays the vectors v̂(P ) obtained after estimating v(P )
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Figure 3.5: (a) and (b) are two synthetic images obtained for the same sensor with

different brightness and contrast settings on a changed area. The v(P1, P2) of every each

region is shown in (c).

from the data associated with an unchanged area. For this estimation we considered the

ground truth information about the location of the objects within the image in order

to reduce the complexity of this example and focus just on discussed matter, however

it should be noted that it is unknown in real case scenarios (which is considered later

in Section 3.3). More precisely, the values of v̂(P ) were computed using a maximum

likelihood estimator. It can be clearly seen in Fig. 3.6(a) that the vectors v̂ (obtained

from unchanged areas) do not lie exactly on the manifold. The same remark can be

made for Fig. 3.6(b), where the same process was applied to the images in Figs. 3.3(a)

and 3.3(b).

The distance between a vector v̂ and the manifold M will be denoted as dM(v̂) in

what follows. We propose to investigate a hypothesis test to decide whether there is a

change or not by thresholding this distance measure as follows

dM(v̂)
H1

≷
H0

τ (3.4)

where H0 and H1 are the two hypotheses

H0 : Absence of change

H1 : Presence of change

and where τ is related to the probability of false alarm (PFA) (i.e., the probability of

detecting an unchanged area as changed) and the probability of detection (PD) (i.e.,

the probability of correctly identifying a change) of the detector. The change detection
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(a) Comparison between v(P ) and v̂ for the images in Fig. 3.2.
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(b) Comparison between v(P ) and v̂ for the images in Fig. 3.4.

Figure 3.6: Comparison between the (left) ground truth vectors v(P ) or v(P1, P2) with

the (right) vectors v̂ obtained from noisy data.

problem now reduces to estimating a distance from v̂ to the manifold M. As shown in

Section 3.2.2, this estimation can be directly performed without estimating the manifold

M.
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3.2.2 Estimation of the distance to the manifold

The manifoldM representing objects belonging to unchanged areas is a priori unknown,

and could be estimated by using training data associated with unchanged areas. However,

we propose to directly estimate the distance to M rather than its exact location in the

space.

First we would like to note that v(P ) is not a random variable, but a deterministic

unknown value. However, we can think of a deterministic value x0 as a random variable

X with a pdf such that

pX(x) ∝ ✶x0(x) (3.5)

where ✶x0(·) is the indicator function located in x0. This way we can express v(P ) as a

random variable. Moreover, we know that the indicator function used to represent this

random variable will indicate a value belonging to the manifold M. If we now consider

v(P ) to be unknown, it can be seen as a random variable taking values onM, such that

p(v(P )) ∝ ✶M[v(P )] (3.6)

Let consider p(v̂|no change), i.e., the pdf of v̂, in the absence of change. Since each

v̂ is estimated using a maximum likelihood estimator from several pixels, the asymptotic

distribution of this estimator can be used (when enough samples are used to compute

the estimate) to approximate p(v̂|H0) As a consequence

v̂ − v(P ) ∼ N
(
0, σ2N

)
under H0 and for N large enough. (3.7)

where σN is a decreasing function of N . In what follows we will assume that N is always

large enough so that the Gaussian approximation in (3.7) holds.

Since the training data arises from vectors v̂ associated with different values of P

(and hence, of v(P )), the distribution of v̂ can be expressed as the convolution between

M and a zero mean Gaussian distribution. Indeed,

p(v̂) =

∫

v(P )
p[v̂ − v(P )|v(P )] p[v(P )] dv(P ) (3.8)

p(v̂) ∝

∫

x

pN (0,σ2)(v̂ − x) ✶M(x) dx (3.9)

where we considered x = v(P ), and replaced p[v̂ − v(P )|v(P )] and p[v(P )] by their pdf,

a zero mean Gaussian pdf and a density proportional to the manifold indicator function.

The resulting density p(v̂) can be seen as a low-pass version of the manifold indicator
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blue manifold in Fig. 3.1.

Figure 3.7: Relationship between Fig. 3.7(a) the distance to the manifold M and

Fig. 3.7(b) the density p(v̂). Black (blue on the right) color represent a value near

zero while white (red on the right) represents a high value.

function, which means it will take higher values near M and low values far from M,

behaving like an inverse distance measure, or a “closeness” measure.

This relationship is illustrated in Fig. 3.7 for the manifoldM representing two similar

sensors with different brightness and contrast. Precisely, Fig. 3.7(a) shows the euclidean

distance from any point in the space T1(P ) × T2(P ) to M, with black representing a

distance of zero, and white representing a high distance. Fig. 3.7(b) shows the convo-

lution of M with a zero mean normal distribution and represents the theoretical pdf of

p(v̂), where blue color represents a probability of zero and red color represents a high

probability.

Based on this observation, we propose to use p(v̂), or more precisely its inverse 1
p(v̂) ,

a similarity measure for change detection. Note that 1
p(v̂) assigns low values to points

nearM and high values to points far from M as a pseudo distance between v̂ andM

dM(v̂) =
1

p(v̂)
(3.10)

It should be noted that since we are considering (3.7) to be valid, the density p(v̂) is

never zero, so that its inverse is well defined. We consider important to note that 1
p(v̂)

does not define a distance in the strict mathematical sense.
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As discussed in the beginning of Section 3.2, this pseudo distance can thus be used

as a similarity measure for change detection. The density p(v̂) can be estimated from a

set of vectors v̂ obtained from unchanged area used as training data. The estimation of

p(v̂) can be conducted using well-known density estimation techniques such as Parzen

windows [KC02]. In such case, we can redefine the similarity measure as

dM(v̂) =
1

p̂(v̂)
. (3.11)

The proposed similarity measure has several interesting advantages when compared

to the Euclidean distance. The first one is that less resources are required to estimate

p(v̂) since it is not required to estimate the manifold, but just pM(v). The second and

most interesting reason is that contrary to the Euclidean distance, p(v̂) is the probability

of finding an unchanged parameter in that area of the space. Taking into account (3.7),

this allows us to define a threshold as a function of a given probability of false alarm.

However, it should be noted that this threshold would be dependent on the number of

samples used to obtain the vectors v(P ).

3.3 Parameter estimation

In order to compute the similarity measure proposed in Section 3.2.2, it is first required

to estimate the vectors v̂. The algorithm introduced in [FJ02], which is based on the

classical EM algorithm is used for this estimation. The choice for this algorithm is due

to its capability to determine the number of components in the mixture model (i.e.,

objects in the scene), within a predefined range, using a heuristic approach based on

an information measure. The algorithm, described in Algo. 1, begins with an upper

bound of the number of components, and gradually removes those that do not describe

enough samples. In Algo. 1, InfLogLikelihood is a modified LogLikelihood based on

information theory criteria, and dim(v′) is the dimension or number of elements in the

vector v
′.

As previously mentioned, each component of the mixture distribution describes one

object. However, even if the component parameters are well estimated, it is not always

clear which pixels belong to which component, specifically when two or more components

share similar parameters. This effect can be observed in Fig. 3.8, where Fig. 3.8(d) shows

a significant noise even though the cluster parameters are well detected. This problem

becomes more important when the number of objects in the image increases, and thus,

estimating a pixel-wise distance measure is not recommended. Instead, as it is the case
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Algorithm 1: Expectation Maximization based algorithms from [FJ02].

Input: I = {i1, . . . , iN}, Kmax, Kmin, maxiter, τ

Output: V
′ = {v′

1, . . . ,v
′
K}, w = {w1, . . . , wK}

1 K ← Kmax;

2 while K ≥ Kmin do

3 niter ← 0;

4 while LogLikelihood− LogLikelihoodold > τ and niter < maxiter do

5 LogLikelihoodold ← LogLikelihood;

6 {V ′,w, LogLikelihood} ← EM-Step(I,V ′,w);

7 kw min ← argmin
k
wk;

8 if wkw min
<

dim(v′
k)

2N then

9 remove component kw min; K ← K − 1;

10 niter ← niter + 1;

11 kw min ← argmin
k
wk;

12 remove component kw min; K ← K − 1;

13 InfLogLikelihood←

LogLikelihood− dim(v′)
2

∑K
1 log (wk)−

dim(v′)+1
2 K log (N);

14 if InfLogLikelihood > InfLogLikelihoodbest then

15 V
′
best ← V

′;

16 wbest ← w;

17 V
′ ← V

′
best;

18 w ← wbest;

with other classic distance measures (correlation coefficient and mutual information for

example), it is proposed to compute a unique window-based similarity measure that

indicates the similarity between two windows. To achieve that, it is proposed to obtain

a window similarity as the average similarity of each component, i.e.,

dW =
K∑

k=1

wkdM(v̂k) (3.12)

where dW is the window similarity, dM(v̂k) is the distance to the manifoldM of the k-th

component of the mixture distribution, as defined in (3.11), and wk is the component

weight from (2.29). Other ways of addressing the estimation of the mixture distribution
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Figure 3.8: Figures (a) and (b) show two images captured by sensors S1 and S2 re-

spectively. Figure (c) shows the mixture distribution of their pixel intensity, and their

estimated parameters represented by a circle with a cross. Figure (d) presents the re-

sulting probability of each pixel belonging to each component.

that overcome the main limitations of the method just presented will be proposed in

Chapter 4.

3.4 Performance on synthetic images

The validity of the proposed similarity measure is assessed by evaluating its performance

through the receiver operating characteristic (ROC) curves obtained when detecting

changes on a dataset consisting of synthetic images.

The change detection results are compared with those obtained with different classical

methods, namely, mean pixel difference, mean pixel ratio, correlation coefficient and

mutual information. The first two reference change detection methods were provided by

the ORFEO Toolbox [OTB14]. The change detection results are compared with those

obtained with classical methods.

