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ABSTRACT

This paper introduces a new statistical model for homogeneous
images acquired by the same kind of sensor (e.g., two optical im-
ages) and heterogeneous images acquired by different sensors (e.g.,
optical and synthetic aperture radar (SAR) images). The proposed
model assumes that each image pixel is distributed according to a
mixture of multi-dimensional distributions depending on the noise
properties and on the transformation between the actual scene and
the image intensities. The parameters of this new model can be es-
timated by the classical expectation-maximization algorithm. The
estimated parameters are finally used to learn the relationships be-
tween the different images. This information can be used in many
image processing applications, particularly those requiring a similar-
ity measure (e.g., change detection or registration). Simulation re-
sults on synthetic and real images show the potential of the proposed
model. A brief application to change detection between optical and
SAR images is finally investigated.

Index Terms— Image analysis, change detection, remote sens-
ing, multi-temporal images, mixture models, optical images, syn-
thetic aperture radar.

1. INTRODUCTION AND PROBLEM FORMULATION

In order to reduce the effect of noise and account for the spatial cor-
relation present in most remote sensing images, a common approach
used in image analysis is to consider groups of pixels contained in a
sliding window. The distribution of these groups of pixels is clearly
interesting for many image processing applications. These appli-
cations include change detection [1–3], image segmentation [4, 5],
image registration [1, 6], and database updating [7]. Distributions
that have been recently considered in the literature include bivariate
gamma distributions for two synthetic aperture radar (SAR) images
[1] and bivariate Pearson distributions for heterogeneous optical and
SAR images [2]. A more specific study was conducted in [7] for
the fusion of remote sensing images with cartographic databases.
However, a main limitation with these approaches is that they are re-
stricted to a specific pair of sensors. A different approach that over-
comes this problem was proposed in [3] where the joint distribution
of two images was built using the theory of copulas. However, this
method requires to learn the appropriate copula using training sam-
ples and it is hardly generalizable to situations where more than two
images are available.

This paper proposes to define a new statistical model for mul-
tiple remote sensing images. We assume that we have observed

a given scene through a set of D images denoted as {I1, . . . , ID}
acquired by D sensors {S1, . . . , SD}. Each sensor has imaged the
scene differently since a given sensor captures different physical
properties of the objects involved in the scene. Moreover, the kind
of noise affecting these objects generally differs from one sensor to
another. Consider as an example the case of two optical and SAR
images (D = 2). The SAR images are very sensitive to the ob-
ject edges whereas the colorimetry of a scene is clearly an important
property contained in optical images. The noise affecting a given
area of a homogenous SAR image is classically supposed to be a
multiplicative speckle noise with gamma or Weibull distribution [8].
Conversely, the noise affecting optical images has been considered
as an additive Gaussian noise in many applications [9].

This paper introduces a new flexible model allowing the physi-
cal and statistical properties of images to be captured. The proposed
model is flexible in the sense that it can be used for homogeneous
or heterogeneous images1 and for many kinds of sensors. Moreover,
the model can be used to describe the pixel intensities contained in
a sliding window. In many applications (e.g., change detection, reg-
istration), statistical models are used to describe the distribution of
the pixels in a sliding window assuming that it remains the same for
all pixels [1]. In this case the window is called homogeneous. The
model proposed in this paper takes into account possible variations
of the statistical model inside the sliding window (due, for instance,
to the presence of different objects). In this case the window is called
heterogeneous. As an example, its application to change detection
will be discussed at the end of this paper.

The paper is organized as follows: Section 2 introduces the
model for homogenous and heterogeneous images. Section 3 dis-
cusses the parameters estimation of this model using the expectation-
maximization (EM) algorithm. In Section 4 a transformation de-
scribing the relationships between different modalities is introduced.
Section 5 presents results obtained by applying this model to syn-
thetic and real data. Conclusions are reported in Section 6.

2. A NEW STATISTICAL MODEL FOR IMAGE ANALYSIS

This section introduces a flexible statistical model for the pixel inten-
sities associated with several images acquired by different sensors.
To achieve this, the marginal statistical properties of the pixel inten-
sities contained in a homogeneous area are reviewed in Section 2.1.

1Homogeneous images have been acquired by two different sensors of the
same kind (e.g., two optical images or two SAR images) contrary to hetero-
geneous images (e.g., one optical and one SAR image).



Section 2.2 defines the joint distribution of a group of pixels be-
longing to a homogeneous area contained into the sliding analysis
window. An extension to pixels belonging to a non-homogeneous
area is introduced in Section 2.3.

