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Abstract

This paper proposes a robust fast multi-band image fusion method to merge a high-spatial low-

spectral resolution image and a low-spatial high-spectral resolution image. Following the method

recently developed in [1], the generalized Sylvester matrix equation associated with the multi-band

image fusion problem is solved in a more robust and efficient way by exploiting the Woodbury

formula, avoiding any permutation operation in the frequency domain as well as the blurring kernel

invertibility assumption required in [1]. Thanks to this improvement, the proposed algorithm requires

fewer computational operations and is also more robust with respect to the blurring kernel compared

with the one in [1]. The proposed new algorithm is tested with different priors considered in [1].

Our conclusion is that the proposed fusion algorithm is more robust than the one in [1] with a

reduced computational cost.
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José Bioucas-Dias is with Instituto de Telecomunicações and Instituto Superior Técnico, Universidade de Lisboa, Portugal
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I. INTRODUCTION

A. Background

The multi-band image fusion problem, i.e., fusing hyperspectral (HS) and multispectral

(MS)/panchromatic (PAN) images has recently been receiving particular attention in remote

sensing [2]. High spectral resolution multi-band imaging generally suffers from the limited

spatial resolution of the data acquisition devices, mainly due to an unavoidable tradeoff

between spatial and spectral sensitivities [3]. For example, HS images benefit from excellent

spectroscopic properties with hundreds of bands but are limited by their relatively low spatial

resolution compared to MS and PAN images (that are acquired in much fewer bands). As

a consequence, reconstructing a high-spatial and high-spectral multi-band image from two

degraded and complementary observed images is a challenging but crucial issue that has

been addressed in various scenarios [4]–[7]. In particular, fusing a high-spatial low-spectral

resolution image and a low-spatial high-spectral image is an archetypal instance of multi-band

image reconstruction, such as pansharpening (MS+PAN) [8] or hyperspectral pansharpening

(HS+PAN) [2]. Generally, the linear degradations applied to the observed images with respect

to (w.r.t.) the target high-spatial and high-spectral image reduce to spatial and spectral

transformations. Thus, the multi-band image fusion problem can be interpreted as restoring

a three dimensional data-cube from two degraded data-cubes. A detailed formulation of this

problem is presented in the next section.

B. Problem Statement

This work directly follows the formulation of [1] and uses the well-admitted linear degra-

dation model
YL = LX + NL

YR = XBS + NR

(1)

where

• X ∈ Rmλ×n is the full resolution target image,

• YL ∈ Rnλ×n and YR ∈ Rmλ×m are the observed spectrally degraded and spatially

degraded images,

• L ∈ Rnλ×mλ is the spectral response of the sensor,
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• B ∈ Rn×n is a cyclic convolution operator on the bands,

• S ∈ Rn×m is a d = dr × dc uniform downsampling operator, which has m = n/d ones

on the block diagonal and zeros elsewhere, such that SHS = Im,

• NL ∈ Rnλ×n and NR ∈ Rmλ×m are additive noise terms that are assumed to be

distributed according to the following matrix normal distributions [9]

NL ∼MNmλ,m(0mλ,m,ΛL, Im)

NR ∼MN nλ,n(0nλ,n,ΛR, In).

Computing the ML or the Bayesian estimators (associated with any prior) is a challenging

task, mainly due to the large size of X and to the presence of the downsampling operator

S, which prevents any direct use of the Fourier transform (FT) to diagonalize the the joint

spatial degradation operator BS. To overcome this difficulty, several computational strategies

have been designed to approximate the estimators. Based on a Gaussian prior, a Markov

chain Monte Carlo (MCMC) algorithm was implemented in [10] to generate a collection of

samples asymptotically distributed according to the posterior distribution of X. The Bayesian

estimators of X can then be approximated using these samples. Despite this formal appeal,