The images shown in Figs. 3.9(a) and 3.9(b) were created by generating a synthetic

scene P composed of triangular patches representing the different objects. The objects

generated on the bottom half of Fig. 3.9(a) are the same as those of Fig. 3.9(b), while

the upper half has changed. This difference is shown in Fig. 3.9(c), where the areas that

changed between the two images are indicated in black. The first synthetic scene was

corrupted by additive Gaussian noise with SNR = 30dB to form the synthetic optical

image Fig. 3.9(e). To generate the SAR image, a known transformation was first applied

to the scene P to simulate the relationship between optical and SAR sensors. More
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precisely, the following transformation

vP = [Topt(P ), TSAR(P )] (3.13)

with TSAR(P ) = Topt(P )[1− Topt(P )] (as depicted in Fig. 3.9(d)) was used for this

experiment. Note that the relationship between Topt(P ) and TSAR(P ) is nonlinear. The

resulting image was corrupted by multiplicative gamma noise with shape parameter

L = 5 to obtain the image in Fig. 3.9(f).

The images displayed in Fig. 3.10 compare the similarity measures obtained with the

proposed method, the correlation coefficient, the mutual information, the mean pixel

difference and the mean pixel ratio. These results were obtained using window sizes

optimized by cross validation to produce the best performance for each method. For the

correlation coefficient and the mutual information, a window size of 50 × 50 pixels was

found to yield better results, whereas a window size of 21 × 21 pixels was used for the

mean pixel difference and the mean pixel ratio. Note that the difference in the window

sizes is due to the inefficiency of the correlation coefficient and the mutual information

for small homogeneous windows (as described in Section 2.3), thus requiring bigger (and

thus more likely heterogeneous) windows. The mutual information was computed by

integrating numerically the joint distribution derived in Chapter 2. A window size of

20 × 20 pixels was selected for the proposed method. It is important to note that an

undersized window means a small number of pixels to estimate the mixture distribution.

Obviously, this results in a high variance of the model parameter estimates. On the other

hand, an oversized window results in too many components, reducing the identifiability

of the different objects.

Fig. 3.11(a) displays the ROC curves for the different methods. In order to compare

the performance of the different methods, we propose to choose a detection threshold

corresponding to PFA = 1 − PD = PND, located in the diagonal line displayed in

Fig. 3.11(a). Table 3.1 shows the values of PFA obtained with the different methods,

confirming the good performance of the proposed method.

We evaluated also the performance of the proposed strategy for different values of

the signal to noise ratio (SNR) associated with the optical image. The ROC curves of

the proposed method obtained for different SNRs are shown in Fig. 3.11(b), where it

can be observed that the change detection performance is not affected for SNR ≥ 10dB.

The performance drop obtained for lower SNR is due to errors in the estimation of the

mixture parameters, which are difficult to estimate in the presence of significant noise.
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Table 3.1: Performance of the different methods for detecting changes on the images of

Fig. 3.11(a).

Method PFA = PDN

Proposed method 5.52%

Correlation Coefficient 27.68%

Mutual Information 26.35%

Mean Pixel Difference 38.47%

Mean Pixel Ratio 30.60%

Finally, to demonstrate the importance of accurately estimating the number of com-

ponent of the mixture distribution, we intentionally overestimated K, considering K̂ =

K0 + l, for l = 1, . . . , 4, and K0 the true number of components. Fig. 3.11 displays

the impact of this overestimation on the change detector performance. In this case, the

proposed change detector was applied to the images displayed in Figs. 3.9(e) and 3.9(f).

The distribution of the estimated distance dW for changed and unchanged windows

when the number of components is forced to be equal to the real number of objects is

displayed in Fig. 3.12(a). The effect of overestimating K by 1 for all windows is shown

in Fig. 3.12(b). It can be observed that the distributions of the changed and unchanged

windows are closer when the number of components is overestimated. Since both distri-

bution are closer, any chosen decision threshold for the hypothesis test will result in a

higher error rate. This can be observed in Fig. 3.12(c), where the performance decreases

when K is overestimated for the same dataset of Figs. 3.9(e) and 3.9(f). Underestimating

the number of components of the mixture distribution leads to the missclassification of

objects, assigning different objects to a unique component. This underestimation has

an impact on the estimation of the component parameters, since v̂ is then obtained

from different objects with different values of P , invalidating the proposed analysis. The

method performance clearly benefits from an accurate estimation of K. This statement

leads us to propose an alternative method in Chapter 4.
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(a) Change Mask (b) log (dW )

(c) Pixel Difference (d) Pixel Ratio

(e) Correlation Coeff. (f) Mutual Information

Figure 3.10: Estimated change maps for the images of Fig. 3.9. Red areas indicate high

similarity, while blue areas indicate low similarity.
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Figure 3.11: ROC curves for synthetic images (a) for different methods, (b) for the

proposed method with different SNRs.
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Figure 3.12: Impact of overestimating the number of components K in the mixture

distribution.
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3.5 Conclusions

A similarity measure suitable to detect changes between images acquired by homogeneous

and heterogeneous sensors can be defined based on the parameters of the mixture model

studied in Chapter 2. Section 3.1 introduces the manifoldM within the space generated

by these parameters. This manifold describes the joint behavior of the sensors in the

absence of change. In other words, in the absence of change, the component parameters

are constrained to belong toM, while this constraint is no longer satisfied in the presence

of changes. Based on this statement, Section 3.2 proposes to use the distance to M as

a similarity measure. However, the manifold M, is a priori unknown. A quantity that

behaves as a distance to the manifold is proposed in Section 3.2.2, where a window-based

strategy for its estimation is developed.

A summary of this change detection strategy is shown in Fig. 3.13, explaining how

to go from the training unchanged image to the parameter space, and how the distance

to the manifold is estimated from several parameters obtained throughout the training

image. The performance of this approach was evaluated in Section 3.4 on synthetic

images. The proposed similarity measure performs much better than classical measures

when applied to the detection of changes between heterogeneous datasets.

The estimation of the vectors v̂ is of crucial importance for the proposed approach,

since it is involved in both, the training process and the change detection. It is important

that each component represents only one object, and does not arise as the estimation

of several different objects at the same time. It is also important for each component

to be estimated from as many pixels as possible, since this reduces the variance of

the estimator v̂. The results shown in Section 3.4 show that the proposed change

detection method outperforms the other methods studied in this theses. However, these

results depend on an EM based algorithm to estimate the mixture parameters. This

algorithm has two main drawbacks. First, it requires to know a range for the number

of objects within the analysis window. An overestimation on this parameter results in

more components estimated from less pixels each. An underestimation results in different

objects represented by the same component. Second, it does not take into account the

spatial correlation present on the images which provides valuable information to improve

the parameter estimation. Chapter 4 studies a way of addressing these two issues.
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A statistical model was introduced in Section 2.2.2 to describe the joint distribution of

pixel intensities associated with a set of remote sensing images captured by homogeneous

and heterogeneous sensors. As previously mentioned, the estimation of the mixture

parameters is of crucial importance for the change detection algorithm. However, the EM

based algorithm used for this (estimation presented in Chapter 3) has some limitations.

First, the number of components of the mixture distribution has to be contained within

a given range that has to be fixed a priori. This limits the practical window size,

since a bigger window usually requires increasing the number of components of the

mixture, while the effects of under or overestimating this quantity has been discussed in

Section 3.4. Second, the spatial correlation has not been considered into the estimation.

The importance of considering it is that it allow us to deal with problems like the

one presented in Fig. 3.8. Moreover, it would improve the general identifiability of

the mixture components, which in turn would allow bigger window sizes to be used.

59
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This chapter studies a different approach to estimate the distribution (2.29) based on a

Bayesian non parametric approach.

Section 4.1.1 begins by presenting a simple Bayesian approach for the model described

in Section 2.2.2. The first limitation of the EM based algorithm motivates the need for

a BNP framework. Section 4.1.2 introduces the BNP model by extending the model

in Section 2.2.2 to account for a possible infinite number of dimensions. Section 4.1.3

develops a collapsed Gibbs sampler to sample the resulting posterior distribution. The

generated samples are then used to estimate the parameters of the proposed model.

The use of a prior distribution to estimate the concentration parameter α that arises in

Section 4.1.2 is investigated in Section 4.1.4, and an algorithm to sample and estimate

this parameter is also derived.

To account for the spatial correlation between adjacent pixels of the image, Section 4.2

proposes to include a Markov random field (MRF) prior into the previous BNP model.

Section 4.3 assess the performance of a change detector based on this approach and

compares the results with those obtained in Section 3.4. Finally, Section 4.4 presents

some conclusions regarding the topic covered in this chapter.

4.1 Bayesian modeling

4.1.1 Finite mixture distributions

In Section 2.2.2 we introduced a statistical model describing the pixel intensity vector

i = [i1, . . . , iD], where id is the intensity produced by the d-th sensor Sd within a moving

window W . This model is given by the following mixture model (refer to Section 2.2.2

for its derivation)

p(i|W ) =
K∑

k=1

wk

D∏

d=1

p(id|Pk) (4.1)

where Pk are the physical properties of the k-th object contained in the scene, and wk

is the proportion of W covered by such object.

A Bayesian description of (4.1) can be obtained by including priors on the mixture
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parameters, namely, on the physical properties P , or equivalently v(P ), and the compo-

nent weights. The mixture distribution of Section 2.2.2 can be represented as follows

in|vn ∼ F(vn) (4.2)

p
(
vn

∣∣V ′
)
=

K∑

k=1

wkδ
(
vn − v

′
k

)
(4.3)

where in = [in,S1 , . . . , in,SD
]T (for 1 ≤ n ≤ N) is the pixel intensity vector of the n-th

pixel, vn is the parameter vector associated with the object containing the n-th pixel,

V
′ = [v′

1, . . . ,v
′
K ]T where v

′
k is the parameter vector associated with the k-th cluster or

object and F(vn) is a distribution on the family F identified by the parameter vector vn

(which was previously introduced at the end of Section 2.2.2). Introducing a cluster label

for each pixel in the observation window z = [z1, . . . , zN ]T , one obtains an equivalent

model given by

in|zn ∼ F
(
v
′
zn

)
(4.4)

zn ∼ CatK(w) (4.5)

where w = [w1, . . . , wK ]T and CatK(·) represents the K-th dimensional categorical dis-

tribution. It is important to note that both representations are equivalent to the model

defined in (4.1).