2.1. Statistical properties of homogeneous areas

A homogeneous area of an image is a region of the image where the
pixels have the same physical properties (denoted as P ). Since the
measurements of any sensor S are corrupted by noise, we propose
the following model

IS |P = fS [TS(P ), νS ] (1)

where P is used for the set of physical properties associated with the
image intensity IS , TS(P ) is a deterministic function of P explain-
ing how an ideal noiseless sensor S would capture these physical
properties P to form an intensity, νS is a random variable repre-
senting the sensor noise, and fS(·, ·) describes how the sensor noise
interacts with the ideal sensor measurement (which only depends on
the kind of sensor S). Model (1) indicates that IS is a random vari-
able whose distribution depends on the noise distribution but also
on TS(P ). To clarify this point, the examples of SAR and optical
images are considered in what follows.

For SAR images, it is widely accepted that the pixel intensity
ISAR in a homogeneous area is distributed according to a gamma
distribution [8]. For this example, model (1) reduces to

ISAR|P = TSAR(P ) νSAR

where TSAR(·) is the functional transforming the physical proper-
ties of the scene P to the noiseless radar intensity and νSAR is a
multiplicative speckle noise with gamma distribution, i.e., νSAR ∼
Γ
(
L,L−1

)
, where L is the so-called number of looks of the SAR

sensor. Using standard results on gamma distributions, we obtain

ISAR|P ∼ Γ

[
L,
TSAR(P )

L

]
.

For optical images, we can consider that the pixel intensity IOpt

is affected by an additive Gaussian noise [9] leading to
IOpt|P = TOpt(P ) + νOpt

where TOpt is the optical equivalent of TSAR, i.e., the functional in-
dicating the true color of the object with physical properties P , and
the random variable νOpt is the additive Gaussian noise with constant
variance σ2, i.e., νOpt ∼ N

(
0, σ2

)
. This results in

IOpt|P ∼ N
[
TOpt(P ), σ2].

The notations ΓP (ISAR) and NP (IOpt) will be used to denote the
probability density functions (pdfs) of ISAR|P and IOpt|P .

2.2. Distribution for multiple sensors in a homogeneous area

Assume that we have observed D images acquired by D different
and independent sensors. It makes sense to assume that the D ran-
dom variables ν1, ..., νD (defining the random vector ν) associated
with the sensor noises are independent leading to

p(ν) = p(ν1, . . . , νD) =

D∏
d=1

p(νd).

Since the image intensity Id|P only depends on νd for any d =
1, . . . , D, the joint distribution of the image intensities is

p(I1, . . . , ID|P ) =

D∏
d=1

p(Id|P ). (2)

For example, in the (interesting) particular case where we have ob-
served one radar and one optical image, we obtain

p(ISAR, IOpt|P ) = ΓP (ISAR)NP (IOpt).

2.3. Joint distribution for multiple sensors in a sliding window

Denote as p(I1, . . . , ID|W ) the joint pdf of the pixel intensities
within a sliding window W . To obtain this distribution, we pro-
pose to assume that the region of interest (located inside the sliding
window) is composed of a finite number K of homogeneous areas
with different physical properties P1, ..., PK . In this case, it makes
sense to assume that the physical properties of the region of interest
can be described by a discrete random variable with distribution

p(P |W ) =

K∑
k=1

wk δ(P − Pk) (3)

where wk is the weight of Pk which represents how much of W is
covered by Pk. Using (2) and the total probability theorem, the joint
distribution of the pixel intensity can be expressed as

p(I1, . . . , ID|W ) =

K∑
k=1

wk p(I1, . . . , ID|Pk)

=

K∑
k=1

wk

D∏
d=1

p(Id|Pk). (4)

In the particular case of two SAR and optical images (which will
be considered in our simulations), we obtain

p(ISAR, IOpt|W ) =

K∑
k=1

wk ΓPk (ISAR)NPk (IOpt). (5)

The expressions (4) and (5) show that the joint distribution of the
pixel intensities within a given window is a mixture of distributions.
Moreover, using (2) each component of this mixture is the product
of densities associated with independent random variables.

3. PARAMETER ESTIMATION

Different approaches have been used in the literature to estimate the
parameters of a mixture model. Even if the method of moments
has received some interest for this estimation problem [10], the EM
algorithm has become a reference for mixture models [11, 12]. The
EM algorithm has the property to converge to a local maximum of
the likelihood function. When applied to the joint distribution (4),
the algorithm iteratively optimizes the following Q function defined
as an expectation (E-step)

Q
(
θ
∣∣∣θ(i)) = EK|I,θ(i) [log p(I,K|θ)] (6)

where I = [I1, . . . , IN ] is the vector of observed data (N is the
number of pixels in the sliding window W ), In = [I1,n, . . . , ID,n]
is the vector of intensities for the nth pixel (with n = 1, ..., N )
acquired by the D sensors, θ = [θ1, . . . ,θK ] is the set of param-
eters defining the mixture, i.e., θk = [wk,θk,1, . . . ,θk,D] (with
k = 1, ...,K) contains the parameters related to kth homogeneous
region andwk is the weight of the kth region in the windowW (note
that θk,d is the set of parameters for the dth sensor that defines the
distribution associated with the physical properties Pk), θ(i) is the
set of parameters θ resulting from the ith iteration of the algorithm
and K = [k1, . . . , kN ] is the unobserved map of labels indicating



that pixel In results from the observation of the kth component Pk.
At each iteration the following optimization (M-step) is performed

θ(i+1) = arg max
θ

Q
(
θ
∣∣∣θ(i)).