MCMC-based methods have the major drawback of being computationally expensive, which

prevents their effective use when processing images of large size. Relying on exactly the

same prior model, the strategy developed in [11] exploits an alternating direction method of

multipliers (ADMM) embedded in a block coordinate descent method (BCD) to compute the

maximum a posterior (MAP) estimator of X. This optimization strategy allows the numerical

complexity to be greatly decreased when compared to its MCMC counterpart. Based on a

prior built from a sparse representation, the fusion problem was solved in [12], [13] with

the split augmented Lagrangian shrinkage algorithm (SALSA) [14], which is an instance of

ADMM. In [1], contrary to the algorithms described above, a much more efficient method

was proposed to solve explicitly an underlying Sylvester equation (SE) derived from (1),

leading to an algorithm referred to as Fast fUsion based on Sylvester Equation (FUSE). This

algorithm can be implemented per se to compute the ML estimator in a computationally

efficient manner. The proposed FUSE algorithm has also the great advantage of being easily

generalizable within a Bayesian framework when considering various priors. The MAP
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estimators associated with a Gaussian prior similar to [10], [11] can be directly computed

thanks to the proposed strategy. When handling more complex priors such as [12], [13],

the FUSE solution can be conveniently embedded within a conventional ADMM or a BCD

algorithm. Although the FUSE algorithm has significantly accelerated the fusion of multi-

band images, it requires the non-trivial assumption that the blurring matrix B is invertible,

which is not always guaranteed in practice.

In this work, we propose a more robust version of FUSE algorithm, which is termed as

R-FUSE. In this R-FUSE, the FT of the target image, instead of its blurring version as in

[1], is computed explicitly by exploiting the Woodbury formula. A direct consequence of

this modification is getting rid of the invertibility assumption for the blurring matrix B. A

side product of this modification is that the permutations conducted in the frequency domain

(characterized by the matrix P in [1]) are no longer required in the R-FUSE algorithm.

II. PROBLEM FORMULATION

Since adjacent HS bands are known to be highly correlated, the columns of X usually

reside in a subspace whose dimension m̃λ is much smaller than the number of bands mλ

[15], [16], i.e., X = HU where H is a full column rank matrix and U ∈ Rm̃λ×n is the

projection of X onto the subspace spanned by the columns of H ∈ Rmλ×m̃λ .

According to the maximum likelihood or least squares (LS) principles, the fusion problem

associated with the linear model (1) can be formulated as

arg min
U

L(U) (2)

where

L(U) = ‖Λ− 1
2

R (YR −HUBS) ‖2F + ‖Λ− 1
2

L (YL − LHU) ‖2F

and ‖ · ‖F represents the Frobenius norm.
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III. ROBUST FAST FUSION SCHEME

A. Sylvester equation

Minimizing (2) w.r.t. U is equivalent to force the derivative of L(U) to be zero, i.e.,∇L(U) =

0, leading to the following matrix equation

HHΛ−1
R HUBS (BS)H +

(
(LH)HΛ−1

L LH
)

U

= HHΛ−1
R YR (BS)H + (LH)HΛ−1

L YL.
(3)

As mentioned in Section I-B, the difficulty for solving (3) results from the high dimensionality

of U and the presence of the downsampling matrix S. The work in [1] showed that Eq. (3)

can be solved analytically with two assumptions

• The blurring matrix B is a block circulant matrix with circulant blocks.

• The decimation matrix S corresponds to downsampling the original image and its

conjugate transpose SH interpolates the decimated image with zeros.

As a consequence, the matrix B can be decomposed as B = FDFH with BH = FD∗FH ,

where F ∈ Rn×n is the discrete Fourier transform (DFT) matrix (FFH = FHF = In),

D ∈ Rn×n is a diagonal matrix and ∗ represents the conjugate operator. Another non-trivial

assumption used in [1] is that the matrix D (or equivalently B) is invertible, which is not

necessary in this work as shown in Section III-B. The decimation matrix satisfies the property

SHS = Im and the matrix S , SSH ∈ Rn×n is symmetric and idempotent, i.e., S = SH and

SSH = S2 = S. For a practical implementation, multiplying an image by S can be achieved

by doing entry-wise multiplication with an n × n mask matrix with ones in the sampled

position and zeros elsewhere.