By defining a prior for v
′
k and w, we can build a Bayesian framework [Har03] to

estimate the mixture parameters. A common approach is to consider the following prior

information

v
′
k ∼ V0 (4.6)

w ∼ DirK(α) (4.7)

where V0 is a prior for the parameter vector v′
k that depends on the application (usually

taken as a conjugate prior), and DirK(α) denotes the classical conjugate prior of categori-

cal distributions: the symmetric Dirichlet distribution of dimension K and concentration

parameter α. Applying these priors to a mixture model results in the so-called Dirichlet

mixture model [BZV04]. However, this model requires to know the parameter K a priori,

which can be a problem. This problem was heuristically solved in Chapter 3 by testing

different values of K within a predefined range. The BNP framework investigated in this

chapter allows this limitation to be removed, by making K a random variable taking its

value in the set of natural numbers N.



62 CHAPTER 4. A BNP MODEL FOR CHANGE DETECTION

Algorithm 2: Generation of samples from a realization of a Dirichlet process.

Input: V0, α

Output: v1, v2, v3, . . .

1 for n ≥ 1 do

2 u ∼ Uniform(1, α+ n);

3 if u < n then

4 vn ← v⌊u⌋;

5 else

6 vn ∼ V0;

Considering K as a random variable introduces some difficulties, specifically the fact

that the model exhibits a variable complexity. A common way of dealing with this

problem is to consider a non parametric approach (where non parametric means that

the number of parameters is not finite). In this case we consider a mixture of an infinite

number of components, where only a finite set of them has a non-zero weight. Note

that the effective number of non-zero components is finite, but the model descriptions

is always non-parametric. However, considering K → ∞ yields an infinite dimensional

parameter vector w and a matrix V
′ with an infinite number of columns. Estimating

all the parameters of this mixture model is clearly intractable.

To overcome this problem the model presented in the next section considers these

parameters as intermediate and does not require their estimation. The model leads to

a finite number of vectors vn through the estimation of a finite number of parameters,

namely the concentration parameter α and the distribution V0.

4.1.2 Non parametric mixture distribution

Define as V = [v1, . . . ,vN ] the matrix containing the N random vectors vn, n = 1, ..., N ,

where vn is associated with the n-th pixel in of the observation window. In order to

understand how our Bayesian non parametric method works, consider first Algo. 2 that

generates vectors vn by using an iterative algorithm. Since some of these vectors are

possibly repeated, we finally obtain K ≤ N different vectors that are denoted as v
′
k ,

k = 1, ...,K associated with each object of the observation window. We can compute

the joint distribution of the N vectors v1, . . . ,vN by using the chain rule as explained
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in [GB12]

p(v1, . . . ,vN ) =
N∏

m=1

p(vm|v1, . . . ,vm−1)

=

∏K
k=1 (Nk − 1)!α pV0

(v′
k)

Γ(α+N − 1)
(4.8)

where pV0 is the pdf associated with the distribution V0, Nk is the number of vectors vn

taking the value v
′
k. This distribution can be factorized into two terms: the first one is

related to the particular values of v′
k and the second one is related to the data partition-

ing. The resulting conditional distribution of V given V
′ (where V

′ = [v′
1, . . . ,v

′
K ]) can

be written

p
(
V
∣∣V ′
)
=

∏K
k=1 α (Nk − 1)!

Γ(α+N − 1)
. (4.9)

It can be observed that the distribution of V |V ′ only depends on the cardinal of each

partition set, and not on the order the vectors have been drawn. Thus, any random

vector can be thought as if it was the last drawn vector, meaning that these random

vectors are exchangeable. Using the “de Finetti’s theorem” [OT10], one can show that

the vectors vn are conditionally independent given a latent distribution V . In this case,

V is defined by the pdf pV defined as

pV(vn) =

∞∑

k=0

wk δ
(
vn − v

′
k

)
(4.10)

with

v
′
k ∼ V0 (4.11)

wk = w′
k

k−1∏

j=1

(1− w′
j) (4.12)

w′
k ∼ Beta(1, α) (4.13)

where (4.12) and (4.13) are known as a stick breaking process (SBP) and denoted as

SBP(α) [GB12; IJ01], which can be thought as a generalization of DirK(α) for K →∞.

The parameter α controls the concentration of the variables wk. A small value of α

provides a few values for the discrete distribution V containing most of the probability,

while a high value of α provides a reduced sparsity in the distribution V , leading to a

uniform distribution. The vectors vn defined by (4.10) tend to be grouped into clusters.
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As it will be discussed in Section 4.1.4, the expected number K of different clusters given

that the windows contains N pixels, is

E(K|α,N) = α[ψ(α+N)− ψ(α)] (4.14)

where ψ(·) denotes the digamma function. Note that limα→∞ E(K|α,N) = N , since N

samples can generate at most N clusters.

A Dirichlet process DP(V0, α) is a stochastic process whose realizations are proba-

bility distributions V as defined by the pdf (4.10), so that the vectors vn in Algo. 2 can

be described as

vn ∼ V (4.15)

V ∼ DP(V0, α). (4.16)

Note that the Dirichlet process is often chosen as the conjugate prior for infinite discrete

distributions. The relevance of Algo. 2 is that it provides a method to generate samples

vn from a distribution V with an infinite number of parameters only from its Bayesian

priors without requiring the direct computation of its parameters. The finite mixture

model in Section 2.2.2 can thus be extended through a BNP framework into a Dirichlet

process mixture model (DPMM)

in|vn ∼ F(vn) (4.17)

vn ∼ V (4.18)

V ∼ DP(V0, α) (4.19)

where V0 is the base distribution and α is the concentration parameter.

Introducing the cluster labels for each pixel of the observation window z = [z1, . . . , zN ],

we obtain the equivalent model

in|zn ∼ F
(
v
′
zn

)
(4.20)

zn ∼ Cat∞(w) (4.21)

w ∼ SBP(α) (4.22)

v
′
k ∼ V0 (4.23)

where Cat∞(w) is an infinite dimensional generalization of the categorical distribu-

tion such that p(zn = k) = wk for any k ∈ N
∗. This parametrization is equivalent

to the parametrization in (4.17) to (4.19), but makes explicit that the pixels in, for
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Figure 4.1: Graphical representation of a Chinese restaurant process.

n = 1, . . . , N , are partitioned into different clusters. Moreover, (4.21) and (4.22) de-

fine the so-called Chinese restaurant process CRP(α) [GB12]. Thus, the model can be

reduced to

in|zn ∼ F
(
v
′
zn

)
(4.24)

z ∼ CRP(α) (4.25)

v
′
k ∼ V0. (4.26)

The advantage of this last parametrization is that it allows the parameters v
′
k to be

integrated out, and that it only requires the estimation of z, which is a vector of discrete

random variables.

The name of this process arises from the idea of a Chinese restaurant, where the

same table is shared by different customers, as displayed in Fig. 4.1. In this imaginary

restaurant, there is an infinite number of tables. However, customers are prone to share

tables. Moreover, the probability of a new customer to occupy a table is proportional to

the number of people in that table. However, the probability of a new customer sitting
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in a new table always exist, and is proportional to the concentration parameter α, with

α ∈ R
+. A way of interpreting the parameter α can be expressed as: “the probability of

a new customer to sit in a new table is the same as that of a table with α customers”.

In our example, illustrated in Fig. 4.1, the red customer is the first arriving. Since the

restaurant is empty, he will sit in an unoccupied table with probability 1. When the blue

customer arrives, he can choose to share the table with the red customer, with probability
1

1+α
, or to sit in a new table, with probability α

1+α
. In general, a new customer will choose

to sit in the k-th table with probability Nk

N+α
, where Nk is the number of people in that

table, or in a new table with probability α
N+α

. If we are interested in sampling from

the probability distribution of a restaurant with N customers, once the restaurant is full

we remove one customer and choose one new random table for him as if he was a new

customer.

4.1.3 Parameter estimation

To estimate the parameters vn of a DPMM, we suggest to use a Markov chain Monte

Carlo (MCMC) algorithm based on a collapsed Gibbs sampler [CG92]. To implement

this algorithm we choose the CRP parametrization of the DP. As previously stated, the

advantage of this parametrization is that it allows the parameters v
′
k to be integrated

out leading to a partially collapsed Gibbs sampler [VP08]. More precisely, to estimate

the latent variables z, we can sample from p(z|I,V0), where I = [i1, . . . , iN ]. The Gibbs

sampler is an iterative algorithm that samples sequentially the conditional probabilities

of each variable with respect to (w.r.t.) the other variables. For the proposed problem,

samples from p
(
zn
∣∣z\n, I,V0

)
are generated, where z\n = [z1, . . . , zn−1, zn+1, . . . , zN ].

This conditional probability can be obtained as follows

p
(
zn
∣∣z\n, I,V0

)
∝ p(I|z,V0)p

(
zn
∣∣z\n

)
(4.27)

where ∝ means “proportional to”, p
(
zn
∣∣z\n

)
can be obtained using p(z) = p(V |V ′) and

(4.9). More precisely, the following result can be obtained

p
(
zn
∣∣z\n

)
= p(z)× p

(
z\n

)−1

=

∏K∗

k=1 α (Nk − 1)!