It can be easily proven that optimizing Q
(
θ
∣∣∣θ(i)) with respect to

(wrt) θ is equivalent to optimizing log p(I|θ) wrt θ [11]. Through-
out this paper, we consider the standard assumption according to
which the samples [I1, k1], . . . , [IN , kN ] are independent (pixel in-
dependence in the observation window) leading to

log p(I,K|θ) =

N∑
n=1

log p(In, kn|θ). (7)

After replacing (7) in (6), computations detailed in [13] lead to

Q
(
θ
∣∣∣θ(i)) =

N∑
n=1

K∑
k=1

π
(i)
n,k logwk +

N∑
n=1

K∑
k=1

π
(i)
n,k log p(In|θk).

where π(i)
n,k =

p(In,kn=k|θ(i))
p(In|θ(i)) is constant for a given value of

(i, n, k) and p(In|θk) = p(In|kn = k,θ) is the probability that
the observed pixel intensity In has been produced by an object with
physical property Pk. Thus, based on (2), we obtain

Q
(
θ
∣∣∣θ(i)) =

N∑
n=1

K∑
k=1

π
(i)
n,k

[
logwk +

D∑
d=1

log p(In,d|θk,d)

]
. (8)

This last result shows that Q can be written as the summation of
terms depending on the different components θk,d of θ. Thus, each
of these terms can be maximized independently with respect to θk,d
in order to maximize Q

(
θ
∣∣∣θ(i)). The maximization of Q with re-

spect to wk [11] and θk,d classically yields

w
(i+1)
k =

1

N

N∑
n=1

π
(i)
n,k (9)

θ
(i+1)
k,d = arg max

θk,d

N∑
n=1

π
(i)
n,k log p(In,d|θk,d) (10)

where (10) is the maximum likelihood estimator (MLE) of the pa-
rameters associated with the distribution of the dth sensor Sd. It is
interesting to note here that (9) and (10) can be solved for various
distributions including the Gaussian, generalized Gaussian [14], ex-
ponential, gamma [15] and Weibull [16] distributions.

Of course, the number K of components in the mixture (which
corresponds to the number of homogeneous regions or objects con-
tained in the window W ) is generally unknown and has to be esti-
mated. In this paper, we have used the algorithm introduced in [17]
which requires fixing a maximum number of components, and grad-
ually removes the components that do not describe enough samples.

4. LEARNING THE RELATIONSHIPS BETWEEN IMAGES
FROM DIFFERENT MODALITIES

Two or more images associated with the same scene (acquired by ho-
mogeneous or heterogeneous sensors) have some similarities. These
similarities are useful for image analysis, e.g., to detect whether a
given object is present in several images or to detect changes be-
tween several images. This section introduces a model allowing the
relationships between the different images to be analyzed.

An image is usually composed of several homogeneous areas or
objects. It is also common to find many objects of the same kind in

an image. Each kind of object has different physical properties P
when it is observed in different images. In the case of D images,
these physical properties can be gathered in the following vector

v(P ) = [T1(P ), . . . , TD(P )]

where Td(P ) is the transformation introduced in (1) for the sensor
Sd. Depending on the value of the vector v(P ), the object has a
different aspect in the different observed images. The value of v(P )
can be seen as the fingerprint of a given object: each object produces
a cluster of v in a D dimensional subspace. When considering all
the possible values of P , the clusters of v describe a functional in
this D dimensional subspace parameterized by P .

For instance, when considering two optical gray-scale images,
we have v(P ) =

[
TOpt1(P ), TOpt2(P )

]
. Since both optical sensors

are similar, both components of v can be related as follows [18]
TOpt2(P ) = αTOpt1(P ) + β (11)

where α and β compensate for brightness and contrast differences.
In this case, the transformation (11) is affine and defines a straight
line in a bi-dimensional subspace. When the sensors are different,
the transformation between the different images can be very complex
and, of course, the relationships between the components of v(P )
are a priori unknown. For every window W , K different values of
v (corresponding to the different regions/objects contained in W )
can be estimated using the statistical model defined in Section 3.
Clustering the estimated values of v (denoted as v̂) can be used to
learn the components of v(P ), i.e., the relationships between the
different images of interest.