After multiplying (3) on both sides by
(
HHΛ−1

R H
)−1, we obtain

C1U + UC2 = C (4)

where

C1 =
(
HHΛ−1

R H
)−1
(

(LH)HΛ−1
L LH

)
C2 = BSBH

C =
(
HHΛ−1

R H
)−1
(
HHΛ−1

R YR (BS)H + (LH)HΛ−1
L YL

)
. (5)
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Eq. (4) is a Sylvester matrix equation that admits a unique solution if and only if an arbitrary

sum of the eigenvalues of C1 and C2 is not equal to zero [17].

B. Proposed closed-form solution

Using the eigen-decomposition C1 = QΛQ−1 and multiplying both sides of (4) by Q−1

leads to

ΛQ−1U + Q−1UC2 = Q−1C. (6)

Right multiplying (6) by the DFT matrix F on both sides and using the definitions of matrices

C2 and B yields

ΛQ−1UF + Q−1UF
(
DFHSFD∗) = Q−1CF. (7)

Note that UF ∈ Rm̃λ×n is the FT of the target image, which is a complex matrix. Eq. (7)

can be regarded as an SE w.r.t. Q−1UF, which has a simpler form compared to (4) as Λ

is a diagonal matrix. Instead of using any block permutation matrix as in [1], we propose

to solve the SE (7) row-by-row (i.e., band-by-band). Recall the following lemma originally

proposed in [1].

Lemma 1 (Wei et al., [1]). The following equality holds

FHSF =
1

d
Jd ⊗ Im (8)

where F and S are defined as in Section III-A, Jd is the d× d matrix of ones and Im is the

m×m identity matrix.

By simply decomposing the matrix Jd as Jd = 1d1
T
d , where 1d ∈ Rd is a vector of

ones and using the mixed-product property of Kronecker product, i.e., (A1A2)⊗ (A3A4) =

(A1 ⊗A3) (A2 ⊗A4) (if A1, A2, A3 and A4 are matrices of proper sizes), we can easily

get the following result

FHSF =
1

d
(1d ⊗ Im)(1Td ⊗ Im) (9)

Substituting (9) into (7) leads to

ΛŪ + ŪM = C̄ (10)

DRAFT April 8, 2016



7

where Ū = Q−1UF,M = 1
d
D̄D̄H , D̄ = D (1d ⊗ Im) , C̄ = Q−1CF. Eq. (10) is an SE

w.r.t. Ū whose solution is significantly easier than the one of (6), due to the simple structure

of the matrix M. To ease the notation, the diagonal matrices Λ and D are rewritten as

Λ = diag (λ1, · · · , λm̃λ
) and D = diag (D1, · · · ,Dd), where diag (·1, · · · , ·k) represents a

(block) diagonal matrix whose (block) diagonal elements are ·1, · · · , ·k and λi ≥ 0, ∀i. Thus,

we have D̄HD̄ =
d∑
t=1

DH
t Dt =

d∑
t=1

D2
t .

In the following, we will show that (10) can be solved row-by-row explicitly. First, we

rewrite Ū and C̄ as Ū =
[
ūT1 , · · · , ūTm̃λ

]T and C̄ =
[
c̄T1 , · · · , c̄Tm̃λ

]T , where ūi ∈ R1×n and

c̄i ∈ R1×n are row vectors. Using these notations, (10) can be decomposed as

λiūi + ūiM = c̄i

for i = 1, · · · , m̃λ. Direct computation leads to

ūi = c̄i (M + λiIn)−1 . (11)

Following the Woodbury formula [18] and using D̄HD̄ =
d∑
t=1

D2
t , the inversion in (11)

can be easily computed as (M + λiIn)−1 = λ−1
i In − λ−1

i D̄

(
λidIm +

d∑
t=1

D2
t

)−1

D̄H . As

λidIm+
d∑
i=1

D2
i is a real diagonal matrix, its inversion is easy to be computed with a complexity

of order O (m). Using this simple inversion, the solution Ū of the SE (10) can be computed

row-by-row (band-by-band) as

ūi = λ−1
i c̄i − λ−1

i c̄iD̄

(
λidIm +

d∑
t=1

D2
t

)−1

D̄H (12)

for i = 1, · · · , m̃λ. The final estimator of X is obtained as

X̂ = HQŪFH .