Γ(α+N − 1)
×

Γ(α+N − 2)
∏K∗

k=1 α (Nk − ✶k(zn)− 1)!
(4.28)

=

{
α

α+N−2 if zn = 0
N ′

zn

α+N−2 if 1 ≤ zn ≤ K
∗

(4.29)
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where ✶k(zn) is the indicator function, taking the value 1 when zn = k and 0 otherwise,

K∗ is the number of different values in z in the current moment, N ′
zn

is the number

of pixels in the cluster indicated by zn (excluding zn), and zn = 0 when a new cluster

is created. The probability p(I|z,V0) is obtained by marginalizing out V
′ from the

likelihood p(I|z,V ′) as follows

p(I|z,V0) =

∫
p
(
I
∣∣z,V ′

)
p
(
V

′
∣∣V0
)
dV ′

=
K∏

k=1

∫
p
(
I{k}

∣∣v′
k

)
p
(
v
′
k

∣∣V0
)
dv′

k (4.30)

=

K∏

k=1

p
(
I{k}

∣∣V0
)

(4.31)

where I{k} = {in : zn = k}. Note that V ′ is not required to estimate the vector of latent

variables z. We can now compute p
(
zn
∣∣z\n, I,V0

)
from (4.27) as follows

p
(
zn
∣∣z\n, I,V0

)
∝ p

(
zn
∣∣z\n

)
×

K∏

k=1

p
(
I{k}

∣∣V0
)

(4.32)

so we can factorize out all the terms that do not depend on zn. To do this we should

remember that zn has an influence on I{k} by defining the k to which in will be assigned,

resulting in

p
(
zn
∣∣z\n, I,V0

)
∝ p

(
zn
∣∣z\n

) p
(
I{zn}

∣∣V0
)

p
(
I{zn}\n

∣∣V0
) (4.33)

where I{zn}\n = {im : zm = zn,m 6= n}, i.e., we only consider the p
(
I{k}

)
to which

in belongs, and divide by the influence of all the other im in the same cluster (which

from the point of view of zn is no more than a proportionality constant). By replacing

p
(
zn
∣∣z\n

)
with (4.29), we obtain

p
(
zn
∣∣z\n, I,V0

)
∝





α p(in|V0) if zn = 0

N ′
zn

p(I{zn}|V0)
p(I{zn}\n|V0)

if 1 ≤ zn ≤ K.
(4.34)

Moreover, when I{k}

∣∣V0 belongs to a distribution family that can be described using a

sufficient statistic T
(
I{k}

)
such that pI

(
I{k}

∣∣V0
)
= pT

(
T
(
I{k}

)∣∣V0
)

(e.g., for distribu-

tions belonging to an exponential family), we have T
(
I{k}

)
= T

(
I{k}\n

)
+ T (in). This

means that (4.34) can be easily computed just by keeping track of T
(
I{k}

)
for each

cluster, and avoiding recomputing the likelihood at each iteration, leading to significant

speed improvements.
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Algorithm 3: A collapsed Gibbs sampler to sample from the partition distribution.

Input: I = {i1, . . . , iN}, V0, α, jmax, jmin

Output: z = {z1, . . . , zN}

1 z
(0)
n ← 0, ∀ 1 ≤ n ≤ N ;

2 K ← 0;

3 for j : 1 ≤ j ≤ jmax do

4 z
(j)
n ← z

(j−1)
n , ∀ 1 ≤ n ≤ N ;

5 for n : 1 ≤ n ≤ N , in random order do

/* Remove the n-th pixel from its current class */

6 if z
(j)
n 6= 0 then

7 T
z
(j)
n
← T

z
(j)
n
− T (in); Nz

(j)
n
← N

z
(j)
n
− 1;

/* Sample a new class for the n-th pixel */

8 p0 ← α pT (T (in)|V0);

9 pk ← Nk
p
T
(T k+T (in)|V0)
p
T
(T k|V0)

, ∀ 1 ≤ k ≤ K;

10 z
(j)
n ∼ Cat(p0, p1, . . . , pK);

/* Place the n-th pixel in its new class */

11 if z
(j)
n = 0 then

12 K ← K + 1; z
(j)
n ← K;

13 TK ← T (in); NK ← 1;

14 else

15 T
z
(j)
n
← T

z
(j)
n

+ T (in); Nz
(j)
n
← N

z
(j)
n

+ 1;

16 zn ← mode
(
z
(jmax)
n , . . . , z

(jmin)
n

)
, ∀ 1 ≤ n ≤ N ;

Algo. 3 shows the implementation of the described approach. The parameters jmax

and jmin are related to the MCMC nature of the Gibbs sampler, where jmax is the

maximum number of samples to generate and jmin defines the end of the so called burn-

in period, while T k is the sufficient statistic vector for the k-th cluster.

4.1.4 Concentration parameter

The selection of the concentration parameter α in the model presented in Section 4.1.2

has a direct influence on the number of objects detected within an image. The probability
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p(K|α,N) has been studied in [EW95; Ant74] leading to

p(K|α,N) = SN (K)αK Γ(α)

Γ(N + α)
(4.35)

where SN (K) is the unsigned Stirling number. We recall that the unsigned Stirling

numbers follow the recursive relationship

SN (K) = (N − 1)SN−1(K) + SN−1(K − 1) (4.36)

with the boundary conditions S0(0) = 1 and SN (K) = 0 for K > N . Using (4.35),

the expected value of K given by (4.14) can be derived. This implies that the choice

of α provides information about the resulting number of objects. However, the number

of objects within an analysis window depends on several factors, including the image

resolution, the window size, and the particular scene being imaged (e.g., a rural area,

an urban area, etc.). These conditions can be a priori unknown or might exhibit strong

variations within the image. As we did with K, we can use a Bayesian approach to

estimate α jointly with the other parameters. In this case, we need to assign a prior

distribution p(α) to the concentration parameter α. A gamma prior was proposed in

[EW95]. However, this prior has the disadvantage that it still assigns higher probability

to some values of K than others.

To demonstrate this effect, we ran the algorithm with different parameters for this

gamma prior on a synthetic image generated for α0 = 1. After each iteration of Algo. 3

the value of α is updated according to its conditional distribution given the number

of non zero components produced by the CRP. Since α is a random variable, we ran

100 iterations for each set of parameters to be able to obtain the sample mean and

variance. We choose the parameters such that the distribution has a fixed shape (k = 2

in the gamma distribution with shape parameter k), and different mean values. Fig. 4.2

shows the evolution of α at each iteration for E[α] ranging from 10−3 to 103. It can be

observed that α → α0 only when E[α] ≥ α0. This is due to the gamma distribution

having exponentially decreasing tails, which implies that the probability of α > E[α]

reduces very drastically. It can be argued that this is not a problem, since we can

always propose a prior with a “high enough E[α]”. However, it should be noted that the

computational time required by the Gibbs sampler is (at best) linearly proportional to

the current number of components in the mixture distribution. This is illustrated by the

fact that the curves in Fig. 4.2 for E[α] ≤ 1 were computed in a few seconds, while the

first iterations of the curves for E[α] > 10 lasted around 1 hour.
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where ∆ψ
(i)
N (α) = ψ(i)(N + α)−ψ(i)(1 + α), the function ψ(·) is the digamma function,

and ψ(i)(·) is its i-th derivative. Denoting m = ∆ψ
(0)
N (α) + α−1, we obtain

EK

[(
K

α
−m

)2
]
=

Γ(α)

Γ(N + α)

N∑

K=1

SN (K)αK

[
K

α
−m

]2
. (4.40)

Defining the number SiN for i = 0, 1, 2, . . . as the following series

SiN =

N∑

K=1

SN (K)αKKi (4.41)

the squared binomial in (4.40) can be expanded to obtain

EK

[(
K

α
−m

)2
]
=

1

α2
S2N − 2

m

α
S1N +m2S0N . (4.42)

By using (4.36), we obtain a closed form expression for S0N

S0N =
N∑

K=1

αKSN (K)

=(N − 1)S0N−1 + αS0N−1

=(N + α− 1)S0N−1. (4.43)

Solving the recursive relationship leads to

S0N =
Γ(N + α)

Γ(α)
. (4.44)

Differentiating (4.41) and (4.44) w.r.t. α, we obtain

S1N = S0N αm (4.45)

S2N = S0N
(
αm+ α2m2 + α2m′

)
(4.46)

where m′ = dm
dα

= ∆ψ
(1)
N (α)− α−2. This leads to

EK

[(
K

α
−m

)2
]
=

∆ψ
(0)
N (α)

α
+∆ψ

(1)
N (α) (4.47)

yielding the following Jeffrey’s prior

p(α|N) = µN

√
∆ψ

(0)
N (α)

α
+∆ψ

(1)
N (α) (4.48)
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where µN is a normalization constant greater than (N − 1)−1π−1, i.e., p(α|N) is a proper

prior. It is important to note that for α < N this distribution behaves as α− 1
2 , while

for α > N is behaves as α− 3
2 , which in both cases yields a much heavier tail than the

gamma prior.

To include this prior for α in the Gibbs sampler, we need to compute its conditional

distribution. The conditional distribution of α depends exclusively on the partitioning

z, particularly, on the number of pixels to be partitioned, and the number of clusters in

the partition

p(α|K,N) ∝ p(K|α,N) p(α|N)

∝ SN (K)αK Γ(α)

Γ(N + α)
p(α|N) (4.49)

∝ αK B(α,N) p(α|N) (4.50)

where B(α,N) = Γ(α)Γ(N)
Γ(N+α) is the beta function. As described in [EW95], we can simplify

this expression by introducing a new random variable. Since the beta function can also

be expressed as B(α,N) =
∫ 1
0 t

α−1(1− t)N−1dt, we obtain

p(α|K,N) ∝ αK p(α|N)

∫ 1

0
tα−1(1− t)N−1dt (4.51)

where t is a variable living in the interval [0, 1]. Note that we can interpret (4.51) as a

marginal distribution of

p(α, t|K,N) ∝ αK tα−1(1− t)N−1 p(α|N). (4.52)

In the MCMC scheme, we can sequentially sample t and α from

p(t|α,K,N) ∝ tα−1(1− t)N−1 (4.53)

p(α|t,K,N) ∝ αK tα−1 p(α|N) (4.54)

where (4.53) is a beta distribution, and (4.54) is defined as

p(α|t,K,N) ∝ αK tα−1

√
∆ψ

(0)
N (α)

α
+∆ψ

(1)
N (α). (4.55)

It can be easily shown that the marginal distribution p(α|t,K,N) behaves as a power

law distribution for α → 0, and as a power law distribution with an exponential cutoff

for α→∞, i.e.,

p(t|α,K,N) = L∞(α|t,K,N)αK− 3
2 eα log t (4.56)

p(α|t,K,N) = L0(α|t,K,N)αK− 1
2 (4.57)



4.2. SPATIAL CORRELATION 73

Algorithm 4: Sampling the posterior distribution of α.