5. SIMULATION RESULTS

This section shows how the proposed statistical model can be applied
to different datasets, including synthetic and real images. We first
present examples describing the use of the proposed model to learn
the joint distribution of the pixel intensities contained in a moving
window. The behavior of v(P ) is then studied from the estimated
parameters of the proposed statistical model.

5.1. Synthetic data

A set of two synthetic images was created by generating a synthetic
scene P . The synthetic scene was created from triangular patches
representing the different objects contained in the image. The syn-
thetic scene was corrupted by additive Gaussian noise to yield the
optical image with SNR = 30dB. To generate the SAR image,
first a known transformation was applied to the scene and the result
was corrupted by a multiplicative gamma noise with shape param-
eter equal to L = 5. The results presented in this paper have been
obtained with the following transformation

v(P ) = [TOpt(P ), TSAR(P )] = [P, P (1− P )].

where v has been chosen to model a non linear, yet relatively simple
transformation. Figs. 1(a) and 1(b) show examples of sliding win-
dows extracted from the synthetic optical and SAR images obtained
with this method. The histogram of the intensities [IOpt, ISAR] dis-
played in Fig. 1(c) were obtained by counting the number of samples
of the intensities contained in 50×50 bins belonging to [0, 1]×[0, 1].
This figure shows four main clusters which are clearly captured by
the proposed statistical model whose contours are shown in Fig. 1(d).

Figs. 2(a) and 2(b) show the full synthetic optical and SAR im-
ages associated with the images of Figs. 1(a) and 1(b). Moving win-
dows of 20× 20 pixels were then considered to estimate the param-
eters of the proposed mixture model. These parameters were then



(a) IOpt

(b) ISAR

0 1
0

1

IOpt

I S
A
R

(c) Joint histogram.

0 1
0

1

IOpt

I S
A
R

(d) Estimated mixture.

Fig. 1. Examples of sliding windows for synthetic optical and SAR
images and corresponding joint histogram and estimated mixture.
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its estimation v̂(P ) in black.

Fig. 2. Full synthetic optical and SAR images. Scatter plots of v̂ and
the estimated function v(P ).

used to estimate the corresponding vector v. A scatter plot of the
resulting v̂ can be observed in Fig. 2(c). The transformation v(P )
was finally learnt by applying a density estimator (based on Parzen
windows) on the estimated vectors v̂. The resulting pdf is superim-
posed on the desired transformation in Fig. 2(d) showing a very good
agreement with the ground truth (green curve).

5.2. Real data

Figs. 3(a) and 3(b) show a pair of two real optical and SAR images
from a rural area containing a forest region and a harvested field. The
optical image was converted into a gray-scale image to facilitate the
joint pdf representation (which is bivariate), although the proposed
model can easily consider each color channel as a different sensor.
Figs. 3(c) and 3(d) show the histogram and the estimated mixture
resulting from the proposed model, both obtained as for Fig. 1. Two
main clusters can be identified representing the forest, and the har-
vested area, as expected.

Fig. 4 shows the application of the proposed model to detect
changes in real optical and SAR images (note that the two images are
heterogeneous). An unchanged training area was used to learn the
functional relationship v(P ) using Parzen windows. The estimated
density denoted as p̂[v̂(P )] was used as a change measure, leading
to the following change detection strategy

p̂[v̂(P )]
H0

≷
H1

τ

where τ is a threshold related to the false alarm probability PFA and
the detection probability PD of the detector. The receiver operat-
ing characteristic (ROC) curves depicted in Fig. 4(d) (obtained by
varying τ and estimating the empirical PD and PFA) show that the
proposed method provides better performance than the method of [3]
based on the theory of copulas.
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Fig. 3. Window of real optical and SAR images and their corre-
sponding joint histogram and estimated mixture.
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(c) Change mask.
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(d) ROCs for the proposed change detection
method and the method of [3] based on cop-
ulas.

Fig. 4. Optical image before flooding (a), SAR image after flooding
(b), change map (c) and ROCs obtained with the method of [3] and
the proposed strategy (d).

6. CONCLUSIONS

This paper introduced a new statistical model to describe the distri-
bution of any number of homogeneous and heterogeneous images in-
dependently of the kind of sensors used to obtain these images. The
proposed model was expressed as a mixture of multi-dimensional
distributions whose parameters can be estimated by the expectation-
maximization algorithm. This mixture of distributions can be used
to determine standard similarity measures such as the mutual infor-
mation and is thus interesting for many potential applications. As
an example, the model was successfully applied to the detection of
changes between optical and synthetic aperture radar images. How-
ever, it could be interesting for many other applications such as im-
age registration, image indexing or image classification. Moreover,
further work should be conducted to validate the proposed model on
a larger dataset containing homogeneous and heterogeneous images.
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