C. Difference with [1]

It is interesting to mention some important differences between the proposed R-FUSE

strategy and the one of [1]:

• The matrix B (or D) is not required to be invertible.
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Algorithm 1: Robust Fast fUsion based on solving a Sylvester Equation (R-FUSE)
Input: YL, YR, ΛL, ΛR, L, B, S, H, d

1 D← EigDec (B); // FFT transformation

2 D̄← D (1d ⊗ Im);
3 C1 ← C1 (H,L,ΛL,ΛR); // Compute cf. (5)
4 (Q,Λ)← EigDec (C1); // cf. C1 = QΛQ−1

5 C← C (H,L,ΛL,ΛR,YL,YR,B,S); // cf. (5)
6 C̄← Q−1CF;
// Compute Ū band by band (m̃λ bands)

7 for l = 1 to m̃λ do
8 ūi ← ūi

(
λi, d, c̄i, D̄,D

)
; // cf. (12)

9 end
10 Set X̂ = HQŪFH ;

Output: X̂

• Each band can be restored as a whole instead of block-by-block (d blocks).

Algorithm 1 summarizes the derived R-FUSE steps required to calculate the estimated

image X̂, where the different parts with [1] have been highlighted in red.

D. Complexity Analysis

The most computationally expensive part of the proposed algorithm is the computation

of the matrix C̄ (because of the FFT and iFFT operations), which has a complexity of

order O(m̃λn log n). The left matrix multiplications with Q−1 (to compute C̄) and with(
HHΛ−1

R H
)−1 (to compute C) have a complexity of order O(m̃2

λn). Thus, the calculation

of C̄ has a total complexity of order O(m̃λn ·max {log n, m̃λ}), which can be approximated

by O(m̃λn log n) as log n� m̃λ.

Note that the proposed R-FUSE scheme can be embedded within an ADMM or a BCD

algorithm to deal with Bayesian estimators, as explained in [1].

IV. EXPERIMENTAL RESULTS

This section applies the proposed fusion method to two Bayesian fusion schemes (with

appropriate priors for the unknown matrix X) that have been investigated in [11] and [12].

Note that these two methods require to solve a minimization problem similar to (2). All the

algorithms have been implemented using MATLAB R2015b on a computer with Intel(R)

Core(TM) i7-4790 CPU@3.60GHz and 16GB RAM.
DRAFT April 8, 2016
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A. Fusion Quality Metrics

Following [1], we used the restored signal-to-noise ratio (RSNR), the averaged spectral

angle mapper (SAM), the universal image quality index (UIQI), the relative dimensionless

global error in synthesis (ERGAS) and the degree of distortion (DD) as quantitative measures

to evaluate the quality of the fused results. The larger RSNR and UIQI, or the smaller SAM,

ERGAS and DD, the better the fusion.

B. Fusion of Multi-band images

The reference image considered here as the high-spatial and high-spectral image is a

512× 256× 93 HS image acquired over Pavia, Italy, by the reflective optics system imaging

spectrometer (ROSIS). This image was initially composed of 115 bands that have been

reduced to 93 bands after removing the water vapor absorption bands. A composite color

image of the scene of interest is shown in Fig. 1 (right).

First, YR has been generated by applying a 5×5 Gaussian filter (shown in the left of Figs.

3) and by down-sampling every dr = dc = 4 pixels in both vertical and horizontal directions

for each band of the reference image. Second, a 4-band MS image YL has been obtained

by filtering X with the LANDSAT-like reflectance spectral responses [19]. The HS and MS

images are both contaminated by zero-mean additive Gaussian noises with SNRH = 40dB

for HS bands and SNRM = 30dB for MS bands. The observed HS and MS images are shown

in Fig. 1 (left and middle).