Input: α, K, N

Output: α

1 t ∼ B(α,N); M ←M(N,K, t);

2 α ∼ Γ
(
K + 1

2 ,−
1

log t

)
;

3 while u ∼ U(0, 1), u pΓ(α) < M p(α|N,K, t) do

4 α ∼ Γ
(
K + 1

2 ,−
1

log t

)
;

where L∞(α|N) and L0(α|N) are slowly varying functions in ∞ and 0 respectively. For

the positive scale factor d, we obtain

lim
α→∞

L∞(α|N)

L∞(dα|N)
= 1 (4.58)

lim
α→0

L0(dα|N)

L0(α|N)
= 1. (4.59)

This behavior is difficult to replicate with most well known distributions, specially due

to the mixed power law and exponential cutoff for α → ∞. However, this distribution

can be upperbounded by removing the power law behavior for α→∞. Indeed

p(α|t,K,N) ≤ L(α|t,K,N)αK− 1
2 eα log t (4.60)

where L(α|t,K,N) is a bounded slowly varying function of α in∞ and 0 and αK− 1
2 eα log t

is a gamma distribution with shape parameter K + 1
2 and scale parameter − 1

log t . A

rejection sampling approach [RC05] can be easily implemented as shown in Algo. 4 and

is included at the end of each iteration in Algo. 3.

The influence of this prior is shown in Fig. 4.3 where 100 simulations were run on

the same image as Fig. 4.2 to obtain the sample mean and variance of α when using

the proposed Jeffreys prior. It can be observed that regardless of the initial conditions

(α≪ 1 or α≫ 1) the algorithm converges to the same value close to α0.

4.2 Spatial correlation

In Section 3.5 two major problems were identified for the estimation of v. The first

one, linked to the estimation of the number of objects in the scene, was addressed in

Section 4.1.1. The second one, related to the spatial correlation of the images, is studied

in this section. Consider the example illustrated in Fig. 4.4 where the same pair of
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(a) Two unchanged synthetic images, with spa-

tial correlation

(b) The same images, where the pixels had

been jointly shuffled

Figure 4.4: Two pairs of unchanged synthetic images. In (a) the images present spatial

correlation. In (b) the spatial correlation had been broken by randomly shuffling the

pixels jointly in both images.

latent variables. Section 4.2.2 explains how to couple this prior with the DPMM model

introduced in Section 4.1.2 and presents the resulting algorithm.

4.2.1 Markov random field

As mentioned, before a classical tool to capture spatial correlation between adjacent

pixels of an image is the MRF, which allows a joint distribution to be defined using

a neighborhood graph. Let z = {z1, . . . , zN} be a group of random variables, and G

be a simple weighted graph [Har94] (i.e., an undirected graph with no loop, no more

than one edge between any two vertices, and with a weight associated with each edge).

The vertices of G represent the different random variables zn, while the weighted edges

represent some sort of affinity between the connected random variables. The random

vector z is an MRF if the distribution of one variable zn of this vector conditionally to

the other variables z\n is only dependent on the variables belonging to its neighborhood,

i.e.,

p
(
zn
∣∣z\n

)
= p

(
zn
∣∣zne(n)

)
(4.61)

where zne(n) is the group of random variables that belong to the neighborhood of zn,

i.e., that are connected by an edge to zn.

However, constructing a joint distribution such that its conditional distribution ver-

ifies (4.61) is not trivial. In particular, defining the conditional distributions indepen-

dently can result in an improper joint distribution. The Hammersley-Clifford theorem

[Gri73] gives a necessary and sufficient condition ensuring the existence of the joint dis-

tribution. This condition states that p(z) should factorize over the cliques C of G (we
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recall that a clique of an undirected graph is a subset of vertices where any two ver-

tices are connected by an edge). This is equivalent to defining p(z) = exp [H(z)], and

requiring that

H(z) =
∑

C∈C

HC(zC) (4.62)

where H(·) is the so-called graph cost function, HC(·) is a local cost function for the

clique C, and zC = {zn : n ∈ C}. Defining Hn(z) as all the terms in H(z) involving zn,

i.e.,

Hn(z) =
∑

C∈C,n∈C

HC(zC)

= hne(n)

(
zne(n)

)
+ hn(zn) (4.63)

where hn(zn) is a cost function for the 1-vertex clique associated with the n-th vertex

and hne(n)

(
zne(n)

)
is a cost function associated with its neighborhood. The resulting

conditional distribution p
(
zn
∣∣z\n

)
can be written as

p
(
zn
∣∣z\n

)
∝ exp [Hn(z)]. (4.64)

4.2.2 Markov random field as a prior in a DPMM

The random variables z define a partition of the data. They are discrete random variables

holding a categorical value associated with the pixel clusters (i.e., they represent an

identification or label, and their actual numeric value is irrelevant). Since they take

categorical values, the sole interaction between zn and zm should consist of evaluating

whether they have the same value or not. This is obtained by a cost function that follows

a Potts model [Pot52]

H
(
zn
∣∣z\n

)
= Hn(zn) +

∑

m∈ne(n)

ωnm ✶zn(zm) (4.65)

= Hn(zn) +
∑

m∈ne(n)
zn=zm

ωnm (4.66)

where ✶zn(·) is the indicator function, and ωnm is the weight of the edge connecting

vertices n and m. Note that an arbitrary cost function Hn(zn) can be chosen.

It is necessary, however, to relate the prior given by the MRF with the prior obtained

through the CRP. This can be achieved by simply considering the cost function

Hn(zn) = log p
(
zn
∣∣in,V ′

)
(4.67)
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where V
′ is the infinite dimensional parameter vector containing the vectors v

′ that

describe the components of the DPMM. It is important to note that zn is independent

of any other zm conditionally to in,V
′, since using (4.20) to (4.23) we can write

p
(
zn
∣∣in,V ′

)
∝ p

(
in

∣∣zn,V ′
)
× p(zn) (4.68)

∝ pF

(
in

∣∣v′
zn

)
× wzn . (4.69)

As such, Hn(zn) does not depend on any zm for m 6= n, so that this cost function defines

a valid MRF, as required by the Hammersley-Clifford theorem. The MRF defined by

this cost function is given by

p
(
zn
∣∣z\n, in,V

′
)
∝ p

(
zn
∣∣in,V ′

) ∏

m∈ne(n)
zn=zm

eωnm . (4.70)

The next step is to integrate out V
′ from (4.70) and replacing by (4.34) to obtain the

following result

∫
p
(
zn
∣∣in,V ′

)
p
(
V

′
∣∣z\n, I\n,V0

)
dV ′

= p
(
zn
∣∣z\n, I,V0

)
(4.71)

∝





α p(in|V0) if zn = 0

N ′
zn

p(I{zn}|V0)
p(I{zn}\n|V0)

if 1 ≤ zn ≤ K.
(4.72)

As a consequence, integrating out V from (4.70) leads to

p
(
zn
∣∣z\n, I,V0

)
=

∫
p
(
zn
∣∣z\n, in,V

)
p
(
V
∣∣z\n, I\n,V0

)
dV (4.73)

=

∫
p(zn|in,V )

∏

m∈ne(n)
zn=zm

eωnm p
(
V
∣∣z\n, I\n,V0

)
dV (4.74)

∝





α p(in|V0) if zn = 0

N ′
zn

p(I{zn}|V0)
p(I{zn}\n|V0)

∏
m∈ne(n)
zn=zm

eωnm if 1 ≤ zn ≤ K
(4.75)

which is the conditional probability of the DPM-MRF model that has to be included in

the partially collapsed Gibbs sampler. It should be noted that by integrating out V ′ the

density p
(
zn
∣∣z\n, I,V0

)
is no longer independent from any other zm. However, the MRF

is not defined conditional to V0 but conditional to V
′, so that the conditions for the

Hammersley-Clifford theorem hold. We would like to remark that the only difference

between (4.75) and (4.34) is that the DPM-MRF conditional distribution requires to
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Figure 4.5: Example of two neighborhood weights, for σ = 1 (left) and σ = 2 (right).

The size of the circles represents the weight of that pixel with respect to the pixel in

(0, 0).

define a set of weights relating a pixel with its neighbors and to keep track of which pixels

in the neighborhood belong to the same class. An expected result of such similarity is that

setting all the weights to ωnm = 0 (i.e., by removing spatial correlation), the suggested

model reduces to the DPMM model described in Section 4.1.2.

In order to guarantee the MRF homogeneity, the weight relating a pixel to its neigh-

borhood is defined by an isotropic function of the spatial distance between the pixels m

and n (denoted as dmn) such that

lim
dmn→∞

ω(dmn) = 0 (4.76)

which means “the more distant two pixels, the less correlated their classes”. This function

is generally chosen as a constant value on the Moore neighborhood [G+03; OB08] (pixels

with an L∞ distance of 1) and zero anywhere else. However, we propose to use a Gaussian

pdf as a weighting function, which verifies (4.76) and has a maximum for dmn = 0, which

is expressed as

ω(dmn|λ, σ) = λ exp

(
−
d2mn

σ2

)
(4.77)

where λ controls the influence of the MRF in the model, and σ controls the neighborhood

size. We have chosen this weighting function since it promotes smoothness and since it

provides a simple parametrization allowing to modify the radius of the neighborhood.

For computational simplicity, we have chosen to set ω(dmn) = 0 for dmn > 5σ.

Algo. 5 summarizes the resulting parameter estimation algorithm for the DPM-MRF

based on a collapsed Gibbs sampler. Note that each cluster keeps track of the pixels it
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contains through the sufficient statistics T k and that each pixel in keeps track of the

influence of the surrounding pixels though w(dmn). Note also that the DPMM parameter

α is estimated from its posterior distribution at the end of the algorithm.

4.3 Performance on synthetic images

Section 3.4 presented the performance of the proposed change detector using an EM

based algorithm to obtain the vectors v̂. As it is mentioned there, and shown in Fig. 3.8,

deciding what object (or mixture component) each pixel belongs to based only on the

pixel intensity is very error prone, specially when the different components of the mixture

distribution are close one to the other. Due to the limitations observed in Fig. 3.8, we

were obliged to define a window based distance measure dW , which in turn, limits the

resolution of the change detector.

Section 4.2 introduces an MRF prior into the model, so that the cluster assignment

of each pixel dos not depends solely on its intensities, but also on its spatial location.

Fig. 4.6 shows the pixel assignment obtained with EM and the one obtained with BNP-

MRF. It is clear that the introduction of the spatial correlation significantly improves the

pixel assignment. This is explained by the fact that even if a pixel intensity is ambiguous

and thus, difficult to assign, the neighboring pixels influence the decision. This can be

clearly seen in Fig. 4.6(e), where red pixels can be found in areas closer to the blue

component of the mixture, and vice-versa. These pixels would have been missassigned

by the EM based estimator proposed in Section 3.3. Due to this, the change detection

can now be performed pixel-wise instead of window-wise, so that the distance dM(v̂)

can be used as defined in (3.11).

Moreover, we previously discussed a problem regarding the window size, which is also

greatly improved by the BNP-MRF method. The analysis window size should not be too

small, otherwise the number of samples used to estimate v̂ is reduced, resulting in a high

variance of v̂. However, an increased window size presented two major disadvantages.

First, it reduced the change detector resolution, which is not a problem anymore since

now we perform a pixel-wise change detection. Second, it increased the number of objects

in the mixture, which has two consequences

• The number of objects could easily be outside of the predefined range.

• Having several components increases the probability of finding two components

that are similar, which are prone to be merged by the EM estimator. Moreover,
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Algorithm 5: A collapsed Gibbs sampler implementing a DPM-MRF parameter

estimator with unknown α.
Input: I = {i1, . . . , iN}, V0, λ, σ, jmax, jmin

Output: z = {z1, . . . , zN}

1 z
(0)
n ← 0, ∀ 1 ≤ n ≤ N ;

2 K ← 0;

3 α← 1;

4 ωnm ← λ exp
(
−d2mn

σ2

)
, ∀ 1 ≤ n ≤ N, m ∈ ne(n);

5 for j : 1 ≤ j ≤ jmax do

6 z
(j)
n ← z

(j−1)
n , ∀ 1 ≤ n ≤ N ;

7 for n : 1 ≤ n ≤ N , in random order do

/* Remove the n-th pixel from its current class */

8 if z
(j)
n 6= 0 then

9 T
z
(j)
n
← T

z
(j)
n
− T (in); Nz

(j)
n
← N

z
(j)
n
− 1;

10 h
m,z

(j)
n
← h

m,z
(j)
n
− ωmn, ∀m ∈ ne(n);

/* Sample a new class for the n-th pixel */

11 p0 ← α pT (T (in)|V0);

12 pk ← Nk
p
T
(T k+T (in)|V0)
p
T
(T k|V0)

ehn,k , ∀ 1 ≤ k ≤ K;

13 z
(j)
n ∼ Cat(p0, p1, . . . , pK);

/* Place the n-th pixel in its new class */

14 if z
(j)
n = 0 then

15 K ← K + 1; z
(j)
n ← K;

16 TK ← T (in); NK ← 1;

17 hm,K ← ωmn, ∀m ∈ ne(n);

18 hm,K ← 0, ∀m 6∈ ne(n);

19 else

20 T
z
(j)
n
← T

z
(j)
n

+ T (in); Nz
(j)
n
← N

z
(j)
n

+ 1;

21 h
m,z

(j)
n
← h

m,z
(j)
n

+ ωmn, ∀m ∈ ne(n);

/* Estimate the new α */

22 t ∼ B(α,N); M ←M(N,K, t);

23 α ∼ Γ
(
K + 1

2 ,−
1

log t

)
;

24 while u ∼ U(0, 1), u pΓ(α) < M p(α|N,K, t) do

25 α ∼ Γ
(
K + 1

2 ,−
1

log t

)
;

26 zn ← mode
(
z
(jmax)
n , . . . , z

(jmin)
n

)
, ∀ 1 ≤ n ≤ N ;
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(e) Distribution obtained

by BNP-MRF.

(f) Classification ob-

tained by BNP-MRF.

Figure 4.6: Figures (a) and (b) show the same images as in Fig. 3.8 captured by sensors

S1 and S2 respectively. Figure (c) and (e) show the mixture distribution of their pixel

intensity, and their estimated parameters represented by a circle with a cross for the EM

and the BNP-MRF estimations respectively. Figure (d) and (f) presents the resulting

classification of each pixel into each mixture component for the EM and the BNP-MRF

estimations respectively.

event if these components are not merged, it leads to the problem depicted in

Fig. 3.8.

The problems mentioned above do not affect the BNP-MRF approach, since the number

of objects is unbounded thanks to the BNP, and similar components do not risk being

merged if they are not spatially close thanks to the MRF.

Considering this, there is no problem to work with bigger windows when using the

BNP-MRF algorithm other than memory or computational time issues (i.e., bigger win-

dows implies tracking more pixel interactions and mixture components at the same time).

Window sizes between 100× 100 and 200× 200 were found to present a good trade off,

providing a reasonable computational time (which deserves attention when dealing with
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MCMC methods), as well as being able to contain most objects present in the analyzed

images. Moreover, with such a window size, we can process several windows in parallel,

allowing one to increase the analysis speed.

Fig. 4.7 presents the simulation results obtained for a dataset consisting of two het-

erogeneous synthetic images. Fig. 4.7(b) is a synthetic image representing the intensity

channel of a SAR image, while Fig. 4.7(a) is a synthetic optical image. Fig. 4.7(e) dis-

plays the ground truth showing in black the areas of the image that have been affected by

changes. To obtain dM(v̂n), the labels zn were computed using windows of size 100×100,

which was chosen to optimize the processing time. The neighborhood graph defined by

ω(dmn|λ, σ) was obtained with λ = 30 and σ = 6, with ω(dmn) = 0 for dmn ≥ 30. This

choice of σ was done taking into account the average size of the triangles features in the

images. The windows were processed using an overlap of 30 pixels in order to ensure the

continuity of the spatial correlation in zn. The values v̂n were obtained by computing the

maximum likelihood estimator of vn using I{zn}, while the manifold M was estimated

using 1% of the pixels randomly selected from unchanged areas.

Fig. 4.7(c) shows log (dM(v̂)), the computed distance to the manifold M, while

Fig. 4.7(d) shows the corresponding distance log dW obtained with the change detector

based on EM, where a red color corresponds to a large value of dM(v̂) and dW respec-

tively. It can be observed that Fig. 4.7(c) provides a more accurate change detection

compared to Fig. 4.7(d) (which is highlighted in the circular zoom area) due to BNP-

MRF producing a pixel-wise change detection, while EM produces a window-wise change

detection. Fig. 4.7(f) compares the ROC [PBF54] curves obtained with our method as

well as other classical methods. The proposed BNP-MRF model provides better results

than the EM based model for this example. If we consider the working situation defined

by equal probability of false alarm (PFA) and probability of non detection (1 − PD),

the EM method provides an error rate of 5.52%, while the BNP-MRF method yields an

error rate of 4.18%, which represents a reduction of 24%.

4.4 Conclusion

As discussed in Section 3.5, the estimation of v is of crucial importance to the perfor-

mance of the proposed change detection method. In Section 3.3, we proposed to use an

EM based algorithm to compute the mixture parameters. However, two main limitations

were highlighted, namely
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Table 4.1: Change detector performance for different methods for the images in

Fig. 3.11(a).

Method PFA = PDN

BNP-MRF 4.18%

EM 5.52%

Correlation Coefficient 27.68%

Mutual Information 26.35%

• The number of components was heuristically obtained from a predefined range.

• The spatial correlation was not considered, disregarding valuable information that

can help improve the estimation of the mixture parameters of our model.

In this chapter we improved this estimation by using several modifications into the

process. First, a non parametric approach was introduced to estimate the number of

mixture components belonging to each estimation window. Second, a non informative

prior was derived for the concentration parameter of the resulting mixture model. Includ-

ing this prior in the change detection model made the resulting parameter estimation

approach suitable for scenarios including different window sizes and having a highly

varying number of objects within an analysis window. Finally, a Markov random field

was coupled with the Bayesian non parametric mixture model to account for the spatial

correlation between adjacent pixels of remote sensing images. Notably, we introduced

a new weight function for the MRF, that produced smooth results and allowed us to

parametrize the neighborhood size of the MRF according to the image resolution and

the size of the features to be observed. We also derived a new Jeffreys prior to the

concentration parameter α, which improved its estimation compared to previous priors

proposed in the literature. Finally, a collapsed Gibbs sampler MCMC algorithm was

proposed to estimate the model parameters removing the need to sample the parameters

of our mixture model, and improving the general convergence of the resulting algorithm.

All these modifications increased the robustness of the parameter estimation algo-

rithm, allowing bigger sizes for the analysis windows to be considered and thus improving

the parameter estimation accuracy. Moreover, the introduction of a Potts model led to
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a classification pixel map allowing a pixel-level change detection strategy. The change

detection rule resulting from the proposed Bayesian non-parametric model showed im-

proved detection performance when compared with other strategies.
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(a) IOpt. (b) ISAR.