We consider the Bayesian fusion with Gaussian [10] and TV [12] priors that were con-

sidered in [1]. The proposed R-FUSE and FUSE algorithms are compared in terms of their

performance and computational time for the same optimization problem (corresponding to

(18) in [1]). The estimated images obtained with the different algorithms are depicted in Fig.

2 and are visually very similar. The corresponding quantitative results are reported in Table

I and confirm the same performance of FUSE and R-FUSE in terms of the various fusion

quality measures (RSNR, UIQI, SAM, ERGAS and DD). Note that the results associated with

a TV prior are slightly better than the ones obtained with a Gaussian prior, which can be

attributed to the well-known denoising property of the TV prior. A particularity of the R-FUSE

algorithm is its reduced computational complexity due to the avoidance of any permutation

April 8, 2016 DRAFT
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TABLE I
PERFORMANCE OF HS+MS FUSION METHODS: RSNR (IN DB), UIQI, SAM (IN DEGREE), ERGAS, DD (IN 10−3)

AND TIME (IN SECOND).

Prior Methods RSNR UIQI SAM ERGAS DD Time

Gaussian
FUSE 29.243 0.9904 1.513 0.902 6.992 0.27

R-FUSE 29.243 0.9904 1.513 0.902 6.992 0.24

TV
FUSE 29.629 0.9914 1.456 0.853 6.761 133

R-FUSE 29.629 0.9914 1.456 0.853 6.761 115

in the frequency domain when solving the Sylvester matrix equation, as demonstrated by the

computational time also reported in Table I.

Fig. 1. Pavia dataset: HS image (left), MS image (middle) and reference image (right).

C. Robustness w.r.t. the blurring kernel

In this section, we consider a kernel similar to the one used in Section IV-B, which is

displayed in the middle of Fig. 3 (the difference between the two kernels is shown in the

right). Note that this trivial change implies that the Fourier transform of the new kernel

has some values that are very close to zero, which may drastically impact the performance

of the FUSE algorithm. The fusion performance of FUSE and R-FUSE with a TV prior

is summarized in Table II. Obviously, the performance of FUSE degrades a lot due to the

presence of close-to-zero values in the kernel FT, which does not agree with the invertibility

DRAFT April 8, 2016
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Fig. 2. HS+MS fusion results. 1st: FUSE using Gaussian prior, 2nd: R-FUSE using Gaussian prior, 3rd: FUSE using TV
prior and 4th: R-FUSE using TV prior.
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8
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Fig. 3. Blurring kernel used in Section IV-B (left), in this section (middle) and their difference (right).

TABLE II
PERFORMANCE OF HS+MS FUSION METHODS WITH A SLIGHTLY DIFFERENT KERNEL: RSNR (IN DB), UIQI, SAM (IN

DEGREE), ERGAS, DD (IN 10−3) AND TIME (IN SECOND).

Prior Methods RSNR UIQI SAM ERGAS DD Time

TV
FUSE 9.985 0.5640 14.50 8.348 74.7 133

R-FUSE 29.629 0.9914 1.456 0.853 6.761 115

assumption of D. On the contrary, the proposed R-FUSE provides results very close to

(almost the same with) those obtained in Section IV-B, demonstrating its robustness w.r.t.

the blurring kernel.

V. CONCLUSION

This paper developed a new robust and faster multi-band image fusion method based on

the resolution of a generalized Sylvester equation. The application of the Woodbury formula
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allows any permutation in the frequency domain to be avoided and brings two benefits.

First, the invertibility assumption of the blurring operator is not necessary, leading to a

more robust fusion strategy. Second, the computational complexity of the fusion algorithm

is reduced. Similar to the method in [1], the proposed algorithm can be embedded into

a block coordinate descent or an alternating direction method of multipliers to implement

(hierarchical) Bayesian fusion models. Numerical experiments confirmed that the proposed

robust fast fusion method has the advantage of reducing the computational cost and also is

more robust to the blurring kernel conditioning, compared with the method investigated in

[1].
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