(c) log (dM(v̂)). (d) log (dW ).

(e) Change mask.
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(f) Detectors performance.

Figure 4.7: Results obtained by applying the proposed method into a dataset consisting

of two synthetic heterogeneous optical and SAR images.
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Chapter 5

Validation on real images
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Sections 3.4 and 4.3 presented the performance of the proposed change detector on

synthetic images. However, these images were generated based on the model presented in

Section 2.2.2, which inspired the proposed change detector. Consequently, it is reasonable

to think that the performance obtained on these datasets was favorable.

In order to validate the proposed method on more general conditions, this chapter

evaluates the performance of the algorithm on different datasets consisting of real images.

The change detection results obtained with the EM and BNP-MRF based estimators are

compared with those obtained with different classical methods based on the mean pixel

difference, mean pixel ratio, correlation coefficient and mutual information. The first two

reference methods were provided by the ORFEO Toolbox [OTB14]. When available, the

detector performance is also compared with the method of [MMS08] based on conditional

copulas. Note that the method presented in [MMS08] is one of the most recent change

detection methods that can be applied to both homogeneous and heterogeneous images.

Three datasets were chosen and are presented in Sections 5.1 to 5.3, that allows the

detector to be tested in different conditions:

• Two homogeneous optical images, where the manifold M is expected to be close

to a straight line.

• Two heterogeneous optical images, where the manifold M is expected to deviate

from a straight line.

• Two heterogeneous optical and SAR images, where M is completely unknown.
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Finally, conclusions are highlighted in Section 5.4.

5.1 Homogeneous optical images

The first experiment considers a pair of images from an urban area in the south of

Toulouse (France), acquired by Pleiades satellites within a time period of 16 months

and characterized by some new constructions. Figs. 5.1(a) and 5.1(b) display multi-

spectral images with 4 spectral bands (blue, green, red and infra-red) obtained by pan-

sharpening the 2m resolution multispectral image and the corresponding 50cm resolution

panchromatic image. Fig. 5.1(e) shows the ground truth provided by a photo-interpreter

indicating in black the areas affected by changes.

To obtain dM(v̂) for the BNP-MRF approach, the labels zn were computed on win-

dows of size 200×200, which was determined based on the system memory and processing

power. The neighborhood graph defined by ω(dmn|λ, σ) was obtained with λ = 60 and

σ = 1, with ω(dmn) = 0 for dmn ≥ 5. The choice of a small value for σ is due to the

fact that the scene corresponds to a urban area consisting mostly of small objects. The

windows were processed using an overlap of 50 pixels in order to ensure the continuity

of the spatial correlation in zn. The values v̂n were obtained by computing the maxi-

mum likelihood estimator of vn using I{zn}, while the manifoldM was estimated using

1% of the pixels randomly selected from unchanged areas. To obtain dW for the EM

approach, the mixture distribution was estimated using a window size of 10× 10 pixels.

The windows were processed using an overlap of 50% (5 pixels) in order to increase the

output resolution of the detector. Note that the value of K was constrained to belong to

the interval [1, 10] for the EM based algorithm. The pixel difference and the pixel ratio

measures were obtained as the L2 norm of the measure obtained for each image channel.

Fig. 5.1(f) displays the manifold formed by the estimated vectors v̂. As expected, it

lies within a straight line, although a second horizontal line can be seen at the bottom,

whose presence is probably due to different illuminations casting different shadows on

each image. This results in some objects being dark in one image, while bright in the

other one. However, since these changes were not considered in the ground truth, they

are included in the manifold.

Figs. 5.1(c) and 5.1(d) show the estimated distances dM(v̂) and dW obtained with

the proposed BNP-MRF and EM based estimators respectively. It can be observed that

Fig. 5.1(c) provides a more accurate change detection compared to Fig. 5.1(d), which is

highlighted in the circular zoom area. This improved performance is confirmed in the
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Table 5.1: Performance of the different methods for detecting changes on the images of

Fig. 5.1.

Method PFA = PDN

BNP-MRF 9.62%

EM 16.51%

Correlation Coefficient 26.08%

Mutual Information 26.27%

Mean Pixel Difference 27.88%

Mean Pixel Ratio 29.67%

ROCs displayed in Fig. 5.2. Table 5.1 shows the error rates obtained with PFA = 1−PD

for the different methods. In this condition, the EM based method reduces the error rate

by 37% compared to the best performing classical method, while the BNP-MRF method

reduces the error rate by 42% compared to the EM based method.

It is interesting to note that since the images are homogeneous, the pixel intensity of

both images are linearly dependent. This remark explains why the correlation coefficient

and the mutual information perform very similarly for this example.
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(a) Pleiades image – May 2012 (b) Pleiades image – Sept. 2013

(c) Distance dM(v̂). (d) Distance dW .

(e) Ground truth.
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(f) Manifold estimation.

Figure 5.1: Results obtained by applying the proposed method into a dataset consisting

of two real homogeneous optical images.
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Figure 5.2: Change detection performance for the images of Fig. 5.1.
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5.2 Heterogeneous optical images

The second simulation studies a pair of images from an urban area, in the same geograph-

ical position as the dataset used in Section 5.1 also characterized by some construction

works made within a 14 month time interval. Fig. 5.3(a) is identical to Fig. 5.1(a), while

Fig. 5.3(b) is a 3 channel image obtained from Google Earth which has been downsam-

pled to match the 50cm resolution of the Pleiades image. Fig. 5.3(e) shows the ground

truth provided by a photo-interpreter indicating in black the areas affected by changes.

Note that the simulation scenario considered to obtain zn, dM(v̂), dW and v̂n was the

same as the one used in Section 5.1. However, due to both images having a different

number of channels (or spectral bands) the pixel difference and the pixel ratio measures

were obtained as the L2 norm of the measure obtained for the channels that both images

have in common (i.e., red, green and blue).

Fig. 5.3(f) displays the manifold formed by the estimated vectors v̂. As expected,

part of it lies within a straight line, but an important part of it deviates from the

manifold, since the sensors present some differences. We believe that the main reason

for this deviation is a big difference in the location of the green spectral filter employed

by each sensor.

Figs. 5.3(c) and 5.3(d) show the estimated distances dM(v̂) and dW obtained with

the BNP-MRF and EM based models respectively. It can be observed that Fig. 5.3(c)

provides an improved change detection compared to Fig. 5.3(d), which is highlighted in

the circular zoom area. Moreover, some small changes that were not observed by the

change mask were well detected by the BNP-MRF method. Fig. 5.4 shows the ROCs

obtained with our method as well as other classical methods, illustrating the interest of

the proposed model. If we consider the working situation defined by PFA = 1 − PD,

the best performing classical method yields an error rate of 24.01%, while the EM based

method yields an error rate of 15.6% and the BNP-MRF method leads to an error rate

of 10.7%. This represents a reduction of 35% in the error rate by using the EM based

method with respect to the classical methods, and a reduction of 31% by using the BNP-

MRF approach with respect to the EM based method. Table 5.2 shows the error rates

obtained for PFA = 1− PD using the different methods.

It should be noted that since these images are heterogeneous, the pixel intensities are

not necessarily linearly dependent. This results in a significant performance reduction

on the correlation coefficient. However, the performance of the manifold based approach

as well as the mutual information methods, which are adapted to heterogeneous images,
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Table 5.2: Performance of the different methods for detecting changes on the images of

Fig. 5.3.

Method PFA = PDN

BNP-MRF 10.71%

EM 15.58%

Correlation Coefficient 32.03%

Mutual Information 24.01%

Mean Pixel Difference 29.16%

Mean Pixel Ratio 33.87%

are very similar to what was previously obtained.

Since the BNP-MRF estimation is based on an MCMC algorithm, it is pertinent to

mention the running time of these simulations. The images in Figs. 5.3(a) and 5.3(b)

are 2000× 2000 pixels, with 4 and 3 channels each. The running time of the EM based

algorithm was 105s while the BNP-MRF method required a running time of 51m with

8 cores in parallel, which makes BNP-MERF 233 times slower than the EM method.

However, since the processing can be parallelized this is not a huge drawback for its

application in remote sensing.
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(a) Pleiades image – May 2012 (b) Google Earth – July 2013

(c) Distance dM(v̂). (d) Distance dW .

(e) Ground truth.
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(f) Manifold estimation.

Figure 5.3: Results obtained by applying the proposed method into a dataset consisting

of two real heterogeneous optical images.
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Figure 5.4: Change detection performance for the images of Fig. 5.3.
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5.3 Heterogeneous optical and SAR images

The last experiment considers a pair of images from a mixture of urban and rural areas,

near Gloucester before and during a flooding. Fig. 5.5(b) is the intensity channel of an

image captured by a TerraSAR-X satellite with pixel resolution of 7.3m. Fig. 5.5(a) is a

3 channel image obtained from Google Earth which has been downsampled to match the

pixel resolution of the TerraSAR-X image. Fig. 5.5(e) shows the ground truth provided

by a photo-interpreter indicating in black the areas affected by the flooding.

To obtain dM(v̂) for the BNP-MRF approach, the labels zn were computed on win-

dows of size 200×200, which was determined based on the system memory and processing

power. The neighborhood graph defined by ω(dmn|λ, σ) was obtained with λ = 60 and

σ = 6, with ω(dmn) = 0 for dmn ≥ 30. The choice of σ was motivated by the fact

that the scene corresponds mostly to a rural area with big homogeneous regions. The

values v̂n were obtained by computing the maximum likelihood estimator of vn using

I{zn}, while the manifold M was estimated using 1% of the pixels randomly selected

from unchanged areas. To obtain dW for the EM approach, the mixture distribution

was estimated using a window size of 20× 20 pixels. The windows were processed using

an overlap of 50% (10 pixels) in order to increase the output resolution of the detector.

Again, the presence of bigger objects motivated the selection of a bigger window size

compared to that of Section 5.1. Note that the value of K was constrained to belong to

the interval [1, 10] for the EM based algorithm. The pixel difference and the pixel ratio

measures were computed on the SAR intensity channel and the optical image luminance.

Fig. 5.5(f) displays the manifold obtained from the estimated v. Since the speckle

noise present in SAR tends to produce a higher variance in the resulting SAR image, it

is expected to observe a higher variance in the estimated mixture parameters. Moreover,

the result displayed in Fig. 5.5(f) is a 2-dimensional projection of a 4-dimensional space

(since Topt(P ) is actually a 3-dimensional vector) which is not as regular as in the previous

cases.

Figs. 5.5(c) and 5.5(d) show the estimated distances dM(v̂) and dW obtained with

the proposed BNP-MRF and EM based models respectively. It can be observed that

Fig. 5.5(c) provides a better change detection compared to Fig. 5.5(d), which is high-

lighted in the circular zoom area. Fig. 5.6 shows the ROCs obtained with our method and

with alternative strategies including the method described in [MMS08]. This comparison

is in favor of the proposed BNP-MRF model. If we consider the working situation where

PFA = 1−PD, the best performing classical method yields an error rate of 21.75%, while
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Table 5.3: Performance of the different methods for detecting changes on the images of

Fig. 5.5.

Method PFA = PDN

BNP-MRF 8.19%

EM 14.58%

Conditional Copulas 23.96%

Correlation Coefficient 31.19%

Mutual Information 23.12%

Mean Pixel Difference 21.75%

Mean Pixel Ratio 18.61%

the EM based method yields an error rate of 14.6% and the BNP-MRF method leads

to an error rate of 8.19% This represents a reduction of 33% in the error rate by using

the EM based method with respect to the classical methods, and a reduction of 44% by

using the BNP-MRF approach with respect to the EM based method. which represents

a reduction of 44%. Table 5.3 shows the error rates obtained for PFA = 1 − PD using

the different methods.
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(a) Google Earth – Dec. 2006. (b) TerraSAR-X – July 2007.

(c) Distance dM(v̂). (d) Distance dW .

(e) Ground truth.
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(f) Manifold estimation.

Figure 5.5: Results obtained by applying the proposed method into a dataset consisting

of two real heterogeneous optical and SAR images.
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Figure 5.6: Change detection performance for the images of Fig. 5.5.
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5.4 Conclusions

The results shown in Sections 3.4 and 4.3 were obtained for synthetic datasets generated

based on the model presented in Section 2.2.2. This results were used to validate the

theoretical viability of the proposed methods. However, they were not sufficient to

assess the performance of the proposed method since the data was generated using the

assumptions at the basis of the proposed change detector. In order to provide a more

realistic performance overview, this chapter focused on testing the EM and BNP-MRF

based approaches as well as other classic change detection algorithms on different real

datasets. The performance was measured using the ROC curves of the different detectors,

in favor of our algorithm.

The BNP-MRF method outperformed the EM based method in all cases, at the

expense of a much higher computational time. The obtained improvement is not only

due to the accuracy of the change detector, but also due to an improved resolution in the

detection. This makes the BNP-MRF more suitable to detect small changes, as shown in

Fig. 5.3(c), and also more robust to the selection of the window size. This was observed

by the fact that the window size for the EM method had to be changed throughout

the experiments, while the window size for the BNP-MFR method remained fixed. To

finish, it is interesting to mention that the EM based estimator could still be useful in

situations where the computational time has to be reduced.



Chapter 6

Conclusion and perspectives

Remote sensing images are becoming widely available nowadays, with many commercial

and non-commercial services providing them. The sensor technology required to capture

this kind of images is evolving fast. Not only classical sensors are improving in terms of

resolution and noise level, but also new kinds of sensors are proving to be useful. The

availability of different kinds of sensors allows us to combine their advantages for several

image processing applications. One particular application that can take advantage of the

complementarity of different sensors is the detection of changes between different remote

sensing images. This application has received a significant interest in this PhD thesis,

with a particular attention to the detection of changes between optical and SAR images.

This Phd manuscript is organized as follows. Chapter 1 introduces the different

remote sensing images that have been considered in this work, with a specific attention to

optical and SAR images. It also discusses the concept of heterogeneous and homogeneous

sensors that are used to acquire these images. The motivations to detect changes between

images produced by heterogeneous sensors, as well as the corresponding challenges are

presented. Chapter 1 also briefly summarizes the different change detection methods

proposed in the literature, their strengths and limitations. A specific attention is devoted

to statistical change detection methods and to hypothesis tests, that have been used to

decide the presence or absence of changes between different images. Several of these

methods require the estimation of a joint pixel intensity distribution in order to compute

an appropriate similarity measure.

Chapter 2 studies a statistical model to describe the joint distribution of several image

intensities based on the assumption that the images are acquired by different sensors

and are contaminated by independent noises. This model is first proposed for uniform

areas of an image. It is then extended to the more general case of nonuniform areas,

leading to a mixture model where each component represents a different object within

the image. This mixture model is then used to analyze the performance of some classical

change detection algorithms. Not only significant flaws are detected on dependency
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based similarity measures, but we also show that improving the statistical model used to

describe the joint pixel intensity distribution does not significantly improve the detection

performance compared to simpler methods, such as those based on the histogram of the

pixels located inside an analysis window. From this analysis we conclude that a new

similarity measure is required in order to improve the change detection performance for

remote sensing images, which will be the objective of the next chapters.

Chapter 3 begins by studying the behavior of the expectation maximization algorithm

used to estimate the parameters of the mixture model introduced in Chapter 2 for change

detection. We assume that in the absence of changes the parameters of this mixture

model belong to a manifold, contrary to cases associated with the presence of changes.

Based on this statement, we propose to use the distance to the manifold as a similarity

measure for change detection between different images. Since this manifold is a priori

unknown, we propose a strategy to estimate the distance between this manifold and a

parameter vector associated with the model introduced in Chapter 2. More precisely,

the mixture model parameters are estimated using a modified version of the expectation

maximization algorithm, which allows the number of objects (or number of components

in the mixture distribution) contained within an analysis window to be estimated. This

strategy leads to a window based change detection, where changes are detected for any

analysis window. The performance of the proposed change detector (referred to as EM

detector) is assessed though its receiver operating characteristics computed from sev-

eral datasets composed of synthetic images representing heterogeneous optical and SAR

images, real homogeneous optical image, real heterogeneous optical images and hetero-

geneous optical and SAR images. In all studied cases the proposed method provides very

competitive results when compared to other state-of-the-art change detection strategies.

However, some limitations related to the parameter estimation method are identified,

namely, the number of components in the mixture distribution has to be estimated

heuristically from a predefined finite set, and the model does not consider the spatial

correlation between adjacent pixels of the images.

Chapter 4 addresses the previously mentioned limitations about the parameter es-

timation method using a new Bayesian nonparametric model. The first limitation (un-

known number of mixture components for any analysis window) is bypassed by con-

sidering the number of components as a random variable, which leads to a Bayesian

non parametric mixture model. The parameters of this model can be estimated using

a Markov chain Monte Carlo method. More precisely, we introduce a collapsed Gibbs
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sampler which has improved convergence when compared with standard Markov chain

Monte Carlo methods. This model depends in particular on a Jeffreys prior for the pa-

rameter of a Chinese restaurant process. The second limitation (taking advantage of the

spatial correlations between adjacent pixels of the images) is addressed by including a

Markov random field prior into the model. A non standard graph weighting function is

defined for this Markov random field prior in order to introduce smoothness and control

the influence of the spatial correlation. A fundamental consequence of this improved

model is that change detection can be performed at a pixel level and no longer at a win-

dow level. This property leads to an increased output resolution of the change detector,

and allows changes associated with smaller objects to be detected. The performance of

the resulting change detector (referred to as BNP-MRF detector) is assessed through

its receiver operating characteristics as for the EM detector. In all cases the change

detector based on the proposed Bayesian non parametric algorithm clearly outperforms

the algorithm studied in Chapter 2 and other state-of-the-art change detection methods.

Some perspectives for improving the change detection approach proposed in this the-

sis are finally presented. In Chapter 2, the parameters of the proposed mixture model are

estimated with a maximum likelihood estimator, which is not robust to the presence of

outliers (resulting for instance from dead pixels and specular reflections). The presence of

these outliers might be mitigated by considering robust estimators such as M-estimators

[Hub04] which would deserved to be studied in the context of the proposed change de-

tector. Another approach that would deserve further analysis consists of considering the

outliers as an additive error term subjected to sparsity constraints as in [Wri+09]. The

proposed statistical model assumes that all the captured image noises are independent,

which might not be realistic when several images are preprocessed together, as in the

case of pansharpened optical images. In this case, considering a mixture model that

allows certain correlation between groups of images could be considered. For instance,

a 4-dimensional Gaussian distribution with full correlation matrix could be considered

for pansharpened Pléiades images. Another research direction would be to extend the

proposed model to features extracted from the image, i.e., the wavelet coefficients associ-

ated with a remote sensing image are known to be distributed according to a generalized

Gaussian distribution [All12], independently of the sensor used to acquire the image. Us-

ing the wavelet coefficients would allows us to detect changes for images acquired from

any sensor without having to build a statistical model for each particular sensor. The
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proposed parameter estimation algorithm requires the a priori knowledge of the distri-

bution of each image intensity, which may be a problem in some practical applications.

In these cases, different approaches based on the empirical likelihood framework could

be investigated. These approaches do not require to define a parametric family for the

observed data [Owe01], i.e., ne can think of estimating the mixture parameters related

to the scene without having to define a distribution family for the mixture components.

Finally, Chapter 4 studied a BNP-MRF model for change detection. The main drawback

of this model is the computational cost associated with its estimation algorithm. How-

ever, the number of iterations of the MCMC algorithm might be reduced by providing

an informative initialization instead of a random one. The mean shift algorithm [CM02],

that has received a considerable attention in the literature, is an algorithm that would

deserve to be embedded in the proposed estimation method.